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Abstract: This paper investigates a path planning approach for the walking and obstacle avoidance
of a blind hexapod robot in various field conditions. Hexapod robots often perform field tasks in
unstructured environments, and their external sensors are affected by weather and light. This paper
proposes the use of internal sensors to sense the terrain and a slightly modified soft actor-critic
algorithm to train the motion strategy. A hexapod robot is capable of walking smoothly on rough
ground only using internal sensors that are not affected by weather factors, and the soft actor-critic
approach is superior for overcoming high-dimensional issues for multi-degree-freedom robot motion
in unstructured environments.The experiments showed that the hexapod robot not only traversed
rugged terrain at a fixed speed but also possessed obstacle avoidance capabilities.

Keywords: hexapod robot; soft actor-critic; unstructured environment; adaptive motion; obstacle
avoidance

1. Introduction

Today, a growing number of robots are becoming present in people’s lives.Various
mobile robots are applied to replace humans, to perform tasks in challenging environments,
such as desert exploration [1], wall climbing [2], and exploration in confined spaces [3].
Currently, in practical applications, mobile robots are mostly wheeled robots, whose ability
to traverse terrain is limited by the size of their wheels relative to the terrain [4]. Other
mobile robots such as tracked robots have certain advantages on rough terrain [5] but still
face challenges in more complex environments.

In recent years, research on legged robots has made great progress, and legged robots
exhibit amazing traversability compared to traditional wheeled and tracked robots [6–9].
Among legged robots, hexapod robots have better stability and fault tolerance than bipedal
and quadrupedal robots [10,11]. Hexapod robots have a simpler structure and consume
less energy than octopod and higher legged robots.

In the field of the mechanical structural design of hexapod robots, the dimensional
design of a robot affects its ability to traverse rugged terrain [12]. A hexapod robot with a
planar Schatz linkage structure can be stacked flat and is also capable of traversing rugged
terrain, while ensuring a small size, easy storage, and easy transportation [13]. A radially
symmetric hexapod robot can achieve the maximum workspace within the allowable range
of a given size and certain physical constraints [14]. A hexapod robot with a leg-wheel
structure can also perform well in heterogeneous scenarios and on rugged terrain [15–17].

Motion control of hexapod robots is a combination of various sensor information
for joint control and coordination the between legs. The main current control methods
are bio-inspired control [18], engineering-based control [19], machine learning-based con-
trol [20,21], and combinations of two or more. Bio-inspired control is typified by CPG
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control, which is derived from bionics inspired by insects and allows hexapod robots to
execute gaits without any loss of equilibrium or increased delay [22,23]. This method has
already been put into applications, such as an underwater hexapod robot that can climb
large-angle slopes [24], and a hexapod robot that generates gaits adapted to different envi-
ronments [25,26]. In engineering, a hexapod robot foot trajectory tracking control method
based on Udwadia–Kalaba theory was proposed, which had a faster error convergence and
response speed compared with the traditional sliding mode space [27]. An omnidirectional
tracking strategy based on model predictive control and real-time replanning was proposed,
to address the difficulty of accurately tracking the reference trajectory of a hexapod robot
leg [28,29].

Decentralized control strategies can be embedded in a RL approach, to adapt to
different types of articulated robots [30]. The combination of CPG and RL provides a
breakthrough in end-to-end learning for mobile robots [31]. Mimicking the brain of an
insect, a hexapod robot can also have complex advanced cognitive control. It can recognize
information about the environment and the transitions between various motions appropri-
ate for each environment [32]. It can also handle a wide variety of perturbations and walk
normally despite losing a leg [33].

For the current hexapod robots, plenty of problems still exist [34]. Small legs have
a great impact on their dynamics and kinematic performance when they are in contact
with the ground. A team investigated a capacitive tactile sensor that can effectively im-
prove body speed and efficiency [35]. Hexapod robots performing tasks in the field often
encounter the problem of visual sensor failure, due to weather and lighting, and also
encounter puddles and other problems caused by the failure of the depth sensor. A blind
hexapod robot was proposed that uses only on-board IMU data, joint angle data, and the
leg–ground contact to sense the environment. This approach does not require expensive
sensors and overcomes the effects of weather and light [36]. Robots are often faced with
avoiding non-geometric obstacles. An unsupervised learning framework enables hexapod
robots to autonomously generate physical segmentation models of the terrain in changing
environments [37]. However, this framework requires visual sensors that are susceptible to
weather and light, and this is not feasible for blind hexapod robots. Autonomous adapta-
tion of robots to unknown and complex terrain is difficult [38], and the existing methods
for robot foothold planning remain computationally expensive [39].

