Increasing Resistance and Changes in Distribution of Serotypes of Streptococcus agalactiae in Poland
Abstract
:1. Introduction
2. Results
2.1. Detection of GBS Isolates with Decreased Sensitivity to Penicillin and Macrolides-Lincosamides-Streptogramins B Resistance
2.2. Serotypes III, V, and Ia were Overrepresented
2.3. The Genes Encoding Pl-1 and Pl-2a Fimbriae were the Most Frequently Recognized in the Tested Strains
2.4. The Rib Gene was the Most often Identified in the Tested Strains
2.5. Majority of S. agalactiae Strains Identified as Moderate-Biofilms Producers
2.6. Correlations of the Recognized Features
3. Discussion
4. Methods
4.1. Strains Collection
4.2. GBS Identification
4.3. Antimicrobial Susceptibility Testing
4.4. S. agalactiae Strains DNA Isolation
4.5. Serotyping and Detection of Virulence Genes of S. agalactiae Strains
4.6. Biofilm Assay
- -
- Not a biofilm producer: OD ≤ ODc, (all strains with OD values below 0.13);
- -
- Weak biofilm producer ODc: < OD ≤ 2 × ODc, (all strains with OD values above 0.13 and below 0.26);
- -
- Moderate biofilm producer: 2 × ODc < OD ≤ 4 × ODc (all strains with OD values above 0.26 and below 0.52);
- -
- Strong biofilm producer: OD > 4 × ODc (all strains with OD values above 0.52).
4.7. Correlations and Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ballard, M.S.; Schonheyder, H.C.; Knudsen, J.D.; Lyytikainen, O.; Dryden, M.; Kennedy, K.J.; Jacobsson, G.; Laupland, K.B.; International Bacteremia Surveillance Collaborative. The changing epidemiology of group B streptococcus bloodstream infection: A multi-national population-based assessment. Infect. Dis. 2016, 48, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Collin, S.M.; Shetty, N.; Guy, R.; Nyaga, V.N.; Bull, A.; van der Kooi, T.I.I.; Koek, M.B.G.; De Almeida, M.; Roberts, S.A.; Lamagni, T. Group B Streptococcus in surgical site and non-invasive bacterial infections worldwide: A systematic review and meta-analysis. Int. J. Infect. Dis. 2019, 83, 116–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puopolo, K.M.; Lynfield, R.; Cummings, J.J.; Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of infants at risk for Group B Streptococcal disease. Pediatrics 2019, 144, e20191881. [Google Scholar] [CrossRef] [Green Version]
- Russell, N.J.; Seale, A.C.; O’Driscoll, M.; O’Sullivan, C.; Bianchi-Jassir, F.; Gonzalez-Guarin, J.; Lawn, J.E.; Baker, C.J.; Bartlett, L.; Cutland, C.; et al. Maternal colonization with group B Streptococcus and serotype distribution worldwide: Systematic review and meta-analyses. Clin. Infect. Dis. 2017, 65, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Phares, C.R.; Lynfield, R.; Farley, M.M.; Mohle-Boetani, J.; Harrison, L.H.; Petit, S.; Craig, A.S.; Schaffner, W.; Zansky, S.M.; Gershman, K.; et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999–2005. JAMA 2008, 299, 2056–2065. [Google Scholar] [CrossRef]
- Madrid, L.; Seale, A.C.; Kohli-Lynch, M.; Edmond, K.M.; Lawn, J.E.; Heath, P.T.; Madhi, S.A.; Baker, C.J.; Bartlett, L.; Cutland, C.; et al. Infant group B streptococcal disease incidence and serotypes worldwide: Systematic review and meta-analyses. Clin. Infect. Dis. 2017, 65, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, B.J.; Chochua, S.; Gertz, R.E.; Hawkins, P.A.; Ricaldi, J.; Li, Z.; Walker, H.; Tran, T.; Rivers, J.; Mathis, S.; et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. Clin. Microbiol. Infect. 2017, 23, 574–577. [Google Scholar] [CrossRef] [Green Version]
- Gaudreau, C.; Lecours, R.; Ismaïl, J.; Gagnon, S.; Jetté, L.; Roger, M. Prosthetic hip joint infection with a Streptococcus agalactiae isolate not susceptible to penicillin G and ceftriaxone. J. Antimicrob. Chemother. 2010, 65, 594–595. [Google Scholar] [CrossRef]
