Editorial for the Special Issue: “Antimicrobial Resistance and Molecular Tracing of Foodborne Pathogens”
Acknowledgments
Conflicts of Interest
References
- Aarestrup, F.M. The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Philos. Trans. R. Soc. B: Biol. Sci. 2015, 370, 20140085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar]
- WHO. Antimicrobial Resistance Global Reporton Surveillance; WHO Library Cataloguing-in-Publication Data; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Sci. Total Environ. 2020, 727, 138788. [Google Scholar] [CrossRef]
- Carattoli, A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin. Microbiol. Infect. 2008, 14 (Suppl. 1), 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robicsek, A.; A Jacoby, G.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef]
- Song, H.-J.; Moon, D.C.; Mechesso, A.F.; Kang, H.Y.; Kim, M.H.; Choi, J.-H.; Kim, S.-J.; Yoon, S.-S.; Lim, S.-K. Resistance Profiling and Molecular Characterization of Extended-Spectrum/Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli Isolated from Healthy Broiler Chickens in South Korea. Microorganisms 2020, 8, 1434. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, K.; Deneke, C.; Schmoger, S.; Grobbel, M.; Malorny, B.; Käsbohrer, A.; Schwarz, S.; Meemken, D.; Hammerl, J.A. Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017. Microorganisms 2017, 9, 1308. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Kreyenschmidt, J.; Schmithausen, R.; Sib, E.; Schmoger, S.; Käsbohrer, A.; Hammerl, J. Clinically Relevant Escherichia coli Isolates from Process Waters and Wastewater of Poultry and Pig Slaughterhouses in Germany. Microorganisms 2021, 9, 698. [Google Scholar] [CrossRef] [PubMed]
- Binsker, U.; Käsbohrer, A.; A Hammerl, J. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol. Rev. 2021, fuab049. [Google Scholar] [CrossRef]
- Kubelová, M.; Koláčková, I.; Gelbíčová, T.; Florianová, M.; Kalová, A.; Karpíšková, R. Virulence Properties of mcr-1-Positive Escherichia coli Isolated from Retail Poultry Meat. Microorganisms 2021, 9, 308. [Google Scholar] [CrossRef]
- Mechesso, A.F.; Moon, D.C.; Kang, H.Y.; Song, H.-J.; Kim, S.-J.; Choi, J.-H.; Kim, M.H.; Na, S.H.; Kim, H.-Y.; Jung, B.Y.; et al. Emergence of mcr-3 carrying Escherichia coli in Diseased Pigs in South Korea. Microorganisms 2020, 8, 1538. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.; Kim, S.-J.; Mechesso, A.; Kang, H.; Song, H.-J.; Choi, J.-H.; Yoon, S.-S.; Lim, S.-K. Mobile Colistin Resistance Gene mcr-1 Detected on an IncI2 Plasmid in Salmonella Typhimurium Sequence Type 19 from a Healthy Pig in South Korea. Microorganisms 2021, 9, 398. [Google Scholar] [CrossRef] [PubMed]
- Roedel, A.; Vincze, S.; Projahn, M.; Roesler, U.; Robé, C.; Hammerl, J.A.; Noll, M.; Al Dahouk, S.; Dieckmann, R. Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms. Microorganisms 2021, 9, 651. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, K.; Borowiak, M.; Tausch, S.H.; Malorny, B.; Käsbohrer, A.; Otani, S.; Schwarz, S.; Meemken, D.; Deneke, C.; Hammeri, J.A. Outcome of different sequencing and assembly approaches on the detection of plasmids and localization of antimicrobial resistance genes in commensal Escherichia coli. Microorganisms 2021, 9, 598. [Google Scholar] [CrossRef]
