# Characteristics Analysis of an Electromagnetic Actuator for Magnetic Levitation Transportation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Structure and Principle of Electromagnetic Actuator

#### 2.1. Structure and Principle of Halbach Magnet Array

#### 2.2. Electromagnetic Actuator Structure

#### 2.3. Electromagnetic Actuator Heterogeneous Secondary Structure

## 3. Characteristic Analysis of Electromagnetic Actuator

#### 3.1. FEM of Magnetic Field Analysis

#### 3.2. Electromagnetic Actuator Electromagnetic Thrust Analysis

^{3}. The PM utilization ratio of the Halbach three-section magnet array secondary is 1.10 N/cm

^{3}. The PM utilization ratio of the Halbach five-section magnet array secondary is 0.978 N/cm

^{3}.

#### 3.3. Electromagnetic Actuator Normal Force Analysis

#### 3.4. Electromagnetic Actuator No-Load Back EMF and Self-Inductance Analysis

## 4. Analysis of the Influence of PM Thickness on Electromagnetic Force

## 5. Experimental Validations

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lamablawa, F.; Aritonang, S. Application of Magnetic Force to Means of Transportation Magnetic Levitation High-speed Railway. AJIRSS Asian J. Innov. Res. Soc. Sci.
**2022**, 1, 68–73. [Google Scholar] [CrossRef] - Vikrant, K.S.; Jayanth, G.R. Diamagnetically levitated nanopositioners with large-range and multiple degrees of freedom. Nat. Commun.
**2022**, 13, 3334. [Google Scholar] [CrossRef] - Zhou, J.; Wu, H.; Wang, W.; Yang, K.; Hu, Y.; Guo, X.; Song, C. Online unbalance compensation of a maglev rotor with two active magnetic bearings based on the LMS algorithm and the influence coefficient method. Mech. Syst. Signal Process.
**2022**, 166, 108460. [Google Scholar] [CrossRef] - Park, K.; Ahn, K.; Kim, S.; Kwak, Y. Wafer distribution system for a clean room using a novel magnetic suspension technique. IEEE/ASME Trans. Mechatron.
**1998**, 3, 73–78. [Google Scholar] [CrossRef] [Green Version] - Ahn, D.; Jin, J.W.; Yun, H.; Jeong, J. Development of a Novel Dual Servo Magnetic Levitation Stage. Actuators
**2022**, 11, 147. [Google Scholar] [CrossRef] - Yang, F.; Zhao, Y.; Li, H.; Mu, X.; Zhang, W.; Yue, H.; Liu, R. Design and Analysis of a 2-DOF Electromagnetic Actuator with an Improved Halbach Array for the Magnetic Suspension Platform. Sensors
**2022**, 22, 790. [Google Scholar] [CrossRef] - Pandey, A.; Adhyaru, D.M. Control techniques for electromagnetic levitation system: A literature review. Int. J. Dyn. Control.
**2022**, 10, 1–11. [Google Scholar] [CrossRef] - Zhang, K.; Xu, F.; Xu, X. Robust iterative learning model predictive control for repetitive motion of maglev planar motor. IET Electr. Power Appl.
**2022**, 16, 1189–1200. [Google Scholar] [CrossRef] - Ha, C.-W.; Kim, C.-H.; Lim, J. Experimental Verification of a Magnetic Levitation Transport System for the OLED Display Evaporation Process stipulation Vacuum. IEEE Robot. Autom. Lett.
**2018**, 4, 2786–2791. [Google Scholar] [CrossRef] - Kim, J.; Ha, C.-W.; King, G.B.; Kim, C.-H. Experimental development of levitation control for a high-accuracy magnetic levitation transport system. ISA Trans.
**2020**, 101, 358–365. [Google Scholar] [CrossRef] - Zhao, C.; Oka, K.; Sun, F.; Harada, A.; Jin, J.; Zhang, M. Design of Zero-Power Control Strategy with Resisting Tilt of Hybrid Magnetic Levitation System. IEEE Trans. Ind. Electron.
**2022**, 69, 11394–11402. [Google Scholar] [CrossRef] - Sun, F.; Pei, W.; Zhao, C.; Jin, J.; Xu, F.; Zhang, X. Permanent Maglev Platform Using a Variable Flux Path Mechanism: Stable Levitation and Motion Control. IEEE Trans. Magn.
**2022**, 58, 8300410. [Google Scholar] [CrossRef] - Chen, L.Y.; Li, L.C. Development of Linear Motor and Its Key Technologies for Compressor. Proc. CSEE
**2013**, 33, 52–68+15. [Google Scholar] [CrossRef] - Zhao, X.; Kou, B.; Huang, C.; Zhang, L. Optimization Design and Performance Analysis of a Reverse-Salient Permanent Magnet Synchronous Motor. Machines
**2022**, 10, 204. [Google Scholar] [CrossRef] - Tang, R.Y. Modern Permanent Magnet Motor: Theory and Design; Mechanical Industry Press: Beijing, China, 1997; pp. 1–11. [Google Scholar]
- Lakhe, R.K.; Chaoui, H.; Alzayed, M.; Liu, S. Universal Control of Permanent Magnet Synchronous Motors with Uncertain Dynamics. Actuators
