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Abstract: In this article, an electromagnetic actuator is proposed to improve the driving performance
of magnetic levitation transportation applied to ultra-clean manufacturing. The electromagnetic
actuator mainly includes the stator with the Halbach array and the mover with a symmetrical
structure. First, the actuator principle and structure are illustrated. Afterward, in order to select
a suitable secondary structure and analyze the characteristics of the actuator, the electromagnetic
characteristics of actuators with different secondary structures are analyzed by the finite element
method (FEM). Analysis results show that the actuator adopting the secondary structure with a
Halbach array will increase the electromagnetic force and working stability. The secondary with
the three-section Halbach array is selected for the electromagnetic actuator. Then, the influence of
secondary permanent magnet (PM) thickness on the electromagnetic force is analyzed by FEM. The
results indicate that the increase in PM thickness will lead to increased electromagnetic force and
decreased utilization ratio of PM. Finally, a prototype of an electromagnetic actuator is built, and
experiments are implemented. The correctness of the theoretical analysis and the effectiveness of the
electromagnetic actuator are verified by experimental results.

Keywords: electromagnetic actuator; Halbach array; characteristic analysis; finite element method

1. Introduction

Magnetic levitation is a support technology with no contact and no lubrication. It has
been widely applied in the industrial fields, such as maglev trains, precision positioning
platforms, and magnetic bearings [1–3]. The development of the semiconductor industry
needs more stringent requirements in the manufacturing environment, so magnetic levi-
tation technology has broad application prospects in ultra-clean transportation. In 1998,
K.H. Park et al. [4] proposed the maglev conveyor system for ultra-clean manufacturing,
which combined AGV (Automated Guided Vehicle) and maglev technology.. Without
mechanical contact, the conveyor can effectively improve the air cleanliness in cleanrooms.
Moreover, the electromagnetic levitation combination of a planar motor supports rapid
responses and high-speed motion [5–8]. They are mainly divided into the moving magnet
type and the moving coil type. The moving magnet type has a simple mover structure but
requires multiple controllers to achieve precise motion. Conversely, the moving coil type
does not require a complex controller. However, serious copper losses cause high power
consumption and significant heat emission. Therefore, the cooling mechanism is necessary,
which leads to the complex structure and large mass of the magnetic levitation platform.
Kim et al. designed a hybrid electromagnetic-permanent magnetic levitation transport
system proposed in the reference [9,10]. The magnetic levitation system can realize sus-
pension work with low energy consumption. Furthermore, linear motors were used to
drive the magnetic levitation platform. It is impossible to change the levitation gap of the
magnetic levitation platform. Moreover, it is harmful to ultra-clean transportation due to
dependence on a mechanical guide rail.The permanent magnetic levitation transportation
system of variable flux path has low steady-state energy consumption, high controlling
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stiffness, and anti-eccentric load characteristics [11,12]. However, a permanent magnetic
levitation transport system is sensitive to external disturbance and has high requirements
for the stability of the drive system. Magnetic levitation transportation requires a suitable
drive system. This drive system has the advantages of lower disturbance, no contact, high
precision, and low mass.

The contact drive device is not suitable for magnetic levitation transportation. Electro-
magnetic drive technology converts electrical energy into mechanical energy, which is the
operation of electromagnetic force. It is a contactless drive technology [13,14]. Electromag-
netic drive technology has the advantages of fast response, high controllability, and high
precision [15–17]. With the development of rare-earth permanent magnetic materials, the
electromagnetic drive technology with PM has the advantages of simple structure and high
efficiency. Therefore, it is widely researched and applied, such as traffic, delivery platforms,
and machine tools [18–20]. Electromagnetic drive technology with PM is categorized into
two broad groups: the core type and the coreless type. The iron core type has greater
electromagnetic force, but the cogging effect will produce significant disturbances. In
addition, the mover and stator have enormous suction, which is detrimental to magnetic
levitation transmission [21]. In contrast, the coreless type has less disturbance but less
force [22]. Jansen et al. [23] proposed an electromagnetic actuator: a U-shaped stator struc-
ture is adopted, and the mover coil is located in the center of the stator. The structure can
increase the thrust of the coreless electromagnetic actuator. Furthermore, much research
used Halbach arrays for electromagnetic actuators to improve thrust [24–26]. The above
research will increase the thrust of the coreless electromagnetic actuator. Moreover, the
normal force will increase, and this will increase disturbance. In addition, the normal
force was controlled by a highly complex scheme, which caused detrimental effects on the
precision. Many accurate control models have been studied to reduce this damage [27–29].
Generally, the above electromagnetic actuator has a minimal air gap (0.3 mm~1 mm). How-
ever, the minimal air gap will cause defective effect to the floating of the magnetic levitation
platform. In addition, they rely on the guide rail, which limits the application of magnetic
levitation transmission.

