Impact of Plasmodiophora brassicae on Canola Root and Rhizosphere Microbiomes and Its Implications for Clubroot Biocontrol
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant, Soil and Pathogen Material
2.2. Experimental Design and Greenhouse Conditions
2.3. Sample Collection
2.4. DNA Extraction and Microbiome Profiling
2.5. Bioinformatics and Statistical Analyses
2.6. Disease Assessment
3. Results
3.1. Clubroot Development
3.2. Relative Abundance of Fungal and Bacterial Genera
3.3. Diversity of Microbial Communities
3.4. Effect of P. brassicae Inoculation on Bacterial and Fungal Communities
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANCOM | Analysis of Composition of Microbiome |
ANCOM-BC | Biased-Corrected Analysis of Composition of Microbiome |
ASV | Amplicon Sequence Variant |
CCD | Canadian Clubroot Differential |
CR | Clubroot Resistant |
CS | Clubroot Susceptible |
DADA | Divisive Amplicon Denoising Algorithm |
dai | Days after germination |
DSI | Disease Severity Index |
NCBI | National Center for Biotechnology Information |
RC | Resistant Canola Control |
RH | Rhizosphere |
RI | Resistant Canola Inoculated |
RT | Root |
SC | Susceptible Canola Control |
SI | Susceptible Canola Inoculated |
SL | Soil mixture |
References
- Strelkov, S.E.; Tewari, J.P.; Smith-Degenhardt, E. Characterization of Plasmodiophora brassicae Populations from Alberta, Canada. Can. J. Plant Pathol. 2006, 28, 467–474. [Google Scholar] [CrossRef]
- Donald, E.C.; Porter, I.J. Clubroot in Australia: The History and Impact of Plasmodiophora brassicae in Brassica Crops and Research Efforts Directed towards Its Control. Can. J. Plant Pathol. 2014, 36, 66–84. [Google Scholar] [CrossRef]
- Hwang, S.-F.; Howard, R.J.; Strelkov, S.E.; Gossen, B.D.; Peng, G. Management of Clubroot (Plasmodiophora brassicae) on Canola (Brassica napus) in Western Canada. Can. J. Plant Pathol. 2014, 36 (Suppl. S1), 49–65. [Google Scholar] [CrossRef]
- Diederichsen, E.; Frauen, M.; Linders, E.G.A.; Hatakeyama, K.; Hirai, M. Status and Perspectives of Clubroot Resistance Breeding in Crucifer Crops. J. Plant Growth Regul. 2009, 28, 265–281. [Google Scholar] [CrossRef]
- Peng, G.; Lahlali, R.; Hwang, S.-F.; Pageau, D.; Hynes, R.K.; McDonald, M.R.; Gossen, B.D.; Strelkov, S.E. Crop Rotation, Cultivar Resistance, and Fungicides/Biofungicides for Managing Clubroot (Plasmodiophora brassicae) on Canola. Can. J. Plant Pathol. 2014, 36 (Suppl. S1), 99–112. [Google Scholar] [CrossRef]
- Rahman, H.; Peng, G.; Yu, F.; Falk, K.C.; Kulkarni, M.; Selvaraj, G. Genetics and Breeding for Clubroot Resistance in Canadian Spring Canola (Brassica napus L.). Can. J. Plant Pathol. 2014, 36, 122–134. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.-F.; Manolii, V.P.; Cao, T.; Feindel, D. Emergence of New Virulence Phenotypes of Plasmodiophora brassicae on Canola (Brassica napus) in Alberta, Canada. Eur. J. Plant Pathol. 2016, 145, 517–529. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.F.; Manolii, V.P.; Cao, T.; Fredua-Agyeman, R.; Harding, M.W.; Peng, G.; Gossen, B.D.; Mcdonald, M.R.; Feindel, D. Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada. Can. J. Plant Pathol. 2018, 40, 284–298. [Google Scholar] [CrossRef]
