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Abstract: Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free
alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3 material exhibits fairly
low piezoelectric coefficients, further designing of such a material system greatly enhances the
piezoelectric response by means of domain engineering, defects engineering, as well as phase
boundary engineering. Especially after the discovery of a Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 system
with extraordinarily high piezoelectric properties (d33 > 600 pC/N), BaTiO3-based piezoelectric
ceramics are considered as one of the promising Pb-free substitutes. In the present contribution, we
summarize the idea of designing high property BaTiO3 piezoceramic through domain engineering,
defect-doping, as well as morphotropic phase boundary (MPB). In spite of its drawback of low Curie
temperature, BaTiO3-based piezoelectric materials can be considered as an excellent model system
for exploring the physics of highly piezoelectric materials. The relevant material design strategy in
BaTiO3-based materials can provide guidelines for the next generation of Pb-free materials with even
better piezoelectric properties that can be anticipated in the near future.
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1. Introduction

Actuators are devices that can convert input energy into mechanical energy [1]. Among the
varieties of actuators with different input energy (including electromagnetic, electrostatic, and thermal
energies [2–4] etc.), piezoelectric actuators feature high strain output, high response speed, and high
displacement control accuracy. As a result of those advantages, piezoelectric actuators have found
wide applications ranging from high-tech equipment such as scanning tunnel microscopy (STM)
and atomic force microscopy (AFM), to our daily life devices such as digital cameras and cellular
phone terminals [5]. Most piezoelectric actuators rely on a material with fairly large electromechanical
response, known as the piezoelectric material. When applying an electric field in a certain direction, the
piezoelectric material can generate a series of strain components satisfying various specific application
requirements for actuators. The degree of electromechanical response for piezoelectric material, which
determines the strain level with respect to external electric field, plays a crucial role on the performance
of actuators.

For more than 70 years, PZT (PbZr1 − xTixO3) piezoelectric ceramics have been the workhorse
of piezoelectric actuator technology [6]. Later in the 1990s, relaxor type piezoelectric single crystal
materials, such as PMN–PT (Pb(Mg1/3Nb2/3)O3–xPbTiO3) and PZN–PT(Pb(Zn1/3Nb2/3)O3–xPbTiO3)
were discovered [6–11]. All these Pb-based piezoelectric materials dominate the actuator
applications of piezoelectric materials due to their high longitudinal electromechanical coupling
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(k33) and large longitudinal piezoelectric coefficient (d33). Table 1 lists the properties of these
Pb-based materials [6,7,12–15]. The Pb-containing piezoelectrics have been further modified into
a number of materials, and the corresponding products have been well commercialized and found
mature applications.

However, the family of Pb-based materials is now facing the challenge for its environmental
compatibility, since it contains the toxic heavy-metal element Pb. And, there exists potential danger
during the manufacture, use, and disposal of these materials. In particular, recent global restrictions are
demanding the elimination of Pb from all consumer items, which makes it an urgent need to develop a
Pb-free substitute that can have piezoelectric properties resembling the Pb-containing materials [16–23].
Although the majority of existing Pb-free materials have inferior piezoelectric properties compared
with Pb-based ones [24–27], the solid-state physicians and material scientists have never given up on
developing environmental-friendly piezoelectrics, and the publication number for Pb-free piezoelectric
materials keeps growing in recent decades (Figure 1).

Table 1. Piezoelectric properties of Pb-based systems and BaTiO3 based systems.