- Longtin, J.; Vermeiren, C.; Shahinas, D.; Tamber, G.S.; McGeer, A.; Low, D.E.; Katz, K.; Pillai, D.R. Novel mutations in a patient isolate of Streptococcus agalactiae with reduced penicillin susceptibility emerging after long-term oral suppressive therapy. Antimicrob. Agents Chemother. 2011, 55, 2983–2985. [Google Scholar] [CrossRef] [Green Version]
- Jalalifar, S.T.; Moghim, S.; Fazeli, H.; Esfahani, B.N. Determination of surface proteins profile, capsular genotyping, and antibiotic susceptibility patterns of Group B Streptococcus isolated from urinary tract infection of Iranian patients. BMC Res. Notes 2019, 12, 437. [Google Scholar] [CrossRef]
- Seki, T.; Kimura, K.; Reid, M.E.; Miyazaki, A.; Banno, H.; Jin, W.; Wachino, J.; Yamada, K.; Arakawa, Y. High isolation rate of MDR group B streptococci with reduced penicillin susceptibility in Japan. J. Antimicrob. Chemother. 2015, 70, 2725–2728. [Google Scholar] [CrossRef] [PubMed]
- Dahesh, S.; Hensler, M.E.; Van Sorge, N.M.; Gertz, R.E.; Schrag, S.; Nizet, V.; Beall, B.W. Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to β-lactam antibiotics. Antimicrob. Agents Chemother. 2008, 52, 2915–2918. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Suzuki, S.; Wachino, J.I.; Kurokawa, H.; Yamane, K.; Shibata, N.; Nagano, N.; Kato, H.; Shibayama, K.; Arakawa, Y. First molecular characterization of group B streptococci with reduced penicillin susceptibility. Antimicrob. Agents Chemother. 2008, 52, 2890–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moroi, H.; Kimura, K.; Kotani, T.; Tsuda, H.; Banno, H.; Jin, W.; Wachino, J.; Yamada, K.; Mitsui, T.; Yamashita, M.; et al. Isolation of B Streptococcus with reduced β-lactam susceptibility from pregnant women. Emerg. Microbes. Infect. 2019, 8, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, K.; Nagano, N.; Arakawa, Y. Classification of group B streptococci with reduced β-lactam susceptibility (GBS-RBS) based on the amino acid substitutions in PBPs. J. Antimicrob. Chemother. 2015, 70, 1601–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ábrók, M.; Tigyi, P.; Kostrzewa, M.; Burián, K.; Deák, J. Evaluation of the results of Group B Streptococcus screening by MALDI-TOF MS among pregnant women in a Hungarian Hospital. Pathogens 2020, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Matani, C.; Trezzi, M.; Matteini, A.; Messeri, D.; Catalani, C. Streptococcus agalactiae: Prevalence of antimicrobial resistance in vaginal and rectal swabs in Italian pregnant women. Infez. Med. 2016, 24, 217–221. [Google Scholar]
- Wang, P.; Tong, J.; Ma, X.; Song, F.L.; Fan, L.; Guo, C.M.; Shi, W.; Yu, S.J.; Yao, K.H.; Yang, Y.H. Serotypes, antibiotic susceptibilities, and multilocus sequence type profiles of Streptococcus agalactiae isolates circulating in Beijing, China. PLoS ONE 2015, 10, 3–e0120035. [Google Scholar] [CrossRef]
- Wang, P.; Ma, Z.; Tong, J.; Zhao, R.; Shi, W.; Yu, S.; Yao, K.; Zheng, Y.; Yang, Y. Serotype distribution, animicrobial resistance, and molecular characterization of invasive group B Streptococcus isolates recovered from Chinese neonates. Int. J. Infect. Dis. 2015, 37, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, G.; Imperi, M.; Baldassarri, L.; Pataracchia, M.; Alfarone, G.; Recchia, S.; Orefici, G.; Dicuonzo, G.; Creti, R. Molecular epidemiology and distribution of serotypes, surface proteins and antibiotic resistance among group B streptococci in Italy. J. Clin. Microbiol. 2007, 45, 2909–2916. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