To make magnetic levitation transportation applicable to the ultra-clean manufacturing
environment, an electromagnetic actuator is proposed. The electromagnetic actuator has
the advantages of small mass, big electromagnetic thrust, and low disturbance, and can
realize automatic guiding used for magnetic levitation transportation. Therefore, it can
be combined with a magnetic levitation platform to allow magnetic levitation transport
to be used in an ultra-clean manufacturing environment. This paper is organized as
follows. Firstly, the electromagnetic actuator principle and structure are illustrated. The
objective is to select the appropriate secondary structure and analyze the characteristics
of the actuator, therefore, the actuator is presented with three secondary structures of
ordinary radial magnetization, a Halbach three-section array, and a five-section array.
The resulting models are analyzed by the FEM. Afterward, considering the actuator’s
electromagnetic characteristics and cost, it determined the three-section Halbach magnet
array is an appropriate secondary structure to the electromagnetic actuator. Subsequently,
the influence of magnetic thickness on the electromagnetic force of the electromagnetic
actuator is analyzed. Finally, a prototype of the electromagnetic actuator is built, and
experiments are implemented. The experiment results show the prototype’s effectiveness
and the analysis’s correctness.

2. Structure and Principle of Electromagnetic Actuator
2.1. Structure and Principle of Halbach Magnet Array

In the Halbach magnet array, the radially magnetized PM plays a dominant role in
the magnetic circuit, and the tangentially magnetized PM compensates for the magnetic
circuit. The air-gap magnetic field of this PM array tends to sinusoidal distribution, and
the harmonic content is less, especially in the continuous magnetization mode, which can
produce ideal magnetic field characteristics of the sinusoidal magnetic field waveform.
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The Halbach magnet array can enhance the unilateral magnetic field. Figure 1 is the
magnetization diagram of the Halbach magnet array, where (a) is a three-section Halbach
magnet array, and (b) is a five-section Halbach magnet array. The magnetization angle of
two adjacent PMs is θ, and k is the number of PMs contained in a magnetization cycle.

θ =
2π

k
(1)

Actuators 2022, 11, x FOR PEER REVIEW 3 of 17 
 

 

circuit. The air-gap magnetic field of this PM array tends to sinusoidal distribution, and 
the harmonic content is less, especially in the continuous magnetization mode, which can 
produce ideal magnetic field characteristics of the sinusoidal magnetic field waveform. 
The Halbach magnet array can enhance the unilateral magnetic field. Figure 1 is the mag-
netization diagram of the Halbach magnet array, where (a) is a three-section Halbach 
magnet array, and (b) is a five-section Halbach magnet array. The magnetization angle of 
two adjacent PMs is 𝜃, and 𝑘 is the number of PMs contained in a magnetization cycle. 

2
k
πθ = , (1)

 

  
(a) (b) 

Figure 1. Halbach magnetization diagram: (a) Three-section Halbach magnet array; (b) Five-section 
Halbach magnet array. 

The Halbach magnet array structure is calculated using the equivalent surface cur-
rent method based on Ampere’s molecular current hypothesis. According to the research 
results of [30], the magnetic field generated by the PM monomer at any point 𝑝(𝑥, 𝑦) out-
side the magnet was expressed as: 

2 2
0

1 2 2

2 2
0

2 2 2

0
1

0
2

( / 2) ( / 2), , ln
4 ( / 2) ( / 2)

( / 2) ( / 2), , ln
4 ( / 2) ( / 2)

( / 2) ( / 2), , arctan arctan
2 ( / 2) ( / 2)

( / 2), , arctan
2 (

x

x

y

y

J y h x lB x y J
y h x l

J y h x lB x y J
y h x l

J y h y hB x y J
x l x l

J y hB x y J
x

μ
π
μ

π
μ

π

μ
π

− + −=
+ + −

− + += −
+ + +

 − += − − − 
−= −

（ ）

（ ）

（ ）

（ ）
( / 2)arctan

/ 2) ( / 2)
y h

l x l












 + −  + + 

, 
(2) 

1 2

1 2

, , , ,
, , , ,

x x x

y y y

B B x y J B x y J
B B x y J B x y J

=
 =

（ ）+ （ ）

（ ）+ （ ）
, (3) 

where 𝐽  is the surface current density; 𝜇଴  is the vacuum permeability; ℎ  is the PM 
height; 𝑙 is the PM width; 𝐵௫  is the tangential flux density; and 𝐵௬  is the radial flux 
density. 