Since hexapod robots are vulnerable to weather and light while performing tasks
in the field, this paper employs on-board IMU data and joint angle data to perceive the
surrounding environmental information. This does not utilize the pressure information
between each foot and the ground, which reduces the development cost, to give a simpler
structure and meet the minimum walking conditions of a hexapod robot.In addition, this
solution is unlikely to exhibit overfitting in a simulation and is easy to deploy to real robots.

The multiple redundant degrees of freedom in hexapod robots lead to a high-dimensional
continuous state space, and a blind hexapod robot acquires limited surrounding informa-
tion, making it difficult to adapt to rugged and complex terrain. This paper uses SAC in
DRL to train the gait, which adds entropy terms to the objective function and gives the
desired exploration ability for high-dimensional complex tasks [40]. This paper optimizes
the strategy network in SAC, to adapt it to the structural–spatial relationship of a hexapod
robot. It also optimizes the reward function in reinforcement learning, to generate better
mobility strategies for walking and obstacle avoidance tasks. This paper trained hexapod
robots with various typical types of reinforcement learning in a built training platform,
and compared the training strategies, which proved the superiority of the algorithm used
in this paper.

The contribution of this paper is to explore obstacle avoidance methods for blind
hexapod robots, including the terrain avoidance of high slopes and pits. As well as
exploring the application of a slightly modified SAC to the problem of walking and obstacle
avoidance for a blind hexapod robot, and comparing it to PPO and TD3 in the same context.
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2. Hexapod Robot System

In this section, the experimental hexapod robot system is introduced. The structure and
sensor system of the hexapod robot are first described, followed by the control framework
for the hexapod robot and the adaptive gait for legged robots. Furthermore, walking and
obstacle avoidance for blind hexapod robots in rugged terrain is discussed.

2.1. Structure and Sensors

“JetHexa” is a hexapod robot produced by a company named “Hiwonder”. JetHexa
is an open-source hexapod robot based on the ROS operating system. It is equipped with
Jetson Nano, a steering gear, Lidar, camera, and other hardware configurations. The Jetson
Nano is a GPU-based embedded development board produced by NVIDIA, and its ARM is
loaded with the Ubuntu 18.04LTS system. The steering gear was independently developed
by Hiwonder, its model is HX-35H, with a maximum torque of 35 kg.cm. The lidar has
a range frequency of 4 k–9 k/s and a range radius of 16 m. The JetHexa is equipped
with a LiDAR model EAI G4. It can realize robot motion control, mapping navigation,
somatosensory interaction, and other applications.

The structure of the experimental hexapod robot in this paper is shown in Figure 1,
in which the overall length of the hexapod robot is 397 mm, the width is 426 mm, and
the height is 238 mm. The forward direction of the robot is the X-axis positive direction,
the X-axis positive direction rotated counterclockwise by 90° is Y-axis positive direction,
the vertical upward is the Z-axis positive direction, and the unit of measurement is mm.
The coordinates of each joint are shown in Table 1.

Figure 1. Dimensions of the hexapod robot.

Table 1. Coordinates of the joints.

Left Leg Right Leg

front leg (93.6, 50.805, 0) (93.6,−50.805, 0)
middle leg (0, 73.575, 0) (0,−73.575, 0)

rear leg (−93.6, 50.805, 0) (−93.6,−50.805, 0)

Each leg joint of the hexapod robot consists of a high-voltage servo, an angle feedback
device, and a temperature and voltage sensor. The angle feedback device can record
the rotation angle of each joint, and the temperature and voltage sensor can understand
the internal data of the servo in real time, to protect the servo. As shown in Figure 2,
the hexapod robot has an inertial measurement unit (IMU) and an 18-angle feedback as
proprioceptive sensors, which form the sensor network of the hexapod robot.
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Figure 2. Structure of the hexapod robot.

