Characterization and Comparison of SLAM/CD150 in Free-Ranging Coyotes, Raccoons, and Skunks in Illinois for Elucidation of Canine Distemper Virus Disease
Abstract
:1. Introduction
2. Results
2.1. SLAM/CD150 DNA and Predicted Amino Acid Sequences
2.2. Homology Modeling and Electrostatic Potential Mapping
2.3. SLAM/CD150 mRNA Expression
3. Discussion
4. Materials and Methods
4.1. Animals and Tissue Sampling
4.2. DNA Extraction and SLAM/CD150 Amplification and Sequencing
4.3. Homology Modeling
4.4. RNA Expression Demonstrated by RNAscope® In Situ Hybridization
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Terio, K.A.; Craft, M.E. Canine distemper virus (CDV) in another big cat: Should CDV be renamed carnivore distemper virus? mBio 2013, 4, e00702-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beineke, A.; Baumgärtner, W.; Wohlsein, P. Cross-species transmission of canine distemper virus—An update. One Health 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, N.; Yu, Y.; Wang, T.; Wilker, P.; Wang, J.; Li, Y.; Sun, Z.; Gao, Y.; Xia, X. Fatal canine distemper virus infection of giant pandas in China. Sci. Rep. 2016, 6, 27518. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Yan, X.-J.; Chai, X.-L.; Martella, V.; Luo, G.-L.; Zhang, H.-L.; Gao, H.; Liu, Y.-X.; Bai, X.; Zhang, L.; et al. Phylogenetic analysis of the haemagglutinin gene of canine distemper virus strains detected from breeding foxes, raccoon dogs and minks in China. Vet. Microbiol. 2010, 140, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Nikolin, V.M.; Wibbelt, G.; Michler, F.-U.F.; Wolf, P.; East, M.L. Susceptibility of carnivore hosts to strains of canine distemper virus from distinct genetic lineages. Vet. Microbiol. 2012, 156, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Nikolin, V.M.; Osterrieder, K.; von Messling, V.; Hofer, H.; Anderson, D.; Dubovi, E.; Brunner, E.; East, M.L. Antagonistic pleiotropy and fitness trade-offs reveal specialist and generalist traits in strains of canine distemper virus. PLoS ONE 2012, 7, e50955. [Google Scholar] [CrossRef] [Green Version]
- Seimon, T.A.; Miquelle, D.G.; Chang, T.Y.; Newton, A.L.; Korotkova, I.; Ivanchuk, G.; Lyubchenko, E.; Tupikov, A.; Slabe, E.; McAloose, D. Canine distemper virus: An emerging disease in wild endangered Amur tigers (Panthera tigris altaica). mBio 2013, 4, e00410-13. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gutierrez, M.; Ruiz-Saenz, J. Diversity of susceptible hosts in canine distemper virus infection: A systematic review and data synthesis. BMC Vet. Res. 2016, 12, 78. [Google Scholar] [CrossRef] [Green Version]
- Techangamsuwan, S.; Banlunara, W.; Radtanakatikanon, A.; Sommanustweechai, A.; Siriaroonrat, B.; Lombardini, E.D.; Rungsipipat, A. Pathologic and molecular virologic characterization of a canine distemper outbreak in farmed civets. Vet. Pathol. 2015, 52, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Pope, J.P.; Miller, D.L.; Riley, M.C.; Anis, E.; Wilkes, R.P. Characterization of a novel canine distemper virus causing disease in wildlife. J. Vet. Diagn. Investig. 2016, 28, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Needle, D.B.; Burnell, V.C.; Forzán, M.J.; Dubovi, E.J.; Schuler, K.L.; Bernier, C.; Hollingshead, N.A.; Ellis, J.C.; Stevens, B.A.; Tate, P.; et al. Infection of eight mesocarnivores in New Hampshire and Vermont with a distinct clade of canine distemper virus in 2016–2017. J. Vet. Diagn. Investig. 2019, 31, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Parida, S.; Muniraju, M.; Mahapatra, M.; Muthuchelvan, D.; Buczkowski, H.; Banyard, A.C. Peste des petits ruminants. Vet. Microbiol. 2015, 181, 90–106. [Google Scholar] [CrossRef] [Green Version]