According to the coordinate rotation theory, when the PM is tangentially magnetized 
along the origin, it can be equivalent to the counterclockwise rotation of the coordinate 
system along the origin by 90°. When the PM is magnetized at any angle 𝜃, the magneti-
zation direction is decomposed into radial and tangential magnetization directions for 
calculation (where the angle between the magnetization directions and the horizontal di-
rection is 𝜃). 

cos
sin

x

y

J J
J J

θ θ

θ θ

θ
θ

= ×
 = ×

, (4) 

Figure 1. Halbach magnetization diagram: (a) Three-section Halbach magnet array; (b) Five-section
Halbach magnet array.

The Halbach magnet array structure is calculated using the equivalent surface current
method based on Ampere’s molecular current hypothesis. According to the research results
of [30], the magnetic field generated by the PM monomer at any point p(x, y) outside the
magnet was expressed as:

B1x(x, y, J) = µ0 J
4π ln (y−h/2)2+(x−l/2)2

(y+h/2)2+(x−l/2)2

B2x(x, y, J) = − µ0 J
4π ln (y−h/2)2+(x+l/2)2

(y+h/2)2+(x+l/2)2

B1y(x, y, J) = µ0 J
2π

[
arctan (y−h/2)

(x−l/2) − arctan (y+h/2)
(x−l/2)

]
B2y(x, y, J) = − µ0 J

2π

[
arctan (y−h/2)

(x+l/2) − arctan (y+h/2)
(x+l/2)

]
(2)

{
Bx = B1x(x, y, J) + B2x(x, y, J)
By = B1y(x, y, J) + B2y(x, y, J) (3)

where J is the surface current density; µ0 is the vacuum permeability; h is the PM height; l
is the PM width; Bx is the tangential flux density; and By is the radial flux density.

According to the coordinate rotation theory, when the PM is tangentially magnetized
along the origin, it can be equivalent to the counterclockwise rotation of the coordinate sys-
tem along the origin by 90◦. When the PM is magnetized at any angle θ, the magnetization
direction is decomposed into radial and tangential magnetization directions for calculation
(where the angle between the magnetization directions and the horizontal direction is θ).{

Jxθ = Jθ × cos θ
Jyθ = Jθ × sin θ

, (4)

For any group of Halbach magnet arrays, any point p(x, y) magnetic induction inten-
sity distribution can be expressed as

Bx(x, y, Jxθ/yθ) =
N
∑

n=1

[
x − (n − 1/2)l, y − h/2, Jxθ/yθ

]
By(x, y, Jxθ/yθ) =

N
∑

n=1

[
x − (n − 1/2)l, y − h/2, Jxθ/yθ

] , (5)
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2.2. Electromagnetic Actuator Structure

Figure 2a is the structure of the electromagnetic actuator. It consists of secondary
PM and mover primary winding, in which the actuator bilateral primary symmetrical
installation adopts a conjugate structure and the secondary adopts the Halbach magnet
array. The primary yoke of the mover adopts non-metallic materials to reduce the heat
generated by the actuator due to the eddy current effect during operation. This structure
is shown in Figure 2b. In order to compensate for the low density of the electromagnetic
thrust generated by the coreless structure, yoke iron is added to the back of the winding.
The primary employs a fractional-slot concentrated winding distribution and a 12-slot
10-pole structure, and the winding on both sides are in reverse series. The schematic
diagram of its electromagnetic structure is shown in Figure 3. The primary stage adopts
coreless armature structure, which eliminates the cogging effect. The bilateral mover can
stabilize the bilateral air gap by the normal force of the same size and the opposite direction.
Therefore, the structure is applied to the magnetic levitation transport system and can work
without relying on the guide rail.
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2.3. Electromagnetic Actuator Heterogeneous Secondary Structure

Figure 4 shows the cross-section diagram of (a) radial magnetization, (b) a Halbach
three-section magnet array magnetization, and (c) a Halbach five-section magnet array
magnetization as secondary for the electromagnetic actuator. They have the same slot to
pole ratio. The main parameters of the actuator are shown in Table 1.
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Table 1. The parameters of the electromagnetic actuator.