- Bakker, P.A.; Berendsen, R.L.; Van Pelt, J.A.; Vismans, G.; Yu, K.; Li, E.; Van Bentum, S.; Poppeliers, S.W.; Gil, J.J.S.; Zhang, H. The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Mol. Plant 2020, 13, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, S.; Gaurav, A.K.; Srivastava, S.; Verma, J.P. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front. Microbiol. 2020, 11, 1216. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020, 11, 622926. [Google Scholar] [CrossRef]
- Lahlali, R.; Peng, G.; Gossen, B.D.; McGregor, L.; Yu, F.Q.; Hynes, R.K.; Hwang, S.F.; McDonald, M.R.; Boyetchko, S.M. Evidence That the Biofungicide Serenade (Bacillus subtilis) Suppresses Clubroot on Canola via Antibiosis and Induced Host Resistance. Phytopathology 2013, 103, 245–254. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; He, Y.; Liu, F.; Li, M.; Wang, Z.; Ji, G. Isolation and Characterization of Bacterial Isolates for Biological Control of Clubroot on Chinese Cabbage. Eur. J. Plant Pathol. 2014, 140, 159–168. [Google Scholar] [CrossRef]
- Luo, Y.; Dong, D.; Gou, Z.; Wang, X.; Jiang, H.; Yan, Y.; Wu, C.; Zhou, C. Isolation and Characterization of Zhihengliuella aestuarii B18 Suppressing Clubroot on Brassica juncea Var. Tumida Tsen. Eur. J. Plant Pathol. 2018, 150, 213–222. [Google Scholar] [CrossRef]
- Li, J.; Philp, J.; Li, J.; Wei, Y.; Li, H.; Yang, K.; Ryder, M.; Toh, R.; Zhou, Y.; Denton, M.D.; et al. Trichoderma Harzianum Inoculation Reduces the Incidence of Clubroot Disease in Chinese Cabbage by Regulating the Rhizosphere Microbial Community. Microorganisms 2020, 8, 1325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, X.; Cheng, J.; Xie, J.; Lin, Y.; Jiang, D.; Fu, Y.; Chen, T. Application of Trichoderma Hz36 and Hk37 as Bi-ocontrol Agents against Clubroot Caused by Plasmodiophora brassicae. J. Fungi 2022, 8, 777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ahmed, W.; Dai, Z.; Zhou, X.; He, Z.; Wei, L.; Ji, G. Microbial Consortia: An Engineering Tool to Suppress Clubroot of Chinese Cabbage by Changing the Rhizosphere Bacterial Community Composition. Biology 2022, 11, 918. [Google Scholar] [CrossRef] [PubMed]
- Daval, S.; Gazengel, K.; Belcour, A.; Linglin, J.; Guillerm-Erckelboudt, A.-Y.; Sarniguet, A.; Manzanares-Dauleux, M.J.; Lebreton, L.; Mougel, C. Soil Microbiota Influences Clubroot Disease by Modulating Plasmodiophora brassicae and Brassica napus Transcriptomes. Microb. Biotechnol. 2020, 13, 1648–1672. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Z.; Tian, B.; Bi, K.; Chen, T.; Liu, H.; Xie, J.; Cheng, J.; Fu, Y.; Jiang, D. Endosphere Microbiome Comparison between Symptomatic and Asymptomatic Roots of Brassica napus Infected with Plasmodiophora brassicae. PLoS ONE 2017, 12, e0185907. [Google Scholar] [CrossRef]
- Cordero-Elvia, J.; Galindo-González, L.; Fredua-Agyeman, R.; Hwang, S.F.; Strelkov, S.E. Clubroot-induced changes in the root and rhizosphere microbiome of susceptible and resistant canola. Plants 2024, 13, 1880. [Google Scholar] [CrossRef]