2.2. Control Framework

As shown in Figure 3, the control framework can be mainly categorized into two stages:
low-level control, and high-level control. First, the proprioceptive signals are obtained
from the environment through the sensor network, which can determine its own attitude
and the ruggedness of the surrounding environment. In the high-level control, the policy
network receives the human-selected task types and proprioceptive signals, and then it
generates robot trajectories and gaits corresponding to the tasks. In the low-level control,
the motion trajectory of each joint of the hexapod robot is decomposed into angles and
motion directions at certain time intervals, and finally the joints are precisely rotated by the
positional PID control through feedback from the angle feedback device.

Figure 3. Motion Control Framework.
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2.3. Adaptive Gaits

The motion of a hexapod robot is a high-dimensional combinatorial problem, and the
best solution is to choose a suitable gait for a given terrain. A gait is a periodic motion
that restricts the robot’s movements to the appropriate terrain. A suitable gait ensures that
the robot can traverse the terrain without damaging itself or the terrain,and is superior in
terms of energy efficiency and smoothness. An appropriate gait is capable of crossing a
given terrain with minimal movement, i.e., minimal wear and tear on the joints.

On structured terrain, a single gait can be used to pass through the terrain. The
unstructured ground is complex and has many obstacles, and using adaptive gait allows
the hexapod robot to autonomously fine-tune its gait according to its surroundings, to
adapt to the unstructured ground. In this work, adaptivity is a locomotion strategy for a
hexapod robot that relies only on proprioceptive signals to recognize information about its
surroundings and thus change its entire gait.

2.4. Walking and Obstacle Avoidance

The blind hexapod robot exploits internal sensors to obtain information about its
surroundings, which include an inertial measurement unit IMU on the torso, and angle
feedback and torque feedback at each joint. The proprioceptive signals from the hexapod
robot can be obtained after integrating the signal processing of the internal sensors. Pro-
prioception is the perception of one’s own space and position in three-dimensional space,
and this also allows the body to perceive changes in limb movements [41]. For example,
blind people are able to carry out normal behavior such as walking and eating through
proprioception and touch even though they have lost their vision. Simple or complex sports
such as walking, running, and playing basketball require proprioception [42]. The pro-
prioceptive signals obtained from the sensor network are the trunk position, trunk linear
velocity, trunk angular velocity, joint angle, and joint angular velocity.

The hexapod robot–environment interaction is discretized in the time dimension as
a sequence of time steps. The state of the hexapod robot with the environment at each
time step is represented by the vector s, which contains all proprioceptive signals acquired
from the sensor network. The reward obtained by the hexapod robot interacting with the
environment at each time step is denoted by r, which reflects how favorable the current
environment is to the robot. The action performed by the hexapod robot at each time
step is denoted by the vector a, which contains the motion trajectories of all the moving
joints. As shown in Table 2, the interaction process between the hexapod robot and the
environment is described using MDPs. When the hexapod robot walks on rugged ground,
the state of each time step changes with the roughness of the terrain. As shown in Figure 4,
the rougher the terrain, the larger its stance angle, and the drop of each leg is larger, thus
adjusting the gait to adapt to the environment. In particular, when the hexapod robot is
walking on high slopes or pitted terrain, its stance angle rises or falls sharply in succession.
When it encounters an impassable high slope or pit, it can make an evasive maneuver at
the next time step, according to the change of attitude angle.

Table 2. Interaction process between the hexapod robot and the environment.

t t + 1 . . . t + n

at at+1 . . . at+n
st+1 st+2 . . . st+n+1

rt rt+1 . . . rt+n
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Figure 4. Postures of the hexapod robot on different terrains: (a) is a posture moving on flat ground,
with a small Euler angle; (b) is a posture moving over a pit with a large variation in Euler angles and
a large drop in each leg; (c) is a posture moving on a perlin with a small change in Euler angle and a
small drop in each leg; (d) is a posture moving on a slope with a large change in Euler angle and a
large drop in each leg.