Parameters Radial
Magnetization

Halbach
Three-Section

Halbach
Five-Section

Pole pitch (mm) 12 12 12
Magnet height (mm) 5 5 5
Magnet width (mm) 12 6 3

Primary winding height (mm) 19 19 19
Primary winding width (mm) 127 127 127

Winding turns 489 489 489
Current (A) 5 5 5

gap length (mm) 2 2 2
PM NdFb54 NdFb54 NdFb54

3. Characteristic Analysis of Electromagnetic Actuator

This paper compares the electromagnetic characteristics of the electromagnetic ac-
tuator with the same pole to slot ratio which has different secondary structures. The
electromagnetic actuator mainly includes the bilateral U-type actuator’s primary (mover)
and secondary (stator), as shown in Figure 1. The secondary stator is located in the middle
of the primary bilateral mover, forming the air gap on both sides, and the air gap on both
sides is 2 mm. The tree different secondary structures are a radially magnetized magnet
array structure, a three-section Halbach magnet array structure, and a five-section Halbach
magnet array structure. Electromagnetic actuator electromagnetic characteristics of three
secondary structures are analyzed using the two-dimensional time-step finite element
method. In practical application, the adopted joint action of multiple primary units and the
cooperation of each unit actuator can be considered as the infinite primary length of the
actuator. The end effect caused by the start of each actuator unit has little impact on the
electromagnetic characteristics of the drive [31]. Therefore, this paper ignores the influence
of the actuator end effect on the actuator.

FEM model sizes for three electromagnetic actuators are shown in Table 1. Silicon steel
is used as yoke material with a thickness of 3 mm. The winding material property is copper,
and aluminum is used by secondary permanent magnet yoke. In the PM and winding
area, the mesh is divided into 0.1 mm. The primary yoke and permanent magnet yoke area
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divided the mesh into 0.3 mm, and another area mesh is 0.5 mm. Firstly, the electromagnetic
actuator finite element model is divided into two regions to solve, respectively. Then, the
solution results of the two regions are synthesized and compared with the complete solution
results. The calculation is based on the infinite boundary condition.

3.1. FEM of Magnetic Field Analysis

The no-load magnetic field distributions of three different secondary structures of
electromagnetic actuators are shown in Figure 5. The (a) shows that the magnetic field
distribution generated by the PM is the same on the working and yoke magnet sides.
Furthermore, there is more significant magnetic field intensity between adjacent PM s.
Therefore, the electromagnetic actuator of the radially magnetized secondary generates sig-
nificant flux leakage on the contact part of two adjacent PMs and magnet yoke. Conversely,
the electromagnetic actuator of the Halbach magnetized secondary has significant magnetic
field intensity on the working sides. Because the Halbach magnet can enhance the magnetic
field intensity of the working side, the magnetic flux leakage is less. Compared with the
magnetic field distributions of two Halbach magnetized secondaries, the magnetic field
distribution is more uniform for the five-section Halbach magnet array, and the magnetic
flux leakage is the least.
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Figure 5. Magnetic field distribution: (a) Electromagnetic actuator with radially magnetized sec-
ondary; (b) Electromagnetic actuator with Halbach three-section magnetized secondary; (c) Electro-
magnetic actuator with Halbach five-section magnetized secondary.

Figure 6 shows the magnetic flux density distribution of the horizontal midline of the
upper air gap. The Halbach magnet array combination can enhance the air gap magnetic
field. Additionally, the more magnets at a pole pitch, the better the sinusoidal air gap flux
density. According to Formula (5), the flux density peak at the center of the air gap is
calculated. The comparison results are shown in Table 2. The simulated calculation does not
consider magnetic flux leakage and assumes that the magnetic field is evenly distributed in
the air gap. The Electromagnetic actuator of the radially magnetized secondary has severe
magnetic flux leakage, so there are significant differences between the simulation and FEM
data. Conversely, the electromagnetic actuator of the Halbach-magnetized secondary is
similar between simulation and FEM data.
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Figure 6. The magnetic flux density of air gap centerline: (a) Tangential magnetic flux density;
(b) Radial magnetic flux density.

Table 2. Results of simulation data and FEM data.

Magnetic Flux Density Radial Magnetization Halbach Three-Section Halbach Five-Section

Tangential magnetic
flux density (T)

Simulation 0.5 0.6 0.55
FEM 0.7 0.61 0.58

deviation 40% 1.6% 5.4%

Radial magnetic flux
density (T)

Simulation 0.29 0.6 0.75
FEM

deviation
0.37
28%

0.62
3.3%

0.76
1.3%

3.2. Electromagnetic Actuator Electromagnetic Thrust Analysis

Electromagnetic thrust is one of the essential parameters of the electromagnetic ac-
tuator. This section analyzes the electromagnetic actuator when the primary size is the
same different secondary structure. The effects of different secondary structures, namely
radial magnetization, the three-section Halbach magnet array, and the five-section Hal-
bach magnet array, on the electromagnetic actuator’s electromagnetic thrust performance
are compared.