- LeBoldus, J.M.; Manolii, V.P.; Turkington, T.K.; Strelkov, S.E. Adaptation to Brassica Host Genotypes by a Single-Spore Isolate and Population of Plasmodiophora brassicae (Clubroot). Plant Dis. 2012, 96, 833–838. [Google Scholar] [CrossRef]
- Tanaka, S.; Ito, S. Pathogenic and Genetic Diversity in Plasmodiophora brassicae (Clubroot) from Japan. J. Gen. Plant Pathol. 2013, 79, 297–306. [Google Scholar] [CrossRef]
- Hwang, S.F.; Strelkov, S.E.; Ahmed, H.U.; Manolii, V.P.; Zhou, Q.; Fu, H.; Turnbull, G.; Fredua-Agyeman, R.; Feindel, D. Virulence and Inoculum Density-dependent Interactions between Clubroot Resistant Canola (Brassica napus) and Plasmodiophora brassicae. Plant Pathol. 2017, 66, 1318–1328. [Google Scholar] [CrossRef]
- Dunfield, K.E.; Germida, J.J. Seasonal Changes in the Rhizosphere Microbial Communities Associated with Field-Grown Genetically Modified Canola (Brassica napus). Appl. Environ. Microbiol. 2003, 69, 7310–7318. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.-J.; Kong, H.G.; Choi, K.; Kwon, S.-K.; Song, J.Y.; Lee, J.; Lee, P.A.; Choi, S.Y.; Seo, M.; Lee, H.J.; et al. Rhizosphere Microbiome Structure Alters to Enable Wilt Resistance in Tomato. Nat. Biotechnol. 2018, 36, 1100–1109. [Google Scholar] [CrossRef]
- Siciliano, S.D.; Theoret, C.M.; de Freitas, J.R.; Hucl, P.J.; Germida, J.J. Differences in the Microbial Communities Associated with the Roots of Different Cultivars of Canola and Wheat. Can. J. Microbiol. 1998, 44, 844–851. [Google Scholar] [CrossRef]
- Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in Bacterial Communities along the 2000 Km Salinity Gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef]
- Manter, D.K.; Vivanco, J.M. Use of the ITS Primers, ITS1F and ITS4, to Characterize Fungal Abundance and Diversity in Mixed-Template Samples by qPCR and Length Heterogeneity Analysis. J. Microbiol. Methods 2007, 71, 7–14. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- QIIME 2 Documentation (2022.8). Tutorials: Atacama Soil Microbiome. Available online: https://docs.qiime2.org/2022.8/tutorials/ (accessed on 4 June 2024).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H. Package “Lme4”: Linear Mixed-Effects Models Using ‘Eigen’ and S4. Version 1.1-37. 2025. Available online: https://cran.r-project.org/web/packages/lme4/index.html (accessed on 16 October 2024).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P.; Heiberger, R.M.; Schuetzenmeister, A.; Scheibe, S. Package “Multcomp”: Simultaneous Inference in General Parametric Models. Version. 1.4-28. 2025. Available online: https://cran.r-project.org/web/packages/multcomp/index.html (accessed on 16 October 2024).
- Anderson, M.J.; Willis, T.J. Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology. Ecology 2003, 84, 511–525. [Google Scholar] [CrossRef]
- Lin, H.; Peddada, S.D. Analysis of Compositions of Microbiomes with Bias Correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef]
- Zhou, Q. Comparative Transcriptome Analysis of Rutabaga (Brassica napus) Cultivars in Response to Plasmodiophora brassicae. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2020. Available online: https://era.library.ualberta.ca/items/6ec878a1-5585-46b4-a75d-b3092e4a7589 (accessed on 21 November 2024).