Materials Poly/Single Crystal d33 (pC/N) k33 Reference

PZT–5A (soft) Polycrystalline 374 0.71 [6]
PZT–8 (hard) Polycrystalline 225 0.64 [12]
PMN–70PT Single crystal 1500 >0.9 [7]

92%PZN–8%PT Single crystal 2200 >0.9 [13]
0.5BZT–0.5BCT Polycrystalline 620 0.65 [14]
0.7BTS–0.3BCT Polycrystalline 530 0.57 [15]

Up to now, the widely investigated Pb-free piezoelectric materials have focused on, but are not
limited to KNN ((K1/2Na1/2)NbO3)-based, BNT ((Bi1/2Na1/2)TiO3) or BKT ((Bi1/2K1/2)TiO3)-based,
and BaTiO3-based ferroelectric material systems, which show large piezoelectric response [17–27].
Among these potential substitutions for PZT, the class of BaTiO3-based piezoelectric material is easy to
process with better electromechanical properties. Despite its drawback of fairly low Curie temperature
of approximately 100 ◦C, the recent discoveries of large electromechanical activities in BaTiO3-based
material (shown in Table 1) make it a model system for understanding the underlying physics of
Pb-free piezoelectrics, and thus it can provide a tutorial for the design of Pb-free piezoelectric material
systems [14]. Due to these reasons, the number of research papers on the piezoelectric response in
BaTiO3–based material has been increasing year by year (Figure 1).

This contribution will give an overview of BaTiO3-based piezoelectric materials with high
piezoelectric properties and will be arranged as follows. Section 2 introduces the piezoelectric
response in an undoped BaTiO3 material system and its domain engineering. Section 3 reviews
the enhanced electromechanical effect induced by doping point defects. And, we will focus on the
large piezoelectric effect caused by introducing phase boundary or interferroelectric transitions in
Section 4. The applications and prospective thoughts will be given in Section 5.
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2. Undoped BaTiO3

2.1. BaTiO3 Ceramics and Single Crystal

The BaTiO3 was discovered during World War II as a high capacitance material and was the first
discovered ferroelectric compound with a perovskite structure. Later on, the electrostriction effect for
the unpoled polycrystalline ceramics of BaTiO3 as well as the piezoelectricity for the electrically poled
samples was found, leading to many applications earlier than the Pb-containing material, PZT.

Table 2 shows the basic piezoelectric coefficients for undoped BaTiO3 single crystal and the
polycrystalline ceramic [28]. It can be seen that these parameters are fairly low compared with
PZT ceramics. For example, the piezoelectric coefficient d33 can only reach the value of 191 pC/N
for a BaTiO3 ceramic and 85.6 pC/N for a single crystal specimen, which are only 3–5 fold that of
PZT materials [29]. Moreover, the Curie temperature for a BaTiO3 system Tc~130 ◦C is much lower
compared with PZT and the relevant Pb-containing piezoelectric material systems. Owing to these
disadvantages, although being earlier discovered, the BaTiO3 has not been found the satisfactory
application on the associated piezoelectric devices such as actuators. Therefore, further treatments are
necessary to enhance the piezoelectric properties for such a material system.

Table 2. Piezoelectric coefficients for BaTiO3 single crystal and ceramic.

Crystal Ceramic

d15 392 270
d31 −34.5 −79
d33 85.6 191
g15 15.2 18.8
g31 −23.0 −4.7
g33 57.5 11.4
k31 0.315 0.208
k33 0.560 0.494
k15 0.570 0.466
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Table 2. Cont.

Crystal Ceramic

S12
E −2.35 −2.61

S13
E −5.24 2.85

S44
E 18.4 23.3

S66 8.84 22.3
S11

D 7.25 8.18
S33

D 10.8 6.76
S12

D −3.15 −2.98
S13

D −3.26 −1.95
S44

D 12.4 18.3

Note: Data from [28].

2.2. Domain-Engineered BaTiO3

Since the piezoelectric effect is fairly low for a BaTiO3 single crystal poled along the polar axis,
a so-called domain wall engineering technique has been employed, making use of the piezoelectric
anisotropy of single crystals [30–32]. It has been performed by poling the single crystal with the electric
field along the direction which has an intersection angle with respect to the crystallographic polar axis.
For example, Figure 2 shows the schematic model of the engineered domain configurations for the
tetragonal 4 mm ferroelectric crystals [33]. If the poling electric field is along the [110] direction, it will
generate two equally-preferred ferroelectric domains with spontaneous polarizations (PS) along [100]
and [010], respectively. In the case of [111] poled crystal, [100], [010], and [001] are three favorable PS

alignments for ferroelectric domains. Complex domain configuration has been formed, which enables
enlarged piezoelectric response of the domain-engineered crystal.
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Figure 2. Schematic model of the engineered domain configurations for the tetragonal 4mm ferroelectric
crystals (Ps: spontaneous polar vector along the <001>c directions) [33].