Figure 7 shows the electromagnetic thrust generated by three different secondary
structure actuators when the three-phase winding current is 5 A, and the frequency is
10 Hz. When a U-type symmetrical structure is used, the thrust waveform and phase of
bilateral primary are the same. Figure 7a is the unilateral electromagnetic thrust and (b)
is the regional thrust of (a). Because Figure 7b is a regional thrust enlarged diagram, the
thrust fluctuation of the three electromagnetic actuators can be clearly shown. However,
the peak and valley values of the overall thrust range cannot be shown in Figure 7b. The
calculation formula for the electromagnetic thrust fluctuation is [32]:

KF =
Fmax − Fmin

Favg
× 100%, (6)

where Fmax is the peak electromagnetic thrust; Fmin is the valley value of electromagnetic
thrust; Favg is the average electromagnetic thrust.

After analysis and calculation, the same total PM volume, the electromagnetic actuator
of radially magnetized secondary electromagnetic thrust peak value is 21.62 N, the valley
value is 21.1 N, the average thrust is 21.42 N, and the thrust fluctuation is 2.4%. For the
electromagnetic actuator of the Halbach three-section magnetized secondary, the electro-
magnetic thrust peak value is 34.83 N, the valley value is 34.5 N, the average thrust is
34.76 N, and the thrust fluctuation is 0.84%. For the electromagnetic actuator of the Halbach
five-section magnetized secondary, the electromagnetic thrust peak value is 30.84 N, the
valley value is 30.71 N, the average thrust is 30.8 N, and the thrust fluctuation is 0.41%. The
utilization ratio of PM materials is defined as the ratio of the actuator’s average thrust to the
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PM’s volume. This index measures the utilization of PM materials with high cost. Accord-
ing to this, the PM utilization rate of the radial magnetization secondary is 0.67 N/cm3. The
PM utilization ratio of the Halbach three-section magnet array secondary is 1.10 N/cm3.
The PM utilization ratio of the Halbach five-section magnet array secondary is 0.978 N/cm3.
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Figure 7. Electromagnetic thrust: (a) Bilateral combined electromagnetic thrust; (b) Regional thrust.

The above analysis shows that the PM utilization rate of the electromagnetic actuator
with Halbach three-section magnet array secondary structure is the highest. The more
PM blocks at a pole pitch, the smaller the thrust fluctuation and the more stationary the
actuator works.

3.3. Electromagnetic Actuator Normal Force Analysis

The electromagnetic actuator will generate electromagnetic thrust and normal force.
In order to improve the operation accuracy of the actuator, it is necessary to consider the
influence of friction disturbance caused by periodic fluctuation of normal force on the
horizontal electromagnetic thrust [33].

Figure 8 shows the electromagnetic force results of three different secondary structures
for the electromagnetic actuator, when the three-phase winding current is 5 A and the
frequency is 10 Hz.
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Figure 8. Normal electromagnetic force: (a) Unilateral normal force; (b) Bilateral combined nor-
mal force.

After analysis and calculation, the unilateral normal force of the electromagnetic
actuator with the same total PM volume is shown in Figure 8a. In the electromagnetic
actuator of the radially magnetized secondary, the normal force peak value is 5.69 N, the
valley value is 5.02 N, the average normal force is 5.41 N, and the normal force fluctuation
is 12%. In the electromagnetic actuator of the Halbach three-section magnetized secondary,
the normal force peak value is 9.15 N, the valley value is 8.62 N, the average normal force
is 8.88 N, and the normal force fluctuation is 6%. In the electromagnetic actuator of the
Halbach five-section magnetized secondary, the normal force peak value is 12.41 N, the
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valley value is 12.25 N, the average normal force is 12.32 N, and the normal force fluctuation
is 1%.

Electromagnetic actuator adopts symmetrical bilateral primary, so the primary on
both sides generates equal normal force with opposite direction. It is specified that the
normal force generated on the upper side is negative and on the lower side is positive. The
bilateral combined normal force is shown in Figure 8b. In the electromagnetic actuator
of the radially magnetized secondary, the normal force peak value is −1.37 N, the valley
value is 0.57 N, and the average normal force is −0.4 N. In the electromagnetic actuator of
the Halbach three-section magnetized secondary, the normal force peak value is −37 mN,
the valley value is 35 mN, and the average normal force is 1 mN. In the electromagnetic
actuator of Halbach five-section magnetized secondary, the normal force peak value is
27.6 mN, the valley value is 26 mN, and the average normal force is 0.8 mN.

The above analysis shows that the Halbach magnet array will enhance the radial air
gap flux density according to Section 3.1. The normal force increases with the increase of
the normal component of air gap flux density. The normal force generated by the bilateral
winding of the U-type structure can be offset by each other. The more PM blocks will have
minor normal force fluctuation. The smaller the influence of the normal force of bilateral
primary synthesis on the thrust fluctuation, the more stable the electromagnetic actuator
will be.