- Creti, R.; Fabretti, F.; Orefici, G.; Von Hunolstein, C. Multiplex PCR assay for direct identification of group B streptococcal alpha-like protein genes. J. Clin. Microbiol. 2004, 42, 1326–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Wessels, M.R. BsaB, a novel adherence factor of group B Streptococcus. Infect. Immun. 2014, 82, 1007–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vornhagen, J.; Adams Waldorf, K.M.; Rajagopal, L. Perinatal group B streptococcal infections: Virulence factors, immunity and prevention strategies. Trends. Microbiol. 2017, 25, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Springman, A.C.; Lacher, D.W.; Waymire, E.A.; Wengert, S.L.; Singh, P.; Zadoks, R.N.; Davies, H.D.; Manning, S.D. Pilus distribution among lineages of group B Streptococcus: An evolutionary and clinical perspective. BMC Microbiol. 2014, 14, 159. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, C.D.; Rosini, R.; Galeotti, C.L.; Berti, F.; Necchi, F.; Reguzzi, V.; Ghezzo, C.; Telford, J.L.; Grandi, G.; Maione, D. Specific involvement of pilus type 2a in biofilm formation in group B streptococcus. PLoS ONE 2010, 5, e19216. [Google Scholar] [CrossRef]
- Martins, E.R.; Andreu, A.; Melo-Cristino, J.; Ramirez, M. Distribution of pilus islands in Streptococcus agalactiae that cause human infections: Insights into evolution and implication for vaccine development. Clin. Vacc. Immunol. 2013, 20, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Wang, D.; Zhou, H.; Zhu, F.; Li, D.; Zhang, S.; Shi, Y.; Cui, Y.; Huang, L.; Wu, H. Distribution of pilus island and alpha-like protein genes of group B Streptococcus colonized in pregnant women in Beijing, China. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1173–1179. [Google Scholar] [CrossRef]
- Capanna, F.; Stephane, P.; Emonet, S.P.; Cherkaoui, A.; Orion, O.; Schrenzel, J.; de Tajada, B.M. Antibiotic resistance patterns among group B Streptococcus isolates: Implications for antibiotic prophylaxis for early-onset neonatal sepsis. Swiss. Med. Wkly. 2013, 143, 13778. [Google Scholar] [CrossRef]
- Gajic, I.; Plainvert, C.; Kekic, D.; Dmytruk, N.; Mijac, V.; Tazi, A.; Glaser, P.; Ranin, L.; Poyart, C.; Opavski, N. Molecular epidemiology of invasive and non-invasive group B Streptococcus circulating in Serbia. Int. J. Med. Microbiol. 2019, 309, 19–25. [Google Scholar] [CrossRef]
- Fröhlicher, S.; Reichen-Fahrni, G.; Müller, M.; Surbek, D.; Droz, S.; Spellerberg, B.; Sendi, P. Serotype distribution and antimicrobial susceptibility of group B streptococci in pregnant women: Results from a Swiss tertiary centre. Swiss Med. Wkly. 2014, 144, 13935. [Google Scholar] [CrossRef] [Green Version]
- Dutra, V.G.; Alves, V.M.; Olendzki, A.N.; Dias, C.A.; de Bastos, A.F.; Santos, G.O.; de Amorin, E.L.; Sousa, M.Â.; Santos, R.; Ribeiro, P.C.; et al. Streptococcus agalactiae in Brazil: Serotype distribution, virulence determinants and antimicrobial susceptibility. BMC Infect. Dis. 2014, 14, 323. [Google Scholar] [CrossRef] [PubMed]
- Abarzúa, F.; Argomedo, C.; Meissner, A.; Díaz, T.; Garrido, P.; Fariña, S.; Chahin, C. Prevalence of anal-vaginal colonization of Streptococcus agalactiae in third trimester of pregnancy and susceptibility to macrolides and lincosamides, in pregnant women controlled at Clínica Alemana Temuco, Southern Chile. Rev. Chil. Infectol. 2014, 31, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Mikołajczyk, D.; Budzyńska, A.; Kaczmarek, A.; Gospodarek, E. Occurrence and drug-resistence of beta-hemolytic streptococci. Med. Dośw. Mikrobiol. 2007, 4, 301–306. [Google Scholar]