The intrinsic piezoelectric anisotropy can be considered as one of the reasons for the enhanced
piezoelectric response in a BaTiO3 single crystal [32]. It should be noted that the piezoelectric
coefficients (e.g., d33) usually show orientation-dependent phenomenon related with their Gibbs
free energy, considering the crystal symmetry. For example, Figure 3 shows the change of piezoelectric
coefficient d33* with respect to the orientation in a tetragonal phase crystal [30]. It can be seen that the
maximum d33 value has not been achieved along the polar axis which is <001> for tetragonal crystal
symmetry. Instead, the d33 along the [111] direction shows a larger value compared with that of <001>
directions, which is mainly due to the piezoelectric anisotropy in the crystal.
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On the other hand, the extrinsic contribution also plays a crucial role in further enhancing the
piezoelectric response for BaTiO3 single crystals. Wada et al. reported that high piezoelectric effect can
be obtained by reducing the size of ferroelectric domains with a domain-engineered configuration [34].
As shown in Figure 4, as the domain size decrease from 40 µm to 5.5 µm according to their polling
conditions, the piezoelectric coefficient d31 increases from 97.8 pC/N to 230 pC/N, which suggests
that enhanced piezoelectric response can be achieved in a fine engineered-domain configuration [34].
Moreover, a strong piezoelectric response can be obtained by forming even smaller domains, i.e.,
nanodomains in BaTiO3 ceramic, suggested by Takahashi et al. and Karaki et al. Wada et al. even
reported d33 value of 788 pC/N in a template-grain-grown BaTiO3 ceramic which might have partial
contribution from orientation effects [35–37]. Such a size-dependent phenomenon might be due to the
enlarged charged domain wall density in an engineered-domain configuration [38]. On the other hand,
the 90◦ domain wall contribution has also been considered as the reason for enhanced piezoelectric in
nanodomain tetragonal BaTiO3 single crystals [39].
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3. Large Non-Linear Electrostrain in Aging Point-Defect-Doped BaTiO3

The non-180◦ domain switching is always accompanied with a large electrostrain due to the
exchange of non-equal crystallographic axes. The level of strain due to such a process can reach one or
two orders of magnitude larger than the linear strain of poled piezoelectric materials. However, on
removal of the electric field, it cannot return to the original unpoled domain configuration, leading
to a remnant polarization when the electric field is zero. Hence, it makes the domain switching a
one-time or irrecoverable effect that restricts the application of non-180◦ domain switching for actuator
applications. In 2004, our group reported a giant recoverable electrostrain in a ferroelectric-aged
BaTiO3 single crystal doped by acceptor ions [40]. And, the strain level can reach up to 0.75% at a
low field of 200 V/mm, which largely exceeds the strain of soft PZT ceramics and PZN–PT single
crystals under the same electric field conditions. The similar effect was later reported in the aged
acceptor-doped BaTiO3-based ceramic (BaSr0.05TiO3–0.01Mn) with a large recoverable nonlinear strain
of about 0.12%–0.15% at a field of 3 kV/mm, which is higher than that of conventional hard PZT
piezoelectric ceramics [41]. It should be noted that the electric fatigue study shows that the electrostrain
has a good recoverability even after 10,000 cycles at 3 kV/mm electric field as shown in Figure 5.
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In order to understand the large recoverable electrostrain in such a material system, in-situ
optical microscopic observation has been conducted for BaTiO3 single crystals upon electric field
loading [42]. The mesoscopic evidence suggests that using in-situ domain observation shows that
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the aged Mn-doped BaTiO3 single crystal exhibits a remarkable reversible domain switching during
electric field cycling. The giant recoverable electrostrain effect switching a maximum strain of 0.4%
has also been observed simultaneously.

