Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus
Abstract
1. Introduction
2. Apoptosis in the Pathogenesis of CSFV
3. Autophagy in the Pathogenesis of CSFV
4. Cross-Talk between Apoptosis and Autophagy in CSFV Pathogenesis
5. Pyroptosis in the Pathogenesis of CSFV
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Kleiboeker, S.B. Swine fever: Classical swine fever and african swine fever. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 431–451. [Google Scholar] [CrossRef]
- Lohse, L.; Nielsen, J.; Uttenthal, A. Early pathogenesis of classical swine fever virus (csfv) strains in danish pigs. Vet. Microbiol. 2012, 159, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Thiel, H.J.; Stark, R.; Weiland, E.; Rumenapf, T.; Meyers, G. Hog cholera virus: Molecular composition of virions from a pestivirus. J. Virol. 1991, 65, 4705–4712. [Google Scholar] [PubMed]
- Armengol, E. Identification of t-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J. Gen. Virol. 2002, 83 Pt 3, 551–560. [Google Scholar] [CrossRef]
- Kosmidou, A.; Büttner, M.; Meyers, G. Isolation and characterization of cytopathogenic classical swine fever virus (csfv). Arch. Virol. 1998, 143, 1295–1309. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Xing-Yu, M.; Li, L.F.; Li, Y.; Luo, Y.; Wang, W.; Yu, S.; Yin, C.; Li, S.; et al. Comprehensive evaluation of the host responses to infection with differentially virulent classical swine fever virus strains in pigs. Virus Res. 2018, 255, 68–76. [Google Scholar] [CrossRef]
- König, M.; Lengsfeld, T.; Pauly, T.; Stark, R.; Thiel, J.H. Classical swine fever virus: Independent induction of protective immunity by two structural glycoproteins. J. Virol. 1995, 69, 6479–6486. [Google Scholar]
- Moormann, M.R.J.; Bouma, A.; Kramps, A.J.; Terpstra, C.; Smit, D.H.J. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet. Microbiol. 2000, 73, 209–219. [Google Scholar] [CrossRef]
- Bensaude, E. Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J. Gen. Virol. 2004, 85, 1029–1037. [Google Scholar] [CrossRef]
- Sun, J.; Shi, Z.; Guo, H.; Tu, C. Changes in the porcine peripheral blood mononuclear cell proteome induced by infection with highly virulent classical swine fever virus. J. Gen. Virol. 2010, 91, 2254–2262. [Google Scholar] [CrossRef]
- Johns, H.L.; Bensaude, E.; La Rocca, S.A.; Seago, J.; Charleston, B.; Steinbach, F.; Drew, T.W.; Crooke, H.; Everett, H. Classical swine fever virus infection protects aortic endothelial cells from pipc-mediated apoptosis. J. Gen. Virol. 2010, 91, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Knoetig, S.M.; Summerfield, A.; Spagnuolo-Weaver, M.; Mccullough, K.C. Immunopathogenesis of classical swine fever. role of monocytic cells. Immunology 1999, 97, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Summerfield, A.; Mcneilly, F.; Walker, I.; Allan, G.; Knoetig, S.M.; Mccullough, K.C. Depletion of cd4(+) and cd8(high+) t-cells before the onset of viraemia during classical swine fever. Vet. Immunol. Immunopathol. 2001, 78, 3–19. [Google Scholar] [CrossRef]
- Blome, S.; Meindl-Böhmer, A.; Nowak, G.; Moennig, V. Disseminated intravascular coagulation does not play a major role in the pathogenesis of classical swine fever. Vet. Microbiol. 2013, 162, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Chander, V.; Nandi, S.; Ravishankar, C.; Upmanyu, V.; Verma, R. Classical swine fever in pigs: Recent developments and future perspectives. Anim. Health Res. Rev. 2014, 15, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Nordén, R.; Nyström, K.; Aurelius, J.; Brisslert, M.; Olofsson, S. Virus-induced appearance of the selectin ligand slex in herpes simplex virus type 1-infected t-cells: Involvement of host and viral factors. Glycobiology 2013, 23, 310–321. [Google Scholar] [CrossRef]
- Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell 2011, 147, 7542–7758. [Google Scholar] [CrossRef]
- Danthi, P. Viruses and the diversity of cell death. Annu. Rev. Virol. 2016, 3, 533. [Google Scholar] [CrossRef]
- Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 2017, 17, 151–164. [Google Scholar] [CrossRef]
- Huska, J.D.; Hardwick, J.M. Programmed Cell Death and Virus Infection. Ref. Mod. Biomed. Sci. 2015, 7, 154–162. [Google Scholar]
- Huysmans, M.; Saul, L.A.; Coll, N.S.; Nowack, M.K. Dying two deaths—Programmed cell death regulation in development and disease. Curr. Opin. Plant Biol. 2017, 35, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, V.B.; Cotter, P.A.; Kumamoto, C.A. Microbial pathogenesis: Mechanisms of infectious disease. Cell Host Microbe 2007, 2, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 2008, 9, 231–241. [Google Scholar] [CrossRef]
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Clarke, P.; Tyler, K.L. Apoptosis in animal models of virus-induced disease. Nat. Rev. Microbiol. 2009, 7, 144–155. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290, 1717–1721. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 2000, 8, 1812–1825. [Google Scholar] [CrossRef]
- Lange, A.; Blome, S.; Moennig, V.; Greiser-Wilke, I. Pathogenesis of classical swine fever—Similarities to viral haemorrhagic fevers: A review. Berliner Und Münchener Tierärztliche Wochenschrift 2011, 124, 36–47. [Google Scholar]
- Choi, C.; Hwang, K.K.; Chae, C. Classical swine fever virusinduces tumor necrosis factor-α and lymphocyte apoptosis. Arch. Virol. 2004, 149, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Zhao, M.; Ye, Z.; Gou, H.; Wang, J.; Yi, L.; Dong, X.; Liu, W.; Luo, Y.; Liao, M.; et al. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy 2014, 10, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.; Zhao, M.; Xu, H.; Yuan, J.; He, W.; Zhu, M.; Ding, H.; Yi, L.; Chen, J. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis. Oncotarget 2017, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhu, M.; Deng, S.; Fan, S.; Xu, H.; Liao, J.; Li, P.; Zheng, J.; Zhao, M.; Chen, J. Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs. Virus Res. 2018, 250, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Clemens, M.J. Epstein-barr virus: Inhibition of apoptosis as a mechanism of cell transformation. Int. J. Biochem. Cell Biol. 2006, 38, 164–169. [Google Scholar] [CrossRef]
- Clarke, P.; Debiasi, R.L.; Goody, R.; Hoyt, C.C.; Richardson-Burns, S.; Tyler, K.L. Mechanisms of reovirus-induced cell death and tissue injury: Role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Viral Immunol. 2005, 18, 89–115. [Google Scholar] [CrossRef]
- Ross, M.E.; Caligiuri, M.A. Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response. Blood 1997, 89, 910–918. [Google Scholar] [CrossRef]
- Whiteside, T.L. Apoptosis of immune cells in the tumor microenvironment and peripheral circulation of patients with cancer: Implications for immunotherapy. Vaccine 2002, 20 (Suppl. S4), A46–A51. [Google Scholar] [CrossRef]
- Roulston, A.; Marcellus, R.C.; Branton, P.E. Viruses and apoptosis. Annu. Rev. Microbiol. 1999, 53, 577. [Google Scholar] [CrossRef]
- Jürg Tschopp Thome, M.; Hofmann, K.; Meinl, E. The fight of viruses against apoptosis. Curr. Opin. Genet. Dev. 1998, 8, 82–87. [Google Scholar]
- Moennig, V. Introduction to classical swine fever: Virus, disease and control policy. Vet. Microbiol. 2000, 73, 93–102. [Google Scholar] [CrossRef]
- Naniche, D.; Oldstone, M. Generalized immunosuppression: How viruses undermine the immune response. Cell. Mol. Life Sci. CMLS 2000, 57, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Zingle, K.; Summerfield, A.; Mccullough, K.C.; Inumaru, S. Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. J. Gen. Virol. 2001, 82, 1309–1318. [Google Scholar]