- Brzychczy-Włoch, M.; Gosiewski, T.; Bogdaszewska, M.; Pabian, W.; Bulanda, M.; Kochan, P.; Struś, M.; Heczko, P.B. Genetic characterization and diversity of Streptococcus agalactiae isolates with macrolide resistance. J. Med. Microbiol. 2010, 59, 780–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoening, T.E.; Wagner, J.; Arvand, M. Prevalence of erythromycin and clindamycin resistance among Streptococcus agalactiae isolates in Germany. Clin. Microbiol. Infect. 2005, 11, 579–582. [Google Scholar] [CrossRef] [Green Version]
- De Mouy, D.; Cavallo, J.D.; Lecletcq, R.; Fabre, R.; The Aforcopi-bio Network. Antibiotic susceptibility and mechanisms of erythromycin resistance in clinical isolates of Streptococcus agalactiae: French multicenter study. Antimicrob. Agents Chemother. 2001, 45, 2400–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, E.; Berg, S.; Bergseng, H.; Bergh, K.; Valsö-Lyng, R.; Trollfors, B. Antimicrobial susceptibility of invasive group B streptococcal isolates from south-west Sweden 1988–2001. Scand. J. Infect. Dis. 2008, 40, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, D.L.; James, W.A.; Tinnemore, D.; Huang, R.R.; Dehart, M.J.; Williams, J.; Wingerd, M.A. Group B streptococcus serotype prevalence in reproductive-age women at a tertiary care military medical center relative to global serotype distribution. BMC Infect. Dis. 2010, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Florindo, C.; Viegas, S.; Paulino, A.; Rodrigues, E.; Gomes, J.P.; Borrego, M.J. Molecular characterization and antimicrobial susceptibility profiles in Streptococcus agalactiae colonizing strains: Association of erythromycin resistance with subtype III-1 genetic clone family. Clin. Microbio. Infect. 2010, 16, 1458–1463. [Google Scholar] [CrossRef]
- Gudjónsdóttir, M.J.; Hentz, E.; Berg, S.; Backhaus, E.; Elfvin, A.; Kawash, S.; Trollfors, B. Serotypes of group B streptococci in western Sweden and comparison with serotypes in two previous studies starting from 1988. BMC Infect. Dis. 2015, 15, 507. [Google Scholar] [CrossRef]
- Shabayek, S.; Spellerberg, B. Group B Streptococcal colonization, molecular characteristics, and epidemiology. Front. Microbiol. 2018, 14, 9–437. [Google Scholar] [CrossRef]
- Brzychczy-Włoch, M.; Gosiewski, T.; Bodaszewska, M.; Pabian, W.; Bulanda, M.; Heczko, P.B. Analysis of serotypes distribution of group B streptococci origin from pregnant carriage using multiplex PCR. Med. Dośw. Mikrobiol. 2009, 61, 293–299. [Google Scholar]
- Wolny, K.; Gołda–Matuszak, E. Streptococcus agalactiae (GBS)—The characteristic of isolated strains from productive women’s vagina. Med. Dośw. Mikrobiol. 2010, 62, 141–151. [Google Scholar] [PubMed]
- Motlova, J.; Strakova, L.; Urbaskova, P.; Sak, P.; Sever, T. Vaginal & rectal carriage of Streptococcus agalactiae in the Czech Republic: Incidence, serotypes distribution & susceptibility to antibiotics. Indian J. Med. Res. 2004, 119, 84–87. [Google Scholar] [PubMed]
- Savoia, D.; Gottimer, C.; Crocilla, C.; Zucca, M. Streptococcus agalactiae in pregnant women: Phenotypic and genotypic characteristic. J. Infec. 2008, 56, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Persson, E.; Berg, S.; Bevanger, L.; Bergh, K.; Valsö-Lyng, R.; Trollfors, B. Characterization of invasive group B streptococci based on investigation of surface proteins and genes encoding surface proteins. Clin. Microbiol. Infect. 2008, 14, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzychczy-Włoch, M.; Gosiewski, T.; Bodaszewska, M.; Talaga, K.; Natkaniec, J.; Adamski, P.; Heczko, P.B. Occurrence of surface protein genes from alpha-like protein (Alp) family in Streptococcus agalactiae isolates. Med. Dośw. Mikrobiol. 2011, 63, 5–14. [Google Scholar] [PubMed]