The ferroelectric aging effect is quite difficult to understand by the classical ferroelectric theories.
It is now generally considered that ferroelectric aging effect originates from the migration of oxygen
vacancies inside the materials with time. There are several models to understand the exotic ferroelectric
aging effect, including the grain boundary effect, domain wall effect, and the volume effect. (1) The
grain boundary effect refers to the oxygen migration into the secondary phase in the grain boundary
to form the space charge layer, driven by the depolarization field, and stabilizes the ferroelectric
domains [43,44]. (2) The domain wall effect involves the oxygen vacancy migration to the domain
walls and pinning of the domain walls electrically or elastically [45,46]. (3) The volume effect refers
to the reorientation of point defects with respect to the PS direction with the whole volume, and
thus stabilizes the ferroelectric domain states [47–53]. Among them, the volume effect can explain all
ferroelectric aging effects in different systems, and is thus the intrinsic effect for ferroelectric aging.

Based on the volume effect explanation for ferroelectric aging, a more detailed microscopic model
has been proposed to consider the interaction between the spontaneous polarization (PS) and the defect
dipolar polarization (PD) [40]. The idea of such a principle is that the distribution of oxygen vacancies
around the acceptor dopant shows statistic symmetry, known as “defect symmetry”, which has the
tendency to conform to the crystal symmetry after aging. As shown in Figure 7, the cubic crystal
symmetry has the cubic defect symmetry with symmetric distribution of oxygen vacancies around the
acceptor dopants. However, on cooling the sample below TC, the ferroelectric transition will occur, but
such a diffusionless transition does not allow the defect symmetry to change abruptly. During aging,
the oxygen vacancies will migrate into a non-symmetric defect configuration, which is suitable for
the tetragonal crystal symmetry and causes gradual stabilization with time. The above-mentioned
degradation of small-signal properties and change of large-signal properties can be explained by such
a principle. Besides, a recent study shows that the stabilization effect can be manifested as the Curie
temperature gradually increases with aging time [54].
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4. Large Piezoelectric Response Caused by Morphotropic Phase Boundary in BaTiO3

4.1. Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3

The common approach to achieving high piezoelectricity is to place the composition of the
material in the proximity of a phase transition regime between two ferroelectric phases. Such a
composition-induced phase transition region in the pseudo-binary composition-temperature phase
diagram has been known as the “morphotropic phase boundary (MPB)”. Figure 8 shows the typical
phase diagram of PZT [55,56], which is characterized by a vertical MPB separating a ferroelectric
rhombohedral (R) phase and a ferroelectric (T) tetragonal phase. At the MPB, there are strong
polarization instabilities and vanishing polarization anisotropy, which facilitate ease of polarization
rotation by external stress or electric field. It thus results in a high piezoelectricity and permittivity. It
should be noted that although MPB and the relevant mechanisms for high piezoelectricity have mainly
been discussed for Pb-based systems, it seems to be applicable to Pb-free systems as well.