3. A Soft Actor-Critic Algorithm

The interaction process between the hexapod robot and the environment uses MDPs,
which satisfy the conditions for the use of RL. This paper uses SAC to train the motion
strategy of the hexapod robot. SAC is a non-strategy DRL based on maximum entropy,
where the introduction of maximum entropy gives a strong exploratory ability [43]. In
addition, it has excellent robustness and high sampling efficiency, providing a stable
learning framework for control tasks in continuous action space [44].

SAC has an additional entropy term H(P) compared to the objective function of
conventional DRL: H(P) is

H(P) = E
x∼p

[− log P(x)], (1)

where P(x) is the distribution of x. The maximum entropy term makes the action output
more random, thus improving the exploration and learning ability of the algorithm. Then,
the optimal policy π∗ in SAC is

π∗ = arg max
π

∑E(st ,at)∼ρπ
[r + α · H(π(·|st))], (2)

where π is the robot’s motion strategy, a denotes the action, s denotes the state, and r
denotes the reward. Here, α denotes the temperature coefficient, a hyperparameter that
determines the importance of entropy with respect to the reward, thus controlling the
degree of randomness of the strategy.

Set the state st and the action at at time t, and the value function Qso f t(st, at) is

Qso f t(st, at) = r + γEst+1,at+1 [Qso f t(st+1, at+1)− α log(π(at+1|st+1))], (3)

where γ is the discount coefficient.
As for actor-critic, SAC has value networks and policy networks. To avoid using an

overestimated Q network to compute the objective when maximizing, SAC introduces two
online networks and two objective networks. The parameters of the two online networks
are set as θ1 and θ2, and the parameters of the two target networks are set as θ′1 and θ′2.
Then, the minimum value of the output of the two target networks are obtained as the
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target value in the calculation. The parameters of the value network can be updated by
minimizing the loss function as

JQ(θi) = E[1
2
(Qθi (st, at)− Q̂θi (st, at))

2], (4)

Q̂θ′i
(st, at) = r + γ[Qθ′i

(st+1, at+1)− α log(πϕ(at+1|st+1))]. (5)

The policy network parameters are denoted by ϕ, with the state st as input. A Gaussian
distribution with mean πϕ

µ and standard deviation πϕ
σ is used as the output. Then, the

action at can be obtained using a reparameterization with at as

at = fϕ(τt; st) = πϕ
µ(st) + πϕ

σ(st). (6)

In the above formula, the fϕ function outputs the mean and standard deviation, τt is the
standard normally distributed noise signal, and πϕ

µ and πϕ
σ are the mean and standard

deviation of the Gaussian distribution, respectively.
SAC represents the policy with an energy-based model, which is an appropriate

solution for difficult control tasks. To establish a link between the energy model and the
soft value function, it is necessary to set a suitable energy function, and the energy function
ε is set as

ε(st, at) = −
1
α

Qso f t(st, at). (7)

Then, the policy π can be expressed as

π(st|at) ∝ exp
1
α

Qso f t(st, at). (8)

The policy network parameters are updated using a method that minimizes the Kull-
back–Leibler scatter. When the Kullback–Leibler scatter is smaller, the difference between
the corresponding output behavioral rewards is smaller, and the policy converges better.
The update function of the strategy network is

Jπ(ϕ) = DKL[πϕ(·|st)|| exp(
1
α

Qθ(st, ·)− log Z(st))]

= Est∼D,at∼πϕ [log πϕ(at|st)−
1
α

Qθ(st, at) + log Z(st))],
(9)

where Z(st) is used to normalize the distribution.
Finally, the parameters of the policy network are updated using the gradient descent

method, denoted as

∇ϕ Jπ(ϕ) = ∇ϕα log(πϕ(at|st)) +∇ϕ fϕ(τt; si)(∇at α log(πϕ(at|st))−∇at Q(st, at)). (10)

The larger the temperature coefficient α, the stronger its exploration ability. The adjustment
of the hyperparameter α has a great impact on the training effect of the SAC, and α
needs to be adjusted for different tasks and different training cycles. A temperature auto-
adjustment mechanism [45], which obtains the optimal temperature coefficients for each
step by minimizing the objective function, is denoted as

J(α) = Eat∼πt [−α log πt(at|st)− αH0], (11)

where H0 is a predefined threshold for the minimum policy entropy. Algorithm 1 gives the
pseudo-code for the SAC.
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Algorithm 1 The training method of SAC
Input: initial a empty experience memory M and iteration

number N.
Output: policy network π(θ)