- Rendon-Marin, S.; da Fontoura Budaszewski, R.; Canal, C.W.; Ruiz-Saenz, J. Tropism and molecular pathogenesis of canine distemper virus. Virol. J. 2019, 16, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclachlan, N.J.; Dubovi, E.J. Fenner’s Veterinary Virology; Academic Press: Cambridge, MA, USA, 2010; pp. 299–325. ISBN 978-0-12-375158-4. [Google Scholar]
- Sato, H.; Yoneda, M.; Honda, T.; Kai, C. Morbillivirus receptors and tropism: Multiple pathways for infection. Front. Microbiol. 2012, 3, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loots, A.K.; Mitchell, E.; Dalton, D.L.; Kotzé, A.; Venter, E.H. Advances in canine distemper virus pathogenesis research: A wildlife perspective. J. Gen. Virol. 2017, 98, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.; Khosravi, M.; Avila, M.; Ader-Ebert, N.; Bringolf, F.; Zurbriggen, A.; Vandevelde, M.; Plattet, P. SLAM- and Nectin-4-Independent noncytolytic spread of canine distemper virus in astrocytes. J. Virol. 2015, 89, 5724–5733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohishi, K.; Ando, A.; Suzuki, R.; Takishita, K.; Kawato, M.; Katsumata, E.; Ohtsu, D.; Okutsu, K.; Tokutake, K.; Miyahara, H.; et al. Host–virus specificity of morbilliviruses predicted by structural modeling of the marine mammal SLAM, a receptor. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, 227–241. [Google Scholar] [CrossRef]
- Ohishi, K.; Suzuki, R.; Maeda, T.; Tsuda, M.; Abe, E.; Yoshida, T.; Endo, Y.; Okamura, M.; Nagamine, T.; Yamamoto, H.; et al. Recent host range expansion of canine distemper virus and variation in its receptor, the signaling lymphocyte activation molecule, in carnivores. J. Wildl. Dis. 2014, 50, 596–606. [Google Scholar] [CrossRef]
- Yadav, A.K.; Rajak, K.K.; Bhatt, M.; Kumar, A.; Chakravarti, S.; Sankar, M.; Muthuchelvan, D.; Kumar, R.; Khulape, S.; Singh, R.P.; et al. Comparative sequence analysis of morbillivirus receptors and its implication in host range expansion. Can. J. Microbiol. 2019, 65, 783–794. [Google Scholar] [CrossRef]
- Hashiguchi, T.; Ose, T.; Kubota, M.; Maita, N.; Kamishikiryo, J.; Maenaka, K.; Yanagi, Y. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat. Struct. Mol. Biol. 2011, 18, 135–141. [Google Scholar] [CrossRef]
- Cypher, B.L.; Scrivner, J.H.; Hammer, K.L.; O’Farrell, T.P. Viral antibodies in coyotes from California. J. Wildl. Dis. 1998, 34, 259–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmlov, A.; Breck, S.; Fry, T.; Duncan, C. Serologic survey for cross-species pathogens in urban coyotes (Canis latrans), Colorado, USA. J. Wildl. Dis. 2014, 50, 946–950. [Google Scholar] [CrossRef] [Green Version]
- Gese, E.M.; Schultz, R.D.; Rongstad, O.J.; Andersen, D.E. Prevalence of antibodies against aanine parvovirus and canine distemper virus in wild coyotes in southeastern Colorado. J. Wildl. Dis. 1991, 27, 320–323. [Google Scholar] [CrossRef] [Green Version]
- Ohno, S.; Seki, F.; Ono, N.; Yanagi, Y. Histidine at position 61 and its adjacent amino acid residues are critical for the ability of SLAM (CD150) to act as a cellular receptor for measles virus. J. Gen. Virol. 2003, 84, 2381–2388. [Google Scholar] [CrossRef]