- Kuginuki, Y.; Yoshikawa, H.; Hirai, M. Variation in Virulence of Plasmodiophora brassicae in Japan Tested with Clubroot-Resistant Cultivars of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis). Eur. J. Plant Pathol. 1999, 105, 327–332. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.-F. Clubroot in the Canadian Canola Crop: 10 Years into the Outbreak. Can. J. Plant Pathol. 2014, 36, 27–36. [Google Scholar] [CrossRef]
- Rybakova, D.; Mancinelli, R.; Wikström, M.; Birch-Jensen, A.S.; Postma, J.; Ehlers, R.U.; Goertz, S.; Berg, G. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome 2017, 5, 104. [Google Scholar] [CrossRef] [PubMed]
- Simonin, M.; Briand, M.; Chesneau, G.; Rochefort, A.; Marais, C.; Sarniguet, A.; Barret, M. Seed Microbiota Revealed by a Large-Scale Meta-Analysis Including 50 Plant Species. New Phytol. 2022, 234, 1448–1463. [Google Scholar] [CrossRef]
- Bardin, S.D.; Huang, H.C.; Liu, L.; Yanke, L.J. Control by microbial seed treatment of dampingoff caused by Pythium sp. on canola, safflower, dry pea, and sugar beet. Can. J. Plant Pathol. 2003, 25, 268–275. [Google Scholar] [CrossRef]
- Hu, X.; Roberts, D.P.; Xie, L.; Yu, C.; Li, Y.; Qin, L.; Hu, L.; Zhang, Y.; Liao, X. Biological Control of Sclerotinia Disease by Aspergillus sp. on Oilseed Rape in the Field. Biocontrol Sci. Technol. 2016, 26, 1526–1537. [Google Scholar] [CrossRef]
- Shade, A.; Jacques, M.A.; Barret, M. Ecological Patterns of Seed Microbiome Diversity, Transmission, and Assembly. Curr. Opin. Microbiol. 2017, 37, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, R.; Gao, J.; Li, F.; Huang, G.; Huo, G.; Liu, Z.; Tang, W.; Shen, G. Analysis of The Structure of Bacterial and Fungal Communities in Disease Suppressive and Disease Conducive Tobacco-Planting Soils in China. Soil Res. 2019, 58, 35–40. [Google Scholar] [CrossRef]
- Berg, G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef]
- Peng, G.; Mcgregor, L.; Lahlali, R.; Gossen, B.D.; Hwang, S.F.; Adhikari, K.K.; Strelkov, S.E.; Mcdonald, M.R. Potential Biological Control of Clubroot on Canola and Crucifer Vegetable Crops. Plant Pathol. 2011, 60, 566–574. [Google Scholar] [CrossRef]
- Zhu, M.; He, Y.; Li, Y.; Ren, T.; Liu, H.; Huang, J.; Jiang, D.; Hsiang, T.; Zheng, L. Two New Biocontrol Agents Against Clubroot Caused by Plasmodiophora brassicae. Front. Microbiol. 2020, 10, 3099. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Q.; Strelkov, S.E.; Hwang, S.-F. Genetic Diversity and Aggressiveness of Fusarium spp. Isolated from Canola in Alberta, Canada. Plant Dis. 2014, 98, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Guo, Y.; Yang, H.; Li, S.; Zhang, Y.; Gao, C.; Wei, T.; Hao, L. Distinct Microbiota Assembly and Functional Patterns in Disease-Resistant and Susceptible Varieties of Tobacco. Front. Microbiol. 2024, 15, 1361883. [Google Scholar] [CrossRef] [PubMed]
- Garbeva, P.V.; Van Veen, J.A.; Van Elsas, J.D. Microbial Diversity in Soil: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, M.; Dong, W.; Xu, P.; Zheng, Y.; Yang, W.; Luo, Y.; Guo, J.; Niu, D.; Yu, Y.; et al. Plant Disease Resistance-Related Pathways Recruit Beneficial Bacteria by Remodeling Root Exudates Upon Bacillus Cereus AR156 Treatment. Microbiol. Spectr. 2023, 11, e03611-22. [Google Scholar] [CrossRef] [PubMed]