3.4. Electromagnetic Actuator No-Load Back EMF and Self-Inductance Analysis

The no-load back EMF is one of the parameters that needs to be considered in the
design of the electromagnetic actuator, which has an important influence on the static
and dynamic performance of the electromagnetic actuator. The three-phase no-load EMF
of the electromagnetic actuator with different secondary structures at the synchronous
speed of 0.24 m/s is shown in Figure 9. Each phase no-load back EMF is 120◦ mutual
difference. For the electromagnetic actuator with the radially magnetized secondary, the
no-load back EMF amplitude is 0.39 V. For the electromagnetic actuator with the Halbach
three-section magnetized secondary, the no-load back EMF amplitude is 0.57 V. For the
secondary of the electromagnetic actuator with the Halbach five-section magnetized, the
no-load back EMF amplitude is 0.61 V. The no-load back EMF sinusoidal waveform quality
of the Halbach magnet array secondary structure is higher than that of the actuator with the
radial magnetization secondary structure. The no-load back EMF of the actuator with the
Halbach five-section magnet array magnetized secondary is the largest, and the sinusoidal
waveform is the best.

Actuators 2022, 11, x FOR PEER REVIEW 10 of 17 
 

 

Halbach magnet array secondary structure is higher than that of the actuator with the 
radial magnetization secondary structure. The no-load back EMF of the actuator with the 
Halbach five-section magnet array magnetized secondary is the largest, and the sinusoidal 
waveform is the best. 

 
Figure 9. Three-phase no-load back EMF. 

Electromagnetic actuator self-inductance is one of the critical parameters in actuator 
design. The self-inductance fluctuation will produce thrust fluctuation, which will harm 
the thrust fluctuation of the actuator. It has an important effect on the static and dynamic 
performance of the actuator. Figure 10 shows the actuator’s self-inductance curves of A 
phase primary winding with three different secondary structures. When the primary 
winding of the A phase moves to the position with the maximum PM flux interlinkage, 
the self-inductance is the smallest. When the primary winding of the A phase moves to 
the minimum position of PM flux interlinkage, the self-inductance is the largest. The self-
inductance varies periodically with pole pitch. 

Figure 10a is the self-inductance of the electromagnetic actuator with a radially mag-
netized secondary. The average self-inductance of unilateral A phase winding is 3.663 
mH, and the change rate is 0.12%. The (b) is the self-inductance of the electromagnetic 
actuator with a Halbach three-section magnetized secondary. The average self-inductance 
of unilateral A phase winding is 3.664 mH, and the change rate is 0.1%. The (c) is the self-
inductance of electromagnetic actuator with a Halbach five-section magnetized second-
ary. The average self-inductance of unilateral A phase winding is 3.663 mH, and the 
change rate is 0.08%. The self-inductance amplitude and phase of the A phase winding on 
both sides are the same for the electromagnetic actuator. The self-inductance is superim-
posed after the series connection. The average self-inductance of the superimposed elec-
tromagnetic actuator of the radially magnetized secondary is 7.327 mH, and the change 
rate is still 0.12% as that of the unilateral. For the electromagnetic actuator of the Halbach 
three-section and five-section magnetized secondary, the average self-inductance of A 
phase winding is 7.328 mH and 7.321 mH, respectively, and the change rate is the same 
as that of a unilateral. 

According to the above analysis, the electromagnetic actuator by the Halbach magnet 
array secondary structure self-inductance waveform is closer to the sinusoidal waveform. 
The Halbach magnet array secondary structure generation change rate of self-inductance 
is lower. It is further explained that the Halbach magnet array type secondary can reduce 
the thrust fluctuation. The pole pitch has more PM blocks, and the actuator thrust fluctu-
ation will be smaller. 

0 120° 240° 360°
-1.0

-0.5

0.0

0.5

1.0
 Radial magnetized  Halbach three-section  Halbach five-section

Ba
ck

 e
le

ct
ro

-m
ot

iv
e 

fo
rc

e/
V

Secondary location/°

A Phase C Phase B Phase

Figure 9. Three-phase no-load back EMF.

Electromagnetic actuator self-inductance is one of the critical parameters in actuator
design. The self-inductance fluctuation will produce thrust fluctuation, which will harm
the thrust fluctuation of the actuator. It has an important effect on the static and dynamic
performance of the actuator. Figure 10 shows the actuator’s self-inductance curves of
A phase primary winding with three different secondary structures. When the primary
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winding of the A phase moves to the position with the maximum PM flux interlinkage,
the self-inductance is the smallest. When the primary winding of the A phase moves
to the minimum position of PM flux interlinkage, the self-inductance is the largest. The
self-inductance varies periodically with pole pitch.