- Summerfield, A.; Knoetig, S.M.; Tschudin, R.; Mccullough, K.C. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology 2000, 272, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Bruschke, C.J. Glycoprotein e^ of pestiviruses induces apoptosis in lymphocytes of several species. J. Virol. 1997, 71, 6692–6696. [Google Scholar]
- Meyers, G.; Saalmüller, A.; Büttner, M. Mutations abrogating the rnase activity in glycoprotein e of the pestivirus classical swine fever virus lead to virus attenuation. J. Virol. 2000, 73, 10224–10235. [Google Scholar]
- Ruggli, N.; Summerfield, A.; Fiebach, A.R.; Guzylack-Piriou, L.; Tratschin, J.D. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of npro. J. Virol. 2008, 83, 817–829. [Google Scholar] [CrossRef]
- Johns, H.L.; Doceul, V.; Everett, H.; Crooke, H.; Charleston, B.; Seago, J. The classical swine fever virus n-terminal protease npro binds to cellular hax-1. J. Gen. Virol. 2010, 91, 2677–2686. [Google Scholar] [CrossRef]
- Tang, Q.; Guo, K.; Kang, K.; Zhang, Y.; He, L.; Wang, J. Classical swine fever virus ns2 protein promotes interleukin-8 expression and inhibits mg132-induced apoptosis. Virus Genes 2011, 42, 355–362. [Google Scholar] [CrossRef]
- Tang, Q.H.; Zhang, Y.M.; Fan, L.; Tong, G.; Dai, C. Classic swine fever virus ns2 protein leads to the induction of cell cycle arrest at s-phase and endoplasmic reticulum stress. Virol. J. 2010, 7, 4. [Google Scholar] [CrossRef]
- Hurley, J.; Schulman, B. Atomistic autophagy: The structures of cellular self-digestion. Cell 2014, 157, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell 2008, 132, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Jordan, T.X.; Randall, G. Manipulation or capitulation: Virus interactions with autophagy. Microbes Infect. 2012, 14, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Kuballa, P.; Nolte, W.M.; Castoreno, A.B.; Xavier, R.J. Autophagy and the immune system. Annu. Rev. Immunol. 2012, 30, 611–646. [Google Scholar] [CrossRef] [PubMed]
- Chiramel, A.I.; Brady, N.R.; Bartenschlager, R. Divergent roles of autophagy in virus infection. Cells 2013, 2, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Münz, C. Autophagy and mammalian viruses: Roles in immune response, viral replication, and beyond. Adv. Virus Res. 2016, 95, 149. [Google Scholar]
- Yoshimori, T. How Autophagy Saves Mice: A Cell-Autonomous Defense System against Sindbis Virus Infection. Cell Host Microbe 2010, 7, 83–84. [Google Scholar] [CrossRef][Green Version]
- Xu, G.; Wang, S.; Han, S.; Xie, K.; Liu, Y. Plant bax inhibitor-1 interacts with atg6 to regulate autophagy and programmed cell death. Autophagy 2017, 13, 7. [Google Scholar] [CrossRef]
- Zhou, D.; Spector, S.A. Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS 2008, 22, 695–699. [Google Scholar] [CrossRef]
- Tovilovic, G.; Ristic, B.; Siljic, M.; Nikolic, V.; Kravic-Stevovic, T.; Dulovic, M.; Milenkovic, M.; Knezevic, A.; Bosnjak, M.; Bumbasirevic, V.; et al. Mtor-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected u251 glioma cells. Microbes Infect. 2013, 15, 615–624. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, X.; Liu, D.; Fan, Z.; Hu, X.; Yan, J.; Wang, M.; Gao, G. Autophagy is involved in influenza a virus replication. Autophagy 2009, 5, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Heaton, N.S.; Glenn, R. Dengue virus and autophagy. Viruses 2011, 3, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Dreux, M.; Chisari, F.V. Impact of the autophagy machinery on hepatitis c virus infection. Viruses 2011, 3, 1342–1357. [Google Scholar] [CrossRef] [PubMed]
- Chiramel, A.I.; Best, S.M. Role of autophagy in zika virus infection and pathogenesis. Virus Res. 2017, 254, 34–40. [Google Scholar] [CrossRef]
- Vandergaast, R.; Fredericksen, B.L. West nile virus (wnv) replication is independent of autophagy in mammalian cells. PLoS ONE 2012, 7, e45800. [Google Scholar] [CrossRef]