1: initial parameters θ1, θ2, ϕ
2: initial target network parameters θ′1 ← θ1, θ′2 ← θ2
3: for N do
4: for each environment step do
5: Observe state st and select action at ∼ π(·|st)
6: Execute at , observe next state st+1, reward rt
7: Store {st, at, rt, st+1}) in the experience memory
8: end for
9: for each gradient step do

10: Randomly sample a batch of samples (st, at, rt, st+1)from M
11: Update Q-functions parameters:
12: θi ← θi − λ∇̂θi Lθ(θi) for i ∈ {1, 2}
13: Update policy parameters:
14: ϕ← ϕ− λ∇̂ϕ Jπ(ϕ)
15: Update temperature coefficient:
16: α← α− λ∇̂α J(α)
17: Update policy network parameters:
18: θ′i ← τθi − (1− τ)θ′i for i ∈ {1, 2}
19: end for
20: end for
21: return policy network π(θ)

4. Training Procedure

This chapter first introduces Mujoco, a training platform for blind hexapod robots,
then, describes its process for training policy networks.

4.1. Training Platform

RL tends to require more samples than supervised and unsupervised learning. Be-
cause the training process of RL requires a large number of interactions and trials, it must
constantly interact with the environment. This leads to some limitations in the application
of RL in real time, especially when the real environment is costly or risky [46].

Using virtual environments for training is the preferred solution. Robots may en-
counter unexpected situations in the real world, which can lead to the destruction of
equipment, injury, or other unforeseen consequences. By training in a virtual environment,
potential risks can be avoided, and this ensures that the trained strategies are more reliable
and safe when used in a real environment. The physics engine also provides complete
control over the environment and tasks. It is easy to modify the parameters of the virtual
environment, introduce different scenarios and contexts, and perform fast playback and
replay. This makes RL debugging and optimization easier and more efficient. More im-
portantly, training in a virtual environment provides easy access to rich data, including
states, actions, and reward signals. These data serve as datasets for algorithms to perform
model learning and strategy optimization. In addition, the physics engine records and
saves detailed information of each training step for subsequent analysis and evaluation.

This paper established a training platform for hexapod robots using Mujoco [47],
a commonly used physics simulation engine that is widely used in robot control, rein-
forcement learning, and motion planning. It is able to simulate the dynamic behavior
of rigid body systems with multiple joints and contact forces. It is based on Newtonian
mechanics, to calculate the collision, contact force, and dynamic behavior between objects.
The geometry, inertial properties, and joint types of a hexapod robot are described through
XML files. The terrain is represented by a grayscale map with topographic information.
At the same time, the geometry, surface friction, and collision characteristics of the terrain
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are also represented by XML files and generated in MuJoCo. Figure 5 shows a simulation
model of the hexapod robot and terrain.

Figure 5. Hexapod robot and terrain models: (a) hexapod robot, (b) perlin, (c) slope, (d) pit.

4.2. Training Framework

Figure 6 shows the control framework of the hexapod robot based on SAC. SAC
is implemented using pytorch and trained using Mujoco-py, to control the simulation
environment. The state space contains all proprioceptive signals, including the torso
position Pose, torso linear velocity Vbody, torso angular velocity ωbody, joint angle θjoint, and
joint angular velocity ωjoint. Then, the state space vector S is

S = [Pose, Vbody, ωbody, θjoint, ωjoint]. (12)

The action space contains the motion trajectories of 18 joints used to control the robot and
is represented by the vector A:

A = [T1, T2, . . . . . . , T18]. (13)

The neural network structure used by SAC is shown in Figure 7. In this paper, the structure
of the actor is modified. Two micro-neural networks are first used to extract features for
highly relevant inputs, and then the features are put into a fully connected neural network.
The actor uses a strategy network containing four layers, with the first input layer and
the second hidden layer consisting of two micro-neural networks, as the input and output
layers of the micro-neural network, respectively. The first micro-neural network input layer
is Pose, Vbody and ωbody, and the output layer has 128 torso-related features. The second
micro-neural network input layer is θjoint and ωjoint, and the output layer has 128 leg-
related features. The third layer of the strategy network is a hidden layer containing 256
units that combines the features extracted by the two micro-neural networks. The fourth
layer is the output layer, which outputs the mean π

µ
ϕ and the standard deviation πσ

ϕ of
action obeying a Gaussian distribution. The critic, on the other hand, uses two online
networks and two target networks with the same structure, the first layer being an input
layer containing 64 units with inputs A and S, the second and third layers having the same
structure as the actor’s hidden layer, and the fourth layer being an output layer that outputs
the Q value, to evaluate the current action.
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Figure 6. Control framework based on SAC.