Figure 10a is the self-inductance of the electromagnetic actuator with a radially mag-
netized secondary. The average self-inductance of unilateral A phase winding is 3.663 mH,
and the change rate is 0.12%. The Figure 10b is the self-inductance of the electromagnetic
actuator with a Halbach three-section magnetized secondary. The average self-inductance
of unilateral A phase winding is 3.664 mH, and the change rate is 0.1%. The Figure 10c is
the self-inductance of electromagnetic actuator with a Halbach five-section magnetized
secondary. The average self-inductance of unilateral A phase winding is 3.663 mH, and
the change rate is 0.08%. The self-inductance amplitude and phase of the A phase wind-
ing on both sides are the same for the electromagnetic actuator. The self-inductance is
superimposed after the series connection. The average self-inductance of the superimposed
electromagnetic actuator of the radially magnetized secondary is 7.327 mH, and the change
rate is still 0.12% as that of the unilateral. For the electromagnetic actuator of the Halbach
three-section and five-section magnetized secondary, the average self-inductance of A
phase winding is 7.328 mH and 7.321 mH, respectively, and the change rate is the same as
that of a unilateral.

According to the above analysis, the electromagnetic actuator by the Halbach magnet
array secondary structure self-inductance waveform is closer to the sinusoidal waveform.
The Halbach magnet array secondary structure generation change rate of self-inductance is
lower. It is further explained that the Halbach magnet array type secondary can reduce the
thrust fluctuation. The pole pitch has more PM blocks, and the actuator thrust fluctuation
will be smaller.
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Figure 10. Electromagnetic actuator self-inductance: (a) Electromagnetic actuator with radially mag-
netized secondary; (b) Electromagnetic actuator with Halbach three-section magnetized secondary;
(c) Electromagnetic actuator with Halbach five-section magnetized secondary.

Through the analysis of Sections 3.1–3.4, the performance comparison parameters of
three different electromagnetic actuators are obtained, as shown in Table 3.
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Table 3. Comparison of different electromagnetic actuators.

Parameters Radial
Magnetization

Halbach
Three-Section

Halbach
Five-Section

Average thrust (N) 21.42 34.76 30.8
Average normal force (N) −0.4000 0.0010 0.0008

No-load back EMF (V) 0.39 0.57 0.61
Thrust fluctuation 2.4% 0.84% 0.41%

PM utilization ratio (N/cm3) 0.67 1.10 0.97
Self-inductance fluctuation 0.12% 0.1% 0.08%

4. Analysis of the Influence of PM Thickness on Electromagnetic Force

Compared to electromagnetic actuators with three-section and five-section, both distur-
bances can be accepted by magnetic levitation transportation. Furthermore, electromagnetic
actuator with Halbach three-section magnetized secondary has significant thrust and the
PM utilization ratio. Moreover, it also possesses the low cost.The Halbach three-section
magnetized secondary is selected for the electromagnetic actuator. The pole size is shown
in Figure 11. Pole pitch τ is defined as the distance between two proximity radially magne-
tized centers. The τ = 12 mm. When the single magnet width w = 12 mm, the influence of
3~12 mm thickness h on actuator performance is analyzed.
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Figure 11. Schematic diagram of pole size.

Figure 12 shows the average electromagnetic thrust of the electromagnetic actuator
with PM thickness h. The figure shows that the average electromagnetic thrust increases
with the increase of PM thickness h but the curve slope of the average electromagnetic
thrust decreases. After analysis, the electromagnetic actuator tangential air gap flux density
increases with the magnet thickness. When the thickness is h > 9 mm, the growth trend of
tangential magnetic density tends to be gradual. The utilization rate of the PM is shown in
Table 4. When the secondary pole pitch τ of the Halbach magnet array type is constant, the
utilization ratio of the PM decreases with the increase of magnet thickness h.
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Figure 12. The curve of thrust variation with h.

Figure 13 shows the variation curves of the unilateral average normal force and the
bilateral combined average normal force of the electromagnetic actuator with the magnetic
pole thickness h. The relationship between radial magnetic density and magnet thickness
is the same as tangential magnetic density. So, the average normal force also increases
with the magnetic pole thickness h. Like the electromagnetic thrust, the average normal
force’s curve slope becomes smaller. Since the U-shaped symmetrical structure is adopted,
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the normal force of the bilateral synthesis tends to zero. Therefore, the normal force is
insensitive to the change in magnet thickness.

Table 4. PM utilization ratio of different magnet thicknesses.

Thickness (mm) PM Utilization Ratio (N/cm3)

3 1.362
4 1.215
5 1.103
6 0.987
8 0.817
9 0.753
10 0.691
11 0.639
12 0.595
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Figure 13. The curve of normal force variation with h.