**2021**, 10, 49. [Google Scholar] [CrossRef] - Hammoud, I.; Hentzelt, S.; Xu, K.; Oehlschlagel, T.; Abdelrahem, M.; Hackl, C.; Kennel, R. On Continuous-Set Model Predictive Control of Permanent Magnet Synchronous Machines. IEEE Trans. Power Electron.
**2022**, 37, 10360–10371. [Google Scholar] [CrossRef] - Polater, N.; Tricoli, P. Technical Review of Traction Drive Systems for Light Railways. Energies
**2022**, 15, 3187. [Google Scholar] [CrossRef] - Jiao, Z.; Cao, Y.; Yan, L.; Li, X.; Zhang, L.; Li, Y. Advancing Motivation Feedforward Control of Permanent Magnetic Linear Oscillating Synchronous Motor for High Tracking Precision. Actuators
**2021**, 10, 128. [Google Scholar] [CrossRef] - Xu, J.; Zhang, L.; Meng, D.; Su, H. Simulation, Verification and Optimization Design of Electromagnetic Vibration and Noise of Permanent Magnet Synchronous Motor for Vehicle. Energies
**2022**, 15, 5808. [Google Scholar] [CrossRef] - Zhang, T.; Mei, X. Research on Detent Force Characteristics of Winding Segmented Permanent Magnet Linear Synchronous Motor Based on Analytical Model. Symmetry
**2022**, 14, 1049. [Google Scholar] [CrossRef] - Habib, A.; Mohd Zainuri, M.A.A.; Che, H.S.; Ibrahim, A.A.; Rahim, N.A.; Alaas, Z.M.; Ahmed, M.M.R. A systematic review on current research and developments on coreless axial-flux permanent-magnet machines. IET Electr. Power Appl.
**2022**, 16, 1095–1116. [Google Scholar] [CrossRef] - Jansen, J.W.; Lomonova, E.A.; Compter, J.C. Analysis of the parasitic forces and torques in coreless linear motors. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Q.; Liu, B.; Gong, Z. Optimal Design of Magneto-Force-Thermal Parameters for Electromagnetic Actuators with Halbach Array. Actuators
**2021**, 10, 231. [Google Scholar] [CrossRef] - Ling, Z.; Ji, J.; Zeng, T.; Zhao, W. Design optimization and comparison of linear magnetic actuators under different topologies. Chin. J. Electr. Eng.
**2020**, 6, 41–51. [Google Scholar] [CrossRef] - Guo, L.Y.; Wang, H.M.; Gu, X.; Shi, T.N. Modeling and Analyzing of Magnetic Field in Unequal Segmented Halbach Array Permanent Magnet Machine. Int. J. Appl. Electromagn. Mech.
**2021**, 65, 333–353. [Google Scholar] [CrossRef] - Krämer, C.; Kugi, A.; Kemmetmüller, W. Optimal force control of a permanent magnet linear synchronous motor based on a magnetic equivalent circuit model. Control. Eng. Pract.
**2022**, 122, 10507. [Google Scholar] [CrossRef] - Saarakkala, S.E.; Sokolov, M.; Hosseinzadeh, R.; Hinkkanen, M. Levitation control for a double-sided bearingless linear motor based on feedback linearization. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Deng, H. Hybrid fuzzy decoupling control for a precision maglev motion system. IEEE/ASME Trans. Mechatron.
**2017**, 23, 389–401. [Google Scholar] [CrossRef] - Chen, Y.; Zhang, K. Electromagnetic Force Calculation of Conductor Plate Double Halbach Permanent Magnet Electrodynamic Suspension. Appl. Comput. Electromagn. Soc. J. (ACES)
**2014**, 29, 916–922. Available online: https://journals.riverpublishers.com/index.php/ACES/article/view/10855 (accessed on 5 June 2022). - Tan, Q. Electromagnetic Force Fluctuation Analysis and Suppression of Precision Permanent Magnet Linear Synchronous Motor. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, June 2021. [Google Scholar] [CrossRef]
- Liu, G.; Chen, M.; Zhao, W.; Chen, Q. Design and Analysis of Five-Phase Fault-Tolerant Interior Permanent-Magnet Vernier Machine. IEEE Trans. Appl. Supercond.
**2016**, 26, 0604805. [Google Scholar] [CrossRef] - Jian, L. Research on Permanent Magnet Linear Synchronous Motor with Low Normal Force Fluctuation. Master’s Thesis, Shenyang University of Technology, Shenyang, China, May 2020. [Google Scholar] [CrossRef]