Figure 7. Neural network structure.

The reward function needs to be set according to the specific task and environment.
When the hexapod robot is trained to walk on rugged ground, the total reward rt consists
of reward rv and penalty rθ , which is given by the expression
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rt = λ1rv − λ2rθ . (14)

The speed reward rv encourages the robot to move forward, and the closer it moves to
the set speed vtar the greater reward it will receive. If the reward function is given as the
travel distance to the goal, training results in an unstable or jumpy gait, and this makes the
training time much longer. Let the current speed of the robot in a single step be v, and rv be
set to

rv =
1

|v− vtar|+ 1
− 1

vtar + 1
. (15)

To ensure the correctness of the hexapod robot’s heading, the penalty rθ is set to correct
the heading. Quaternions are in the complex form of Euler angles, which decompose the
rotation of an object into a rotating vector and a rotating angle. If the rotating angle of the
hexapod robot is denoted by qw, then rθ is set as

rθ =
√

2 arccos qw. (16)

An additional penalty re is required for training a hexapod robot to avoid obstacles; utilizing
the fact that the pitch and roll angle of robot changes drastically when it is going up a steep
slope or going down a steep slope. This change can be sensed by the propriety sensors,
which are utilized to allow the robot to avoid specific obstacles. Then, the penalty re and
total reward rt

′ are set as
re = (4Pitch)2 + (3Roll)2, (17)

rt
′ = rt − re. (18)

In this framework, the input to the policy network is the state space vector st and the
output is the mean and standard deviation obeying a Gaussian distribution. The action
space vector at is then generated using a reparameterization method. The reward rt and
the generated action at after evaluating the environment are then fed back to the hexapod
robot to enter the next state st+1. The current state, action, reward, and next state are com-
posed into an experience vector {st, at, rt, st+1}, which is stored in an experience memory.
For training, a small batch of experience samples are randomly selected from the experience
memory, to iterate on the network parameters of the online network, and a soft update
method is used to iterate on the parameters of the target network and policy network.

5. Testing Results

In this paper, slightly modified SAC, PPO, and TD3 were used to train the hexapod
robots during the training process, and the training results are shown in Figure 8. SAC and
TD3 had a higher degree of exploration, so the rewards obtained in the pretraining period
were much lower than those of PPO. The adaptive parameters introduced by SAC struck a
balance between maximizing the expected cumulative reward and minimizing the entropy
of the strategy. Adaptive temperature parameters can better adapt to different tasks and
environments, and improve the performance of the algorithm. As a result, the rewards
obtained after the convergence of SAC in the later stage were higher than for PPO. Figure 8
above shows that TD3 overfitted when trained for this task, and its reward maximum
point was lower than with SAC. In summary, the modified SAC training was optimal for
this task.

One objective of training a hexapod robot is a fixed walking speed, because the robot
needs the right walking speed, no matter what terrain it is on. In this paper, the speed
was set to 0.4 m/s for all three terrains of the training, or different speeds could be set
separately. The walking speed of the trained hexapod robot is shown in Figure 9. In all
three terrains, the robot started moving from rest, so the initial speed was 0 m/s. Then
it accelerated to 0.4 m/s after an acceleration process of about 0.4 s, and stayed at about
0.4 m/s. Since all three terrains were rough terrains, the speed kept oscillating around
the target speed. There was a strong deceleration process and acceleration process at
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around 1.3 s during the robot’s movement on the slope. The slowdown was due to the
impassable slope, which hindered movement. After being blocked, the hexapod robot
gradually changed its direction of movement, bypassed the slope, and accelerated to about
0.4 m/s, to continue walking.

Figure 8. SAC , PPO, and TD3 training curves.