In our previous work, we proposed a design strategy that combines two Pb-free end compositions
to establish a pseudo-binary system with MPB. We selected a certain composition that undergoes only
cubic (C) to tetragonal (T) phase transition at the T-end and a certain composition with only cubic (C)
to rhombohedral (R) phase transition at the R-end. Then the combination of the selected T-end and
R-end will result in a pseudo-binary phase diagram, possessing a MPB separating R and T phases. The
first system we designed was the (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ((1 − x)BZT–xBCT) [14],
where x is the molar percent of BCT, as shown in Figure 8. The Ca2+ concentration was set to be 30 at.%
to ensure the pure C-T phase transition, and the Zr4+ concentration was fixed to be 20 at.% to let the
pure C-R phase transition occur. The resulting pseudo-binary phase diagram of BZT–BCT is thus
characterized by a MPB separating ferroelectric R (BZT side) and T (BCT side) phases. It should be
noted that this material system was abbreviated as BZCT or BCZT in some literatures. However, it
should be pointed out that it is physically clearer to use BZT–BCT to demonstrate the morphotropic
phase boundary origin for such a material system. Such a physical idea has also been adopted in
the designing of KNN–based, lead-free piezoelectric materials, and a promisingly large piezoelectric
response has been achieved on the phase boundary of some material systems [18,22,57,58].
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The terminology “morphotropic phase boundary (MPB)” has been employed for BZT–BCT
piezoelectric ceramics. Admittedly, for most of the BaTiO3-based systems such a boundary is named
“polymorphic phase boundary (PPB)”, because it is not vertical to the composition axis and thus
dependent on temperature. The reason why MPB is still used for BZT–BCT hereafter is to illustrate its
similarity with PZT in the phase diagram.
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Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 (right) [14].

The piezoelectric response and the associated physical properties have been largely enhanced
on MPB composition at room temperature, i.e., 0.5BZT–0.5BCT. As shown in Figure 9c, the
composition-dependence of the piezoelectric coefficient exhibits a peak with a maximum d33 value
of 620 pC/N for 0.5BZT–0.5BCT. Such a d33 level is superior than most of the Pb-free piezoelectric
ceramics, and is even comparable with commercialized high-end PZT ceramics [13]. The strain for a
0.5BZT–0.5BCT ceramic can reach 0.05% in an electric field of 500 kV/mm [14], which is even larger
than PZT–5H at the same electric field condition. Moreover, Bowman’s group and other groups even
reported a larger strain level at a near-MPB composition [59–61], which makes BZT–BCT ceramic a
promising material for actuator application [62–65]. Besides piezoelectric coefficients, other parameters,
such as maximum polarization, remnant polarization, dielectric permittivity etc. are also enhanced on
the MPB composition 0.5BZT–0.5BCT. The detailed physical parameters for the optimal composition
of 0.5BZT–0.5BCT are shown in Table 3 [66]. It should be emphasized that the values of the listed
parameters are largely determined by the material processing conditions and poling conditions for
BZT–BCT ceramics [58,64,65], and the appropriate condition should be selected in order to achieve
best properties for the piezoceramic.

Table 3. The piezoelectric coefficients for 0.5BZT–0.5BCT [66].

Piezoelectric Coefficients

dij (10−12 N/C) eij (C/m2) gij (10−3 Vm/N) hij (108 V/m)

Material d33 d31 d15 e33 e31 e15 g33 g31 g15 h33 h31 h15

BZT–50BCT 546 −231 453 22.4 −5.7 12.1 15.3 −6.5 31.0 8.6 −2.1 8.3
BaTiO3 191 −79 270 11.6 −4.4 18.6 11.4 −4.7 18.8 9.2 −3.5 16.6
PZT5A 374 −171 584 15.8 −5.4 12.3 24.9 −11.4 38.0 21.4 −7.3 15.0

Dielectric Constants Electromechanical Coupling
Factorsεij (ε0) βij (10−4/ε0)

εT
33

a εT
11

a εS
33

a εS
11

a βT
33 βT

11 βS
33 βS

11 k33 k31 k15 kt kp

BZT-50BCT 4050 2732 2930 1652 2.47 3.66 3.41 6.05 0.65 0.31 0.48 0.42 0.53
BaTiO3 1898 1622 1419 1269 5.3 6.2 7.0 7.9 0.49 0.21 0.48 . . . 0.35
PZT5A 1700 1730 830 916 5.9 5.8 12.0 10.9 0.70 0.34 0.68 0.49 0.60

a Directly measured properties.
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the crystal structure is a combination of tetragonal and rhombohedral. The lab X-ray diffraction 
studies on 0.5BZT–0.5BCT suggests that the result can be interpreted as a coexisting of tetragonal and 
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polarization, coercive field, dielectric permittivity, d31, dS/dE. (c,d) The comparison for the piezoelectric
parameters between BZT–BCT and other systems. (e1,e2) The temperature stability for BZT–BCT.