5. Experimental Validations

To verify the correctness of the above results, design an electromagnetic actuator
prototype with a three-section Halbach magnet array secondary structure, as shown in
Figure 14. The prototype parameters are shown in Table 5. The prototype’s no-load back
EMF and the average thrust of different current excitations are tested. The FEM value is
consistent with the measured value of the prototype. Still, the FEM value is slightly higher
than the measured value because the two-dimensional finite element calculation fails to
consider the influence of the transverse end effect and the end magnetic flux leakage.
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Figure 14. Electromagnetic actuator prototype.

Figure 15 is the no-load back EMF test platform. The linear module is controlled by
PLC, which drives the prototype to move synchronously at a speed of 0.24 m/s. The no-load
back EMF of the prototype at a speed of 0.24 m/s can be observed from the oscilloscope.
The no-load back EMF of the electromagnetic actuator prototype at the synchronous speed
of 0.24 m/s is shown in Figure 16. Each phase no-load back EMF is 120◦ mutual difference,
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the amplitude is 0.53 V, and they have better sinusoidal waveform. Compared with other
windings, the B-phase winding has less amplitude than FEM. This error is due to the large
installation gap between the stator and the B-phase winding coil.

Table 5. The parameters of the electromagnetic actuator prototype.

Parameter Value

Mover mass (Kg) 2.99
Secondary length (mm) 600

Magnet height (mm) 5
Pole pitch (mm) 12

Mover length (mm) 127
Mover width (mm) 109

Distance of move (mm) 460
Resistance (Ω) 7.1

Gap length (mm)
Pole pitch (mm)

2
12
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Figure 17 is the electromagnetic thrust test platform of the prototype. Thrust measure-
ment tests under different current excitations were performed Firstly, one side of the force
sensor is fixed on the stator, and the other is fixed on the mover. Secondly, the prototype is
set to the current control mode by the computer (PC). Thirdly, the PC gives the servo drive
different current signals, and the servo drive controls the prototype to work with different
currents. Finally, the electromagnetic thrust generated by the prototype at different cur-
rents is displayed by the force sensor. The unilateral and bilateral electromagnetic thrusts
are measured. The measured values of the prototype compared with FEM are shown in
Figure 18: (a) unilateral electromagnetic thrust and (b) bilateral electromagnetic thrust.
When the current is less than 1.3 A, the electromagnetic force generated by the prototype is
less than the starting thrust, and the measured thrust does not match the FEM value. When
the current is more than 1.3 A, the measured thrust of the prototype is consistent with the
FEM value.
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Figure 18. Electromagnetic thrust: (a) Unilateral electromagnetic thrust; (b) Bilateral electromag-
netic thrust.

6. Conclusions

This paper proposes a self-direction electromagnetic actuator applied in magnetic
levitation transportation. Electromagnetic actuator characteristics of different secondary
structures are analyzed by the FEM. This paper explained the electromagnetic actuator has
a big electromagnetic thrust and low disturbance. Afterward, the Halbach three-section
magnet array secondary was selected as the secondary structure of the electromagnetic
actuator. This structure’s secondary thickness’s influence on the electromagnetic force was
further analyzed. Finally, the experimental prototype was made to verify the correctness
of the analysis and effective application to magnetic levitation transport systems. The
conclusions are as follows:

(1) For the electromagnetic actuator with the Halbach three-section magnet array
secondary compared with the radial magnetization secondary, the electromagnetic thrust
improved by 62.1%, the normal force reduced from 0.4 N to 1 mN, and the thrust fluctuation
reduced from 2.4% to 0.84%. Moreover, for the secondary structure of the Halbach magnet
arrays, the PM utilization ratio improved by 64.2%. This shows the Halbach magnet array
can effectively improve the electromagnetic thrust and reduce the disturbance.

(2) Comparing the electromagnetic actuator of the Halbach three-section magnet array
secondary and the Halbach five-section magnet array secondary, the Halbach three-section
magnet array secondary electromagnetic thrust improved by 12.9%; the normal force
improved from 0.8 mN to 1 mN; the thrust fluctuation improved from 0.41% to 0.84%; and
the PM utilization ratio improved by 13.4%. The above description electromagnetic actuator
by Halbach three-section magnet array secondary has a larger electromagnetic thrust
and a higher PM utilization ratio. However, the stability of the motion will be reduced
in comparison to the electromagnetic actuator of the Halbach five-section magnetized
secondary. In addition, the Halbach five-section magnetized secondary has a high cost.
Thus, the Halbach three-section magnet array is more suitable for practical application.
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(3) The air gap flux density increases with the thickness of the PM. Hence, the electro-
magnetic thrust and normal force increases with the thickness. The PM utilization ratio
decreases with increasing thickness.
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