- Sharma, M.; Bhattacharyya, S.; Sharma, K.B.; Chauhan, S.; Asthana, S.; Abdin, M.Z.; Vratis, S.; Kalia, M. Japanese encephalitis virus activates autophagy through xbp1 and atf6 er stress sensors in neuronal cells. J. Gen. Virol. 2017, 98, 1027. [Google Scholar] [CrossRef]
- Seglen, P.O.; Gordon, P.B.; Holen, I. Non-selective autophagy. Semin. Cell Biol. 1990, 1, 441. [Google Scholar]
- Shaid, S.; Brandts, C.H.; Serve, H.; Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ. 2013, 20, 21–30. [Google Scholar] [CrossRef]
- Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef]
- Ding, W.X.; Yin, X.M. Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biol. Chem. 2012, 393, 547–564. [Google Scholar] [CrossRef]
- Kim, S.J.; Khan, M.; Quan, J.; Till, A.; Subramani, S.; Siddiqui, A. Hepatitis b virus disrupts mitochondrial dynamics: Induces fission and mitophagy to attenuate apoptosis. PLoS Pathog. 2013, 9, e1003722. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Syed, G.H.; Siddiqui, A.; Ou, J.H.J. Hepatitis c virus induces the mitochondrial translocation of parkin and subsequent mitophagy. PLoS Pathog. 2013, 9, e1003285. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Syed, G.H.; Khan, M.; Chiu, W.W.; Sohail, M.A.; Gish, R.G.; Siddiqui, A. Hepatitis c virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl. Acad. Sci. USA 2014, 111, 6413–6418. [Google Scholar] [CrossRef] [PubMed]
- Summerfield, A.; Hofmann, M.A.; Mccullough, K.C. Low density blood granulocytic cells induced during classical swine fever are targets for virus infecion. Vet. Immunol. Immunopathol. 1998, 63, 289–301. [Google Scholar] [CrossRef]
- He, L.; Zhang, Y.; Fang, Y.; Liang, W.; Lin, J.; Cheng, M. Classical swine fever virus induces oxidative stress in swine umbilical vein endothelial cells. BMC Vet. Res. 2014, 10, 279. [Google Scholar] [CrossRef]
- Geisler, S.; Holmström, K.M.; Skujat, D.; Fiesel, F.C.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. Pink1/parkin-mediated mitophagy is dependent on vdac1 and p62/sqstm1. Nat. Cell Biol. 2010, 12, 119–131. [Google Scholar] [CrossRef]
- Sebastián, D.; Sorianello, E.; Segalés, J.; Irazoki, A.; Ruiz-Bonilla, V.; Sala, D.; Planet, E.; Berenguer-Llergo, A.; Muñoz, J.P.; Sánchez-Feutrie, M.; et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J. 2016, 35, 1677–1693. [Google Scholar] [CrossRef]
- Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741–752. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, J.; Fu, C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal. Transduct. Target. Ther. 2018, 3, 18. [Google Scholar] [CrossRef]
- Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.; Zhou, T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. CellProlifer 2012, 90, 487–498. [Google Scholar] [CrossRef]
- Tylichová, Z.; Straková, N.; Vondráček, J.; Vaculová, A.H.; Kozubík, A.; Hofmanová, J. Activation of autophagy and pparγ protect colon cancer cells against apoptosis induced by interactive effects of butyrate and dha in a cell type-dependent manner: The role of cell differentiation. J. Nutr. Biochem. 2017, 39, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Kuro, M.; Yoshizawa, K.; Uehara, N.; Lai, C.Y.; Kanematsu, S.; Miki, H.; Kimura, A.; Yuri, T.; Takahashi, K.; Tsubura, A. Calpain inhibition restores basal autophagy and suppresses apoptosis on mnu-induced photoreceptor cell injury in mice. Invest. Ophthalmol Vis. Sci. 2011, 52, 4352. [Google Scholar]
- Eisenberg-Lerner, A.; Bialik, S.; Simon, H.U.; Kimchi, A. Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009, 16, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.; Zhao, M.; Fan, S.; Yuan, J.; Liao, J.; He, W.; Xu, H.; Chen, J. Autophagy induces apoptosis and death of t lymphocytes in the spleen of pigs infected with CSFV. Sci. Rep. 2017, 7, 13577. [Google Scholar] [CrossRef]