4.2. Crystal Structure

The original idea for the material design for BZT–BCT system was to mix two binaries with
tetragonal and rhombohedral symmetries, respectively. Therefore it is natural to expect that on MPB
the crystal structure is a combination of tetragonal and rhombohedral. The lab X-ray diffraction
studies on 0.5BZT–0.5BCT suggests that the result can be interpreted as a coexisting of tetragonal and
rhombohedral crystal symmetries [14,67]. Haugen et al. further employed the high-resolution XRD to
study the crystal structure of 0.5BZT–0.5BCT followed by Rietveld analysis. The measured data can be
fitted by using the T-R coexisting model [68]. We also used the convergent beam electron diffraction
method to prove that diffraction symmetry satisfies the tetragonal and rhombohedral model [69,70].

In contrast, Keeble et al. pointed out that there exists an intermediate phase interleafing the
tetragonal and rhombohedral models by investigating the temperature-evolution of high-resolution
XRD reflections, and the result is shown in Figure 10 [71]. It can be seen that the measured temperature
window can be divided into 4 regions for 0.5BZT–0.5BCT, which is the indication that there exists
another phase besides the already-known C, T, and R phases. The Rietveld analysis further suggests
an orthorhombic crystal symmetry for such an intermediate phase. And similar conclusions have been
drawn from the temperature-dependence of elastic anomalies as well as the Rama spectrum [72,73].
The phase diagram has been modified accordingly as shown in Figure 11. It should be noticed that
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even if the orthorhombic phase interleafs the T and R phases, it appears in a very narrow temperature
and composition region, which blurs the measurements results.
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4.3. Tricritical Phenomenon

It should be noted that an important feature of this phase diagram (Figure 11) is the existence of a
C-R-T triple point or a C-T-O-R quadruple point in the phase diagram located at x of 32% and at Tc of
57 ◦C. Now, the phase transition behavior for such a point remains controversial, and a central issue is
whether or not the multi-phase-coexisting point is a thermodynamic tricritical point, and whether the
high piezoelectricity at MPB is affected by the tricritical phenomenon. Liu and Ren proposed that large
the piezoelectric response for BZT–BCT is associated with the starting point of MPB, i.e., the C-T-R
triple point, which shows a tricritical behavior with the crossover between first order and second order
transition (as shown in Figure 12) [14]. On the other hand, it has also been proposed that there is no
need for the coincidence between the tricritical point and the triple point, and Acosta et al. pointed
out that the maximum coefficient d33 value (best piezoelectric property) does not occur at the triple
point [74–76]. This indicates the irrelevance between the tricritical point and the high piezoelectric
response. It should be noted that the reason for such a dispute stems from the challenge in accurate
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determination of the position of the triple point and the tricritical point. Further investigations are
required in order to solve the discrepancy [77–80].
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to study the domain switching or domain wall motion for the BZT–BCT material system [85].  
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4.4. Microstructure of Ferroelectric Domains

It is well-known that the ferroelectric domain configuration as well as its domain dynamics play
very important roles on the piezoelectric response. There are intensive studies on the microstructure
for the Pb-containing piezoelectric materials. For example, for PZT, PMN–PT, and PZT–PT, the
ferroelectric domain structures manifest themselves as the nano-sized domains inside a domain
hierarchy. The domain dynamics or domain wall motion, on the other hand, has invoked great interest
for Pb-containing piezoelectric materials. Hence, the microstructure study of Pb-free piezoelectric
materials is also crucial for understanding the mechanism underneath the piezoelectric response and
further utilization of the materials.