- Persson, E.; Berg, S.; Trollfors, B.; Larsson, P.; Ek, E.; Backhaus, E.; Claesson, B.E.; Jonsson, L.; Rådberg, G.; Ripa, T.; et al. Serotypes and clinical manifestations of invasive group B streptococcal infections in western Sweden 1998–2001. Clin. Microbiol. Infect. 2007, 10, 791–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, S.; Lu, X.; Hu, Y.W.; Zheng, L.; Wang, Q. Influence of environmental and genotypic factors on biofilm formation by clinical isolates of group B streptococci. Microb. Pathog. 2018, 121, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.R.; Li, C.M.; Yu, C.H.; Lin, Y.J.; Wu, C.M.; Harn, I.C.; Tang, M.J.; Chen, Y.T.; Shen, F.C.; Lu, C.Y.; et al. The enhancement of biofilm formation in Group B streptococcal isolates at vaginal pH. Med. Microbiol. Immunol. 2013, 202, 105–115. [Google Scholar] [CrossRef]
- D’Urzo, N.; Martinelli, M.; Pezzicoli, A.; De Cesare, V.; Pinto, V.; Margarit, I.; Telford, J.L.; Maione, D.; Members of the DEVANI Study Group. Acidic pH strongly enhances in vitro biofilm formation by a subset of hypervirulent ST-17 Streptococcus agalactiae strains. Appl. Environ. Microbiol. 2014, 80, 2176–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosini, R.; Margarit, I. Biofilm formation by Streptococcus agalactiae: Influence of environmental conditions and implicated virulence factors. Front. Cell Infect. Microbiol. 2015, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczorek, E.; Małaczewska, J.; Wójcik, R.; Siwicki, A.K. Biofilm production and other virulence factors in Streptococcus spp. isolated from clinical cases of bovine mastitis in Poland. BMC Vet. Res. 2017, 13, 398. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Kumar, P.; Ray, P.; Kaur, J.; Chakraborti, A. Biofilm formation in clinical isolates of group B streptococci from north India. Microb. Pathog. 2009, 46, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.E.; Laut, C.; Gaddy, J.A.; Zadoks, R.N.; Davies, H.D.; Manning, S.D. Association between genotypic diversity and biofilm production in group B Streptococcus. BMC Microbiol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Chen, M.; Li, T.; Liu, H.; Gong, Y.; Li, M. Molecular characterization of Streptococcus agalactiae causing community and hospital acquired infections in Shanghai, China. Front. Microbiol. 2016, 7, 1308. [Google Scholar] [CrossRef] [Green Version]
- Dramsi, S.; Dubrac, S.; Konto-Ghiorghi, Y.; Da Cunha, V.; Couvé, E.; Glaser, P.; Caliot, E.; Débarbouillé, M.; Bellais, S.; Trieu-Cuot, P.; et al. Rga, a RofA-like regulator, is the major transcriptional activator of the PI-2a pilus in Streptococcus agalactiae. Microb Drug Resist. 2012, 18, 286–297. [Google Scholar] [CrossRef]
- Samen, U.; Heinz, B.; Boisvert, H.; Eikmanns, B.J.; Reinscheid, D.J.; Borges, F. Rga is a regulator of adherence and pilus formation in Streptococcus agalactiae. Microbiology 2011, 157, 2319–2327. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Ma, L.; Gilbert, G.L. Simultaneous detection and serotype identification of Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization. J. Med. Microbiol. 2005, 54, 1133–1138. [Google Scholar] [CrossRef]
- National Reference Center for Antimicrobial Susceptibility Testing. Available online: http://korld.nil.gov.pl/spec_rekomendacje.php (accessed on 25 February 2019).
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 9.0, Valid From 1 January 2019. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf/ (accessed on 25 February 2019).