- Farina, R.; Beneduzi, A.; Ambrosini, A.; de Campos, S.B.; Lisboa, B.B.; Wendisch, V.; Vargas, L.K.; Passaglia, L.M.P. Diversity of Plant Growth-Promoting Rhizobacteria Communities Associated with the Stages of Canola Growth. Appl. Soil Ecol. 2012, 55, 44–52. [Google Scholar] [CrossRef]
- Gkarmiri, K.; Mahmood, S.; Ekblad, A.; Alström, S.; Högberg, N.; Finlay, R. Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape. Appl. Environ. Microbiol. 2017, 83, e01938-17. [Google Scholar] [CrossRef]
- Lay, C.-Y.; Bell, T.H.; Hamel, C.; Harker, K.N.; Mohr, R.; Greer, C.W.; Yergeau, É.; St-Arnaud, M. Canola Root-Associated Microbiomes in the Canadian Prairies. Front. Microbiol. 2018, 9, 1188. [Google Scholar] [CrossRef]
- Cordero-Elvia, J.; de Freitas, J.R.; Germida, J.J. Bacterial Microbiome Associated with the Rhizosphere and Root Interior of Crops in Saskatchewan, Canada. Can. J. Microbiol. 2020, 66, 71–85. [Google Scholar] [CrossRef]
- Cordero-Elvia, J.; de Freitas, J.R.; Germida, J.J. Bacterial Microbiomes Associated with the Rhizosphere, Root Interior, and Aboveground Plant Organs of Wheat and Canola at Different Growth Stages. Phytobiomes J. 2021, 5, 442–451. [Google Scholar] [CrossRef]
- Kaiser, O.; Pühler, A.; Selbitschka, W. Phylogenetic Analysis of Microbial Diversity in the Rhizoplane of Oilseed Rape (Brassica napus Cv. Westar) Employing Cultivation-Dependent and Cultivation-Independent Approaches. Microb. Ecol. 2001, 42, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Hilton, S.; Picot, E.; Schreiter, S.; Bass, D.; Norman, K.; Oliver, A.E.; Moore, J.D.; Mauchline, T.H.; Mills, P.R.; Teakle, G.R.; et al. Identification of Microbial Signatures Linked to Oilseed Rape Yield Decline at the Landscape Scale. Microbiome 2021, 9, 19. [Google Scholar] [CrossRef]
- Wassermann, B.; Cernava, T.; Goertz, S.; Zur, J.; Rietz, S.; Kögl, I.; Abbadi, A.; Berg, G. Low Nitrogen Fertilization Enriches Nitrogen-Fixing Bacteria in the Brassica Seed Microbiome of Subsequent Generations. J. Sustain. Agric. Environ. 2023, 2, 87–98. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Hansen, J.C.; Schillinger, W.F.; Sullivan, T.S.; Paulitz, T.C. Common and Unique Rhizosphere Microbial Communities of Wheat and Canola in a Semiarid Mediterranean Environment. Appl. Soil Ecol. 2019, 144, 170–181. [Google Scholar] [CrossRef]
- Floc’h, J.-B.; Hamel, C.; Harker, K.N.; St-Arnaud, M. Fungal Communities of the Canola Rhizosphere: Keystone Species and Substantial Between-Year Variation of the Rhizosphere Microbiome. Microb. Ecol. 2020, 80, 762–777. [Google Scholar] [CrossRef]
- Town, J.R.; Dumonceaux, T.; Tidemann, B.; Helgason, B.L. Crop Rotation Significantly Influences the Composition of Soil, Rhizosphere, and Root Microbiota in Canola (Brassica napus L.). Environ. Microbiome 2023, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, D.; Trost, E.; Mayer, K.F.; Vlot, A.C.; Heller, W.; Schmid, M.; Hartmann, A.; Rothballer, M. Systemic Responses of Barley to the 3-Hydroxy-Decanoyl-Homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35. Front. Plant Sci. 2016, 7, 1868. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tang, J.; Liu, C.; Liu, X.; Luo, Z.; Zou, D.; Xiang, G.; Bai, J.; Meng, G.; Liu, X.; et al. Alleviation of Metal Stress in Rape Seedlings (Brassica napus L.) Using The Antimony-Resistant Plant Growth-Promoting Rhizobacteria Cupriavidus sp. S-8-2. Sci. Total Environ. 2023, 858, 159955. [Google Scholar] [CrossRef] [PubMed]