- Pei, J.; Deng, J.; Ye, Z.; Wang, J.; Gou, H.; Liu, W.; Zhao, M.; Liao, M.; Yi, L.; Chen, J. Absence of autophagy promotes apoptosis by modulating the ros-dependent rlr signaling pathway in classical swine fever virus-infected cells. Autophagy 2016, 2, 1738–1758. [Google Scholar] [CrossRef]
- Kesavardhana, S.; Kanneganti, T.D. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int. Immunol. 2017, 29, 5. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005, 73, 1907. [Google Scholar] [CrossRef]
- Case, C.L. Regulating caspase-1 during infection: Roles of nlrs, aim2, and asc. Yale J. Biol. Med. 2011, 84, 333–343. [Google Scholar]
- Miao, E.A.; Leaf, I.A.; Treuting, P.M.; Mao, D.P.; Dors, M.; Sarkar, A.; Warren, S.E.; Wewers, M.D.; Aderem, A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 2010, 11, 1136–1142. [Google Scholar] [CrossRef]
- He, W.T.; Wan, H.; Hu, L.; Chen, P.; Wang, X.; Huang, Z.; Yang, Z.H.; Zhong, C.Q.; Han, J. Gasdermin d is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015, 25, 1285–1298. [Google Scholar] [CrossRef]
- Si, M.M.; Kanneganti, T.D. Gasdermin d: The long-awaited executioner of pyroptosis. Cell Res. 2015, 25, 1183. [Google Scholar]
- Sahoo, M.; Ceballos-Olvera, I.; Barrio, L.D.; Re, F. Role of the inflammasome, il-1β, and il-18 in bacterial infections. Sci. World J. 2011, 11, 2037–2050. [Google Scholar] [CrossRef]
- Fettelschoss, A.; Kistowska, M.; Leibundgutlandmann, S.; Beer, H.D.; Johansen, P.; Senti, G.; Contassot, E.; Bachmann, M.F.; French, L.E.; Oxenius, A. Inflammasome activation and il-1β target il-1α for secretion as opposed to surface expression. Proc. Natl. Acad. Sci. USA 2011, 108, 18055–18060. [Google Scholar] [CrossRef]
- Summerfield, A.; Alves, M.; Ruggli, N.; Bruin, M.G.M.D.; Mccullough, K.C. High ifn-α responses associated with depletion of lymphocytes and natural ifn-producing cells during classical swine fever. J. Interferon Cytokine Res. 2006, 26, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cordón, P.J.; Romanini, S.; Salguero, J.F.; Núnez, A.; Bautista, J.M.; Jover, A.; Gómez-Villamos, J.C. Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever. J. Compar. Pathol. 2002, 127, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Cordon, P.J.; Nunez, A.; Salguero, F.J.; Carrasco, L.; Gómez-Villamandos, J.C. Evolution of T lymphocytes and cytokine expression in classical swine fever (CSF) virus infection. J. Comp. Pathol. 2005, 132, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Yuan, J.; Deng, S.; Chen, Y.; Xie, B.; Wu, K.; Zhu, M.; Xu, H.; Huang, Y.; Yang, J. Activation of Interleukin-1β Release by the Classical Swine Fever Virus Is Dependent on the NLRP3 Inflammasome, Which Affects Virus Growth in Monocytes. Front. Cell Infect. Microbiol. 2018, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Hazenberg, M.D.; Hamann, D.; Schuitemaker, H.; Miedema, F. T cell depletion in hiv-1 infection: How cd4+ t cells go out of stock. Nat. Immunol. 2000, 1, 285–289. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.-m.; Mao, Q.; Yi, L.; Zhao, M.-q.; Chen, J.-d. Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus. Pathogens 2019, 8, 239. https://doi.org/10.3390/pathogens8040239
Ma S-m, Mao Q, Yi L, Zhao M-q, Chen J-d. Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus. Pathogens. 2019; 8(4):239. https://doi.org/10.3390/pathogens8040239
Chicago/Turabian StyleMa, Sheng-ming, Qian Mao, Lin Yi, Ming-qiu Zhao, and Jin-ding Chen. 2019. "Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus" Pathogens 8, no. 4: 239. https://doi.org/10.3390/pathogens8040239
APA StyleMa, S.-m., Mao, Q., Yi, L., Zhao, M.-q., & Chen, J.-d. (2019). Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus. Pathogens, 8(4), 239. https://doi.org/10.3390/pathogens8040239