For domain structure observation, transmission electron microscopy (TEM) was used. Bright
field (BF) TEM images in Figure 13 show the microstructure evolution with composition at room
temperature [69]. The 40 BCT specimen shows a zigzag domain pattern, which is a typical characteristic
for rhombohedral phase (Figure 13a). The 40 BCT specimen, on the other hand, shows a lamellar
domain structure with 90◦ domain walls, which is a typical tetragonal microstructure (Figure 13c). The
above two microstructures are plain structures that can be observed in ordinary ferroelectrics. However,
at 50 BCT in the MPB regime, the sample exhibits as a totally different microstructure: fine domains
with an average domain size of 20 nm are embedded in the frame of micron-scale domains forming
a kind of “domain hierarchy”. The study of microstructure evolution with composition uncovers
a micron-nano-micron microdomain-nanodomain-microdomain nature in domain structure across
MPB. The miniaturized domain structure corresponds to the MPB state with the highest d33. A similar
domain pattern has also been observed in KNN-based, lead-free piezoelectric materials [81,82]. Guo et
al. further reported the observation of nanodomain structure changing to a single-domain state in a
BaTiO3-based polycrystalline ceramic at intermediate poling electric fields with in situ TEM as shown
in Figure 14 [83,84]. This has been taken as the evidence for the existence of orthorhombic symmetry.
Moreover, by using the same method, Zakhozheva et al. reported that the domain configuration after
electric field loading can reappear, which raises interest to study the domain switching or domain wall
motion for the BZT–BCT material system [85].

The domain wall displacement for BZT–BCT studies can be divided into two categories. One is the
long-range domain wall displacement under a large electric field, which leads to large strain that can
be utilized for actuators. Tutuncu et al. pointed out that the domain switching process accompanied
with domain wall displacement contributes the majority of the effect under a large electric field, and it
thus can be considered as the main effect for the large strain of BZT–BCT for actuator applications [86].
On the other hand, the piezoelectric effect at the subswitching condition is determined by Rayleigh
relation under a small electric field [87]. The result shows that the intrinsic piezoelectric response
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exhibits a peak close to the composition-induced R–MPB and MPB–T phase transitions, but the value
is much less than total d33 value. In contrast, the extrinsic piezoelectric response, in particular the
one corresponding with reversible domain wall motion, has been greatly enhanced close to MPB.
Therefore, it is concluded that the extrinsic piezoelectric activity is the major contributor to the high
piezoelectricity in BZT–BCT ceramics under subswitching conditions.
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Figure 14. In situ TEM observations of a series of grains in the same specimen of the
0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramic. (a,c,e) show the virgin state of domain patterns; (b,d,f)
bright-field micrographs are compared with different electric field conditions [83].

4.5. General Systems

BZT–BCT has been proved to be a promising Pb-free piezoelectric system with a large
electromechanical response. Later, following the same strategy as BZT–BCT, we have developed
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Ba(Sn0.12Ti0.88)O3–x(Ba0.7Ca0.3)TiO3 (BTS–BCT) and Ba(Hf0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (BHT–BCT),
and large piezoelectric activity has also be reported in a BaTiO3–BaSnO3 (BT–BS) [15,88].

The phase diagram of the Ba(Sn0.12Ti0.88)O3–x(Ba0.7Ca0.3)O3 (BTS–xBCT) material system is
shown in Figure 15. It is characterized by its phase boundary starting from the triple point of a
paraelectric cubic phase, ferroelectric rhombohedral, and tetragonal phases. The room temperature
MPB composition BTS–30BCT exhibits a high piezoelectric coefficient d33 = 530 pC/N. It can thus be
considered as a promising high-performance Pb-free piezoceramic. Another high-property, triple-point
type Pb-free material system, Ba(Ti0.8Hf0.2)O3–(Ba0.7Ca0.3)TiO3 was also designed according to a
similar idea. The system shows anomalies of both small field (dielectric and piezoelectric) and large
field (P-E hysteresis) properties at the MPB, and especially the d33 coefficient can reach 550 pC/N at
room temperature, which further verifies the generality for such a design idea.
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Further large piezoelectric properties with d33 of 697 pC/N have been found in BaTiO3–xBaSnO3