- Belimov, A.A.; Safronova, V.I.; Sergeyeva, T.A.; Egorova, T.N.; Matveyeva, V.A.; Tsyganov, V.E.; Borisov, A.Y.; Tikhonovich, I.A.; Kluge, C.; Preisfeld, A. Characterization of Plant Growth Promoting Rhizobacteria Isolated from Polluted Soils and Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. Can. J. Microbiol. 2001, 47, 642–652. [Google Scholar] [CrossRef]
- Walitang, D.I.; Kim, K.; Madhaiyan, M.; Kim, Y.K.; Kang, Y.; Sa, T. Characterizing Endophytic Competence and Plant Growth Promotion of Bacterial Endophytes Inhabiting the Seed Endosphere of Rice. BMC Microbiol. 2017, 17, 209. [Google Scholar] [CrossRef]
- Vergani, L.; Mapelli, F.; Suman, J.; Cajthaml, T.; Uhlik, O.; Borin, S. Novel PCB-Degrading Rhodococcus Strains Able to Promote Plant Growth for Assisted Rhizoremediation of Historically Polluted Soils. PLoS ONE 2019, 14, e0221253. [Google Scholar] [CrossRef]
- Mayerhofer, J.; Thuerig, B.; Oberhaensli, T.; Enderle, E.; Lutz, S.; Ahrens, C.H.; Fuchs, J.G.; Widmer, F. Indicative Bacterial Communities and Taxa of Disease-Suppressing and Growth-Promoting Composts and Their Associations to the Rhizoplane. FEMS Microbiol. Ecol. 2021, 97, fiab134. [Google Scholar] [CrossRef]
- Yang, F.; Abdelnabby, H.; Xiao, Y. A Mutant of The Nematophagous Fungus Paecilomyces lilacinus (Thom) is a Novel Biocontrol Agent for Sclerotinia sclerotiorum. Microb. Pathog. 2015, 89, 169–176. [Google Scholar] [CrossRef]
- Hu, X.; Roberts, D.P.; Xie, L.; Qin, L.; Li, Y.; Liao, X.; Liao, X. Seed treatment containing Bacillus subtilis BY-2 in combination with other Bacillus isolates for control of Sclerotinia sclerotiorum on oilseed rape. Biol. Control. 2019, 133, 50–57. [Google Scholar] [CrossRef]
- Hilber-Bodmer, M.; Schmid, M.; Ahrens, C.H.; Freimoser, F.M. Competition Assays and Physiological Experiments of Soil and Phyllosphere Yeasts Identify Candida subhashii as a Novel Antagonist of Filamentous Fungi. BMC Microbiol. 2017, 17, 4. [Google Scholar] [CrossRef]
- Vandepol, N.; Liber, J.; Yocca, A.; Matlock, J.; Edger, P.; Bonito, G. Linnemannia elongata (Mortierellaceae) Stimulates Arabidopsis thaliana Aerial Growth and Responses to Auxin, Ethylene, and Reactive Oxygen Species. PLoS ONE 2022, 17, e0261908. [Google Scholar] [CrossRef] [PubMed]
- Mueller, U.G.; Linksvayer, T.A. Microbiome Breeding: Conceptual and Practical Issues. Trends Microbiol. 2022, 30, 997–1011. [Google Scholar] [CrossRef] [PubMed]
Factors | Bacteria | Fungi |
---|---|---|
Canola line | 0.78 | 0.001 |
Clubroot susceptibility | 0.087 | 0.001 |
Bacteria | Fungi | |||
---|---|---|---|---|
Factors | Rhizosphere | Root | Rhizosphere | Root |
Clubroot susceptibility | 0.0001 | 0.7048 | 0.0001 | 0.0174 |
P. brassicae inoculation | 0.1822 | 0.5149 | 0.3930 | 0.0184 |
Time | 0.8292 | 0.0479 | 0.3269 | 0.9111 |
Clubroot susceptibility ×P. brassicae inoculation | 0.5280 | 0.5343 | 0.9333 | 0.7022 |
Clubroot susceptibility × Time | 0.6919 | 0.0041 | 0.0182 | 0.4426 |
P. brassicae inoculation × Time | 0.5929 | 0.6931 | 0.9443 | 0.8596 |
P. brassicae inoculation × Clubroot susceptibility × Time | 0.7388 | 0.8689 | 0.8132 | 0.9735 |