- Wenzlow, N.; Plattet, P.; Wittek, R.; Zurbriggen, A.; Grone, A. Immunohistochemical demonstration of the putative canine distemper virus receptor CD150 in dogs with and without distemper. Vet. Pathol. 2007, 44, 943–948. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, M.; Yanagi, Y. Expression of the Sendai (murine parainfluenza) virus C protein alleviates restriction of measles virus growth in mouse cells. Proc. Natl. Acad. Sci. USA 2011, 108, 15384–15389. [Google Scholar] [CrossRef] [Green Version]
- Noyce, R.S.; Bondre, D.G.; Ha, M.N.; Lin, L.-T.; Sisson, G.; Tsao, M.-S.; Richardson, C.D. Tumor cell marker PVRL4 (Nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011, 7, e1002240. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
Amino Acid Residue Comparison | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | 55 | 60 | 61 | 62 | 63 | 65 | 70 | 71 | 74 | 75 | 79 | 85 | 90 | 95 | 97 | 100 | 104 | 106 | 110 | 112 | 120 | 129 | 130 |
Domestic dog (AYM26448.1) | R | I | H | I | L | T | P | G | I | K | V | E | R | G | K | L | T | R | S | R | M | Q | H |
Coyote | R | I | H | I | L | T | P | G | I | K | V | E | R | G | K | L | T | R | S | R | M | Q | H |
Raccoon | S | I | H | V | L | T | P | G | V | K | M | E | R | G | T | L | S | G | S | K | M | R | H |
Skunk | S | I | H | V | L | T | P | A | V | K | V | E | R | G | T | L | S | G | S | K | M | R | N |
Coyote | Raccoon | Skunk | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spleen | Tonsil | Lymph Node | Spleen | Tonsil | Lymph Node | Spleen | Lymph Node | ||||||
1 | 7 | 7 | 4 | 1 | 3 | 2 | 1 | 1 | 5 | 6 | |||
2 | 10 | 23 | 1 | 2 | 5 | 6 | 11 | 2 | 8 | 4 | |||
3 | 11 | 14 | 25 | 3 | 7 | 7 | 2 | 3 | 1 | 8 | |||
4 | 3 | 2 | 0 | 4 | 5 | 1 | 5 | 4 | 20 | 4 | |||
5 | 1 | 4 | 0 | 5 | 15 | 111 | 2 | 5 | 0 | 4 | |||
Mean | 6.40 | 10.00 | 6.00 | 7.00 | 25.40 | 4.20 | 6.80 | 5.20 | |||||
Std dev | 4.34 | 8.57 | 10.75 | 4.69 | 47.92 | 4.09 | 8.04 | 1.79 | |||||
Species total | 7.47 | 12.2 | 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burrell, C.E.; Anchor, C.; Ahmed, N.; Landolfi, J.; Jarosinski, K.W.; Terio, K.A. Characterization and Comparison of SLAM/CD150 in Free-Ranging Coyotes, Raccoons, and Skunks in Illinois for Elucidation of Canine Distemper Virus Disease. Pathogens 2020, 9, 510. https://doi.org/10.3390/pathogens9060510
Burrell CE, Anchor C, Ahmed N, Landolfi J, Jarosinski KW, Terio KA. Characterization and Comparison of SLAM/CD150 in Free-Ranging Coyotes, Raccoons, and Skunks in Illinois for Elucidation of Canine Distemper Virus Disease. Pathogens. 2020; 9(6):510. https://doi.org/10.3390/pathogens9060510
Chicago/Turabian StyleBurrell, Caitlin E., Chris Anchor, Nadia Ahmed, Jennifer Landolfi, Keith W. Jarosinski, and Karen A. Terio. 2020. "Characterization and Comparison of SLAM/CD150 in Free-Ranging Coyotes, Raccoons, and Skunks in Illinois for Elucidation of Canine Distemper Virus Disease" Pathogens 9, no. 6: 510. https://doi.org/10.3390/pathogens9060510
APA StyleBurrell, C. E., Anchor, C., Ahmed, N., Landolfi, J., Jarosinski, K. W., & Terio, K. A. (2020). Characterization and Comparison of SLAM/CD150 in Free-Ranging Coyotes, Raccoons, and Skunks in Illinois for Elucidation of Canine Distemper Virus Disease. Pathogens, 9(6), 510. https://doi.org/10.3390/pathogens9060510