- Bogaerts, B.; Winand, R.; Van Braekel, J.; Mattheus, W.; De Keersmaecker, S.; Roosens, N.; Marchal, K.; Vanneste, K.; Ceyssens, P.-J. Phylogenomic Investigation of Increasing Fluoroquinolone Resistance among Belgian Cases of Shigellosis between 2013 and 2018 Indicates Both Travel-Related Imports and Domestic Circulation. Microorganisms 2021, 9, 767. [Google Scholar] [CrossRef]
- Kim, M.; Moon, D.; Kim, S.-J.; Mechesso, A.; Song, H.-J.; Kang, H.; Choi, J.-H.; Yoon, S.-S.; Lim, S.-K. Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019. Microorganisms 2021, 9, 925. [Google Scholar] [CrossRef]
- Badul, S.; Abia, A.L.K.; Amoako, D.G.; Perrett, K.; Bester, L.A.; Essack, S.Y. From the farms to the dining table: The distribution and molecular characteristics of antibiotic-resistant Enterococcus spp. in intensive pig farming in South Africa. Microorganisms 2021, 9, 882. [Google Scholar] [CrossRef]
- Na, S.-H.; Moon, D.-C.; Kim, M.-H.; Kang, H.-Y.; Kim, S.-J.; Choi, J.-H.; Mechesso, A.-F.; Yoon, S.-S.; Lim, S.-K. Detection of the Phenicol–Oxazolidinone Resistance Gene poxtA in Enterococcus faecium and Enterococcus faecalis from Food-Producing Animals during 2008–2018 in Korea. Microorganisms 2020, 8, 1839. [Google Scholar] [CrossRef]
- Cao, A.; Chi, H.; Shi, J.; Sun, R.; Du, K.; Song, Y.; Zhu, M.; Zhang, L.; Huang, J. Visual Detection of Clostridium perfringens Alpha Toxin by Combining Nanometer Microspheres with Smart Phones. Microorganisms 2020, 8, 1865. [Google Scholar] [CrossRef]
- Lienen, T.; Schnitt, A.; Cuny, C.; Maurischat, S.; Tenhagen, B.-A. Phylogenetic Tracking of LA-MRSA ST398 Intra-Farm Transmission among Animals, Humans and the Environment on German Dairy Farms. Microorganisms 2021, 9, 1119. [Google Scholar] [CrossRef]
- Choi, J.-H.; Moon, D.C.; Mechesso, A.F.; Kang, H.Y.; Kim, S.-J.; Song, H.-J.; Yoon, S.-S.; Lim, S.-K. Antimicrobial Resistance Profiles and Macrolide Resistance Mechanisms of Campylobacter coli Isolated from Pigs and Chickens. Microorganisms 2021, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Brandl, M.; Hoffmann, A.; Willrich, N.; Reuss, A.; Reichert, F.; Walter, J.; Eckmanns, T.; Haller, S. Bugs That Can Resist Antibiotics but Not Men: Gender-Specific Differences in Notified Infections and Colonisations in Germany, 2010–2019. Microorganisms 2021, 9, 894. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammerl, J.A. Editorial for the Special Issue: “Antimicrobial Resistance and Molecular Tracing of Foodborne Pathogens”. Microorganisms 2022, 10, 390. https://doi.org/10.3390/microorganisms10020390
Hammerl JA. Editorial for the Special Issue: “Antimicrobial Resistance and Molecular Tracing of Foodborne Pathogens”. Microorganisms. 2022; 10(2):390. https://doi.org/10.3390/microorganisms10020390
Chicago/Turabian StyleHammerl, Jens André. 2022. "Editorial for the Special Issue: “Antimicrobial Resistance and Molecular Tracing of Foodborne Pathogens”" Microorganisms 10, no. 2: 390. https://doi.org/10.3390/microorganisms10020390
APA StyleHammerl, J. A. (2022). Editorial for the Special Issue: “Antimicrobial Resistance and Molecular Tracing of Foodborne Pathogens”. Microorganisms, 10(2), 390. https://doi.org/10.3390/microorganisms10020390