Pb-free ferroelectric system (Figure 16) [89]. By re-examining the Sn-doped BaTiO3, we found it
also exhibits a T-O phase boundary. Its quasi-quadruple point, which is a point where four phases
(C-T-O-R) nearly coexist together in the temperature-composition phase diagram, the piezoelectric
as well as dielectric coefficient values reach their optimal values. Therefore, it is highly possible that
the multi-phase coexisting point (i.e., quadruple point or triple point) is of great significance for the
piezoelectric response of ferroelectric system, which might provide a guideline for developing Pb-free
piezoelectric materials with large electrometrical responses.
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5. Applications and Outline

The BaTiO3-based materials, such as BZT–BCT piezoceramic, exhibit superior piezoelectricity
compared with other Pb-free systems, which is comparable with soft PZT. It thus brings about strong
hope for Pb-free materials that can eventually be substituted for PZT in the future. Admittedly, we
have to point out that BaTiO3-based material systems have the drawback of low Curie temperature (Tc
< 130 ◦C), which restricts their application, especially due to their temperature stability performance.
However, such a system can still be considered as an excellent model for exploring the physics of
highly piezoelectric materials (a teacher for highly piezoelectric Pb-free materials). Even better Pb-free
piezoelectric systems can be anticipated based on the new insights obtained from BZT–BCT.

Here, we would like to give an example of the application of BZT–BCT piezoceramic as the
transducer of medical ultrasound imaging systems. As shown above, the 0.5BZT–0.5BCT ceramics have
a high dielectric constant of 2800 and superior piezoelectric performance d33 of 600 pC/N. Although
there are not real applications of such materials in actuators, it has been shown that the 0.5BZT–0.5BCT
ceramic is a promising lead-free piezoelectric material for high-frequency transducer applications.
Yan et al. has used the 0.5BZT–0.5BCT ceramics to fabricate a high-frequency (~30 MHz) needle-type
ultrasonic transducer for intravascular imaging application [90]. Such a lead-free transducer was
found to exhibit a −6 dB bandwidth of 53% with an insertion loss of 18.7 dB. As shown in Figure 17, an
in vitro intravascular ultrasound (IVUS) image of a human cadaver coronary artery was obtained by
such a lead-free transducer with adequate resolution and contrast to differentiate the vessel wall and
fibrous plaque. Various studies have also shown potential applications of such BaTiO3-based lead-free
ceramics, ranging from energy harvesting to energy storage, which can provide guidelines for the next
generation of Pb-free materials with even better piezoelectric properties, for example in high TC KNN
based piezoceramics [18,91,92].
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6. Summary 

BaTiO3-based piezoelectric ceramics are interesting Pb-free materials for actuator applications 
as they exhibit high strain under fairly low electric fields. The piezoelectric properties have been 
greatly enhanced via domain engineering, defect engineering, and phase boundary engineering 
processes. After the report of the BZT–BCT piezoelectric ceramic systems, the research interest in this 
family of materials for electromechanical applications has increased. Although the low Tc of such a 
system may hinder its application due to issues of its temperature stability, the BaTiO3-based 
piezoelectrics can still be considered as a model system for Pb-free piezoelectric material design. 
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6. Summary

BaTiO3-based piezoelectric ceramics are interesting Pb-free materials for actuator applications as
they exhibit high strain under fairly low electric fields. The piezoelectric properties have been greatly
enhanced via domain engineering, defect engineering, and phase boundary engineering processes.
After the report of the BZT–BCT piezoelectric ceramic systems, the research interest in this family of
materials for electromechanical applications has increased. Although the low Tc of such a system may
hinder its application due to issues of its temperature stability, the BaTiO3-based piezoelectrics can still
be considered as a model system for Pb-free piezoelectric material design.
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