Figure 9. Movement speed of the hexapod robot.

In this paper, the stability of robot motion was judged on the basis of the vertical
acceleration, oscillations around roll, and oscillations around pitch during the motion
process.The vertical acceleration during the motion on the three terrains is shown in
Figure 10, and the vertical acceleration of the robot kept oscillating from around 0 at the
beginning of the stationary motion to the uniform motion, and its amplitude mostly kept in
the range of 5 mm/s2 to 10 mm/s2. The robot showed a large change at about 0.4 s during
the pit movement, since the robot moved to the edge of the pit and changed its direction
of movement. The standard deviation for avoiding the slope was 3.05 mm, the standard
deviation for straight walking was 3.24 mm, and the standard deviation for avoiding the pit
was 2.67 mm. The oscillations around roll during the motion on three terrains are shown
in Figure 11. The standard deviation for avoiding the slope was 0.023 rad, the standard
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deviation for straight walking was 0.033 rad, and the standard deviation for avoiding the pit
was 0.025 rad. The oscillations around pitch during the motion on three terrains is shown
in Figure 12. The standard deviation for avoiding the slope was 0.020 rad, the standard
deviation for straight walking was 0.031 rad, and the standard deviation for avoiding the
pit was 0.020 rad. From these figures, it can be seen that the standard deviations of vertical
acceleration, oscillations in pitch, and oscillations in roll were small and the stability was
acceptable.

Figure 10. Vertical acceleration of the hexapod robot.

Figure 11. Oscillations around roll.

In this paper, contour maps were used to describe the paths of the hexapod robot
moving over the three terrains. The purple curve represents the change in the center of
gravity, and the color shading represents the altitude gradient. Figure 13 shows the motion
path of the robot on perlin, for which the motion path of the robot was straight within a
deviation of ± 25 cm. Figure 14 shows the motion path of the robot when avoiding pits;
in the figure, the robot detects the pit at around x = 22 cm and then keeps moving towards
the edge of the pit without stepping into it. Figure 15 shows the motion path of the robot
when avoiding the slope, in which the robot detects the slope at about x = 30 cm, and then
changes the direction of motion towards the top. In summary, the hexapod robot in this
paper has the ability to walk and avoid obstacles in rugged terrain, and Figure 16 shows
the performance of the hexapod robot in the simulator.
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Figure 12. Oscillations around pitch.

Figure 13. Motion paths of the hexapod robot for perlin.

Figure 14. Motion paths of the hexapod robot for pits.
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Figure 15. Motion paths of the hexapod robot for slopes.

Figure 16. (a) The straight walking process of the hexapod robot. (b) The process of avoiding
the valley for the hexapod robot. (c) The process of avoiding hills for the hexapod robot. Github:
https://github.com/rw12123/jethexa.

https://github.com/rw12123/jethexa
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6. Conclusion and Future Work

This paper presented a control method for a hexapod robot, which not only allows
the hexapod robot to be protected from weather and light while performing tasks in the
field, but also to avoid specific obstacles. A modified strategy network actor is used as the
robot’s motion strategy, which is obtained through SAC training. Due to the different tasks,
the corresponding policy networks need to be trained separately, and corresponding physi-
cal environments are established, which should be consistent with the actual environment
as much as possible. The trained strategy network can only rely on proprioceptive sensory
signals to command the hexapod robot to perform adaptive movements, and realize stable
walking at a specific speed and pass through the rugged ground, as well as a certain
obstacle avoidance ability. This provides a solution for the movement control of hexapod
robots in wild mountains. A scheme is provided for the motion control of a hexapod robot
in wild mountainous areas.

The method given in this paper requires manual selection of a specific policy network
when facing different terrains. In future work, we will train a network so that the robot
learns to classify terrain and choose the best motion strategy during movement. The net-
work enables the machine to adapt to a variety of terrain combinations [48,49]. ILC is a
control method that optimizes the current system based on historical experience. Optimiza-
tion of the robot’s end-of-foot trajectory, in conjunction with ILC, could be used to improve
the robot’s locomotion performance [50,51]. In addition, shared control combines human
intelligence and robot intelligence, and the framework could fully utilize the advantages of
human–robot collaboration to better train the strategy network [52].
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