- Borges, S.; Silva, L.; Teixeira, P. Survival and biofilm formation by Group B streptococci in simulated vaginal fluid at different pHs. Antonie Van Leeuwenhoek 2012, 101, 677–682. [Google Scholar] [CrossRef]
- Długaszewska, J.; Antczak, M.; Kaczmarek, I.; Jankowiak, R.; Buszkiewicz, M.; Herkowiak, M.; Michalak, K.; Kukuła, H.; Ratajczak, M. In vitro biofilm formation and antibiotic susceptibility of Pseudomonas aeruginosa isolated from airways of patient with cysticfibrosis. J. Med. Sci. 2016, 85, 245–253. [Google Scholar] [CrossRef] [Green Version]
MIC [µg/mL] | Isolates [n] | Isolates [%] |
---|---|---|
0.125 * | 14 | 8.5 |
0.094 | 64 | 38.8 |
0.064 | 61 | 37.0 |
0.047 | 20 | 12.1 |
0.032 | 6 | 3.6 |
Serotype | The Presence of Genes Encoding Fimbriae | The Presence of Genes Encoding Surface Proteins | Ability to Form Biofilm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Pl-1 +Pl-2a | Pl-1 +Pl-2b | Pl-2a | Pl-2b | epsilon | rib | alp2/3 | bca | alp4 ** | Weak | Modera-te | Strong | |
Ia | 30 | 2 (6.7) * | 0 (0.0) | 28 (93.3) | 0 (0.0) | 26 (86.7) | 4 (13.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 17 (56.7) | 12 (40.0) | 1 (3.3) |
Ib | 12 | 9 (75.0) | 1 (8.3) | 1 (8.3) | 1 (8.3) | 3 (25.0) | 4 (33.3) | 3 (25.0) | 2 (16.7) | 0 (0.0) | 3 (25.0) | 9 (75.0) | 0 (0.0) |
II | 19 | 16 (84.2) | 1 (5.3) | 0 (0.0) | 2 (10.5) | 2 (10.5) | 9 (47.4) | 2 (10.5) | 6 (31.6) | 0 (0.0) | 8 (42.1) | 10 (52.6) | 1 (5.3) |
III | 54 | 22 (40.7) | 27 (50.0) | 4 (7.4) | 1 (1.8) | 2 (3.7) | 40 (74.1) | 12 (22.2) | 0 (0.0) | 0 (0.0) | 23 (42.6) | 28 (51.9) | 3 (5.5) |
IV | 4 | 1 (25.0) | 3 (75.0) | 0 (0.0) | 0 (0.0) | 3 (75.0) | 1 (25.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 3 (75.0) | 1 (25.0) | 0 (0.0) |
V | 42 | 35 (83.3) | 2 (4.8) | 5 (11.9) | 0 (0.0) | 1 (2.4) | 12 (28.6) | 29 (69.0) | 0 (0.0) | 0 (0.0) | 16 (38.1) | 24 (57.1) | 2 (4.8) |
VI | 3 | 3 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (66.7) | 1 (33.3) | 0 (0.0) | 0 (0.0) | 1 (33.3) | 2 (66.7) | 0 (0.0) |
VII | 1 | 0 (0.0) | 1 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (100.0) | 0 (0.0) | 0 (0.0) | 1 (100.0) | 0 (0.0) | 0 (0.0) |
Total | 165 | 88 | 35 | 38 | 4 | 37 | 72 | 48 | 8 | 0 | 72 | 86 | 7 |
Patient Groups | n | Specimens |
---|---|---|
Pregnant women | 85 | vaginal swab |
Newborn | 36 | pharyngeal swab (n = 17) ear swab (n = 6), rectal swab (n = 7) |
blood (n = 6) | ||
Other adults | 44 | urine (n = 36), semen (n = 4), wound swab (n = 3), purulence (n = 1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaminska, D.; Ratajczak, M.; Szumała-Kąkol, A.; Dlugaszewska, J.; Nowak-Malczewska, D.M.; Gajecka, M. Increasing Resistance and Changes in Distribution of Serotypes of Streptococcus agalactiae in Poland. Pathogens 2020, 9, 526. https://doi.org/10.3390/pathogens9070526
Kaminska D, Ratajczak M, Szumała-Kąkol A, Dlugaszewska J, Nowak-Malczewska DM, Gajecka M. Increasing Resistance and Changes in Distribution of Serotypes of Streptococcus agalactiae in Poland. Pathogens. 2020; 9(7):526. https://doi.org/10.3390/pathogens9070526
Chicago/Turabian StyleKaminska, Dorota, Magdalena Ratajczak, Anna Szumała-Kąkol, Jolanta Dlugaszewska, Dorota M. Nowak-Malczewska, and Marzena Gajecka. 2020. "Increasing Resistance and Changes in Distribution of Serotypes of Streptococcus agalactiae in Poland" Pathogens 9, no. 7: 526. https://doi.org/10.3390/pathogens9070526
APA StyleKaminska, D., Ratajczak, M., Szumała-Kąkol, A., Dlugaszewska, J., Nowak-Malczewska, D. M., & Gajecka, M. (2020). Increasing Resistance and Changes in Distribution of Serotypes of Streptococcus agalactiae in Poland. Pathogens, 9(7), 526. https://doi.org/10.3390/pathogens9070526