**Figure 1.**Halbach magnetization diagram: (

**a**) Three-section Halbach magnet array; (

**b**) Five-section Halbach magnet array.

**Figure 2.**Structure diagram of electromagnetic actuator: (

**a**) Mechanical structure; (

**b**) Mover primary structural.

**Figure 4.**Cross-section diagram of three secondary structures: (

**a**) Structure of electromagnetic actuator with radially magnetized secondary; (

**b**) Structure of electromagnetic actuator with Halbach three-section magnetized secondary; (

**c**) Structure of electromagnetic actuator with Halbach five-section magnetized secondary.

**Figure 5.**Magnetic field distribution: (

**a**) Electromagnetic actuator with radially magnetized secondary; (

**b**) Electromagnetic actuator with Halbach three-section magnetized secondary; (

**c**) Electromagnetic actuator with Halbach five-section magnetized secondary.

**Figure 6.**The magnetic flux density of air gap centerline: (

**a**) Tangential magnetic flux density; (

**b**) Radial magnetic flux density.

**Figure 7.**Electromagnetic thrust: (

**a**) Bilateral combined electromagnetic thrust; (

**b**) Regional thrust.

**Figure 8.**Normal electromagnetic force: (

**a**) Unilateral normal force; (

**b**) Bilateral combined normal force.

**Figure 10.**Electromagnetic actuator self-inductance: (

**a**) Electromagnetic actuator with radially magnetized secondary; (

**b**) Electromagnetic actuator with Halbach three-section magnetized secondary; (

**c**) Electromagnetic actuator with Halbach five-section magnetized secondary.

**Figure 18.**Electromagnetic thrust: (

**a**) Unilateral electromagnetic thrust; (

**b**) Bilateral electromagnetic thrust.

Parameters | Radial Magnetization | Halbach Three-Section | Halbach Five-Section |
---|---|---|---|

Pole pitch (mm) | 12 | 12 | 12 |

Magnet height (mm) | 5 | 5 | 5 |

Magnet width (mm) | 12 | 6 | 3 |

Primary winding height (mm) | 19 | 19 | 19 |

Primary winding width (mm) | 127 | 127 | 127 |

Winding turns | 489 | 489 | 489 |

Current (A) | 5 | 5 | 5 |

gap length (mm) | 2 | 2 | 2 |

PM | NdFb54 | NdFb54 | NdFb54 |

Magnetic Flux Density | Radial Magnetization | Halbach Three-Section | Halbach Five-Section | |
---|---|---|---|---|

Tangential magnetic flux density (T) | Simulation | 0.5 | 0.6 | 0.55 |

FEM | 0.7 | 0.61 | 0.58 | |

deviation | 40% | 1.6% | 5.4% | |

Radial magnetic flux density (T) | Simulation | 0.29 | 0.6 | 0.75 |

FEM deviation | 0.37 28% | 0.62 3.3% | 0.76 1.3% |

Parameters | Radial Magnetization | Halbach Three-Section | Halbach Five-Section |
---|---|---|---|

Average thrust (N) | 21.42 | 34.76 | 30.8 |

Average normal force (N) | −0.4000 | 0.0010 | 0.0008 |

No-load back EMF (V) | 0.39 | 0.57 | 0.61 |

Thrust fluctuation | 2.4% | 0.84% | 0.41% |

PM utilization ratio (N/cm^{3}) | 0.67 | 1.10 | 0.97 |

Self-inductance fluctuation | 0.12% | 0.1% | 0.08% |

Thickness (mm) | PM Utilization Ratio (N/cm^{3}) |
---|---|

3 | 1.362 |

4 | 1.215 |

5 | 1.103 |

6 | 0.987 |

8 | 0.817 |

9 | 0.753 |

10 | 0.691 |

11 | 0.639 |

12 | 0.595 |

Parameter | Value |
---|---|

Mover mass (Kg) | 2.99 |

Secondary length (mm) | 600 |

Magnet height (mm) | 5 |

Pole pitch (mm) | 12 |

Mover length (mm) | 127 |

Mover width (mm) | 109 |

Distance of move (mm) | 460 |

Resistance (Ω) | 7.1 |

Gap length (mm) Pole pitch (mm) | 2 12 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jin, J.; Wang, X.; Zhao, C.; Xu, F.; Pei, W.; Liu, Y.; Sun, F.
Characteristics Analysis of an Electromagnetic Actuator for Magnetic Levitation Transportation. *Actuators* **2022**, *11*, 377.
https://doi.org/10.3390/act11120377

**AMA Style**

Jin J, Wang X, Zhao C, Xu F, Pei W, Liu Y, Sun F.
Characteristics Analysis of an Electromagnetic Actuator for Magnetic Levitation Transportation. *Actuators*. 2022; 11(12):377.
https://doi.org/10.3390/act11120377

**Chicago/Turabian Style**

Jin, Junjie, Xin Wang, Chuan Zhao, Fangchao Xu, Wenzhe Pei, Yuhang Liu, and Feng Sun.
2022. "Characteristics Analysis of an Electromagnetic Actuator for Magnetic Levitation Transportation" *Actuators* 11, no. 12: 377.
https://doi.org/10.3390/act11120377