Compared to RC | Compared to SC | |||
Rhizosphere 7 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Acidibrevibacterium fodinaquatile | −0.78 | 0 | n.s. | n.s. |
Bacillus badius | −1.02 | 0 | n.s. | n.s. |
Chryseobacterium limigenitum | −1.11 | 0 | −1.18 | 0 |
Edaphobacter flagellatus | −0.9 | 0 | −1.09 | 0 |
Flavobacterium panaciterrae | −0.97 | 0 | n.s. | n.s. |
Fluviicola taffensis | −1.14 | 0 | −1.69 | 0 |
Methylotenera mobilis | −1.52 | 0 | −1.74 | 0 |
Rhizosphere 21 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Nordella oligomobilis | n.s. | n.s. | −1.34 | 0 |
Oligoflexus tunisiensis | −1.4 | 0 | −1.57 | 0 |
Pedobacter panaciterrae | n.s. | n.s. | −1.3 | 0 |
Peredibacter starrii | −1.5 | 0 | −1.47 | 0 |
Risungbinella massiliensis | −1.12 | 0 | −1.14 | 0 |
Staphylococcus capitis | −1.17 | 0 | n.s. | n.s. |
Undibacter mobilis | −1.18 | 0 | −1.36 | 0 |
Ureibacillus thermophilus | −1.04 | 0 | n.s. | n.s. |
Rhizosphere 35 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Rhodococcus globerulus | −1.51 | 0 | n.s. | n.s. |
Williamsia faeni | n.s. | n.s. | −1.13 | 0 |
Compared to RC | Compared to SC | |||
Root 7 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Cellvibrio fibrivorans | −2.24 (*) | −2.16 | n.s. | n.s. |
Cupriavidus agavae | −2.14 (*) | 0 | −2.22 (*) | −2.47 |
Ferruginibacter lapsinanis | n.s. | n.s. | −1.22 | 0 |
Root 21 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Acidovorax facilis | −1.86 (*) | −1.36 | n.s. | n.s. |
Cellvibrio fibrivorans | n.s. | n.s. | −1.86 (*) | −1.89 |
Cellvibrio gandavensis | n.s. | n.s. | −1.86 | −1.84 |
Corallococcus macrosporus | −2.35 | 0 | n.s. | n.s. |
Cytophaga hutchinsonii | n.s. | n.s. | −2.18 | −1.67 |
Duganella flavida | −2.03 | −1.87 | −2.18 | −1.46 |
Fluviicola kyonggii | −1.75 | 0 | n.s. | n.s. |
Longitalea arenae | n.s. | n.s. | −1.05 | 0 |
Ralstonia solanacearum | n.s. | n.s. | −1.32 | 0 |
Roseateles saccharophilus | n.s. | n.s. | −1.4 | 0 |
Uliginosibacterium sediminicola | −1.8 | −1.38 | n.s. | n.s. |
Root 35 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Acidovorax facilis | −2.04 (*) | 0 | −2.14 | −1.35 |
Crocinitomix algicola | n.s. | n.s. | −1.68 | 0 |
Cupriavidus agavae | −1.8 (*) | 0 | −1.9 (*) | 0 |
Dechloromonas denitrificans | −2.44 | 0 | −2.13 | 0 |
Flavobacterium panaciterrae | −1.62 | 0 | n.s. | n.s. |
Herpetosiphon aurantiacus | n.s. | n.s. | −1.16 | 0 |
Luteimonas notoginsengisoli | n.s. | n.s. | −1.07 | −1.05 |
Compared to RC | Compared to SC | |||
Rhizosphere 7 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Aspergillus luteorubrus | −2.14 (*) | 0 | −2.25 (*) | 0 |
Paecilomyces penicilliformis | −2.11 (*) | 0 | −2.22 | 0 |
Rhizosphere 21 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Aspergillus luteorubrus | −1.34 (*) | 0 | n.s. | n.s. |
Paecilomyces penicilliformis | −1.83 (*) | 0 | −1.51 | 0 |
Phialemonium obovatum | n.s. | n.s. | −2.01 | 0 |
Pseudogeomyces hebridensis | n.s. | n.s. | −2.03 | 0 |
Terfezia pseudoleptoderma | −1.89 | 0 | n.s. | n.s. |
Rhizosphere 35 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Alternaria alstroemeriae | −2.48 | 0 | −2.52 | 0 |
Arachnomyces peruvianus | −1.55 | 0 | n.s. | n.s. |
Candida subhashii | −2.18 | 0 | n.s. | n.s. |
Leohumicola minima | −1.4 | 0 | n.s. | n.s. |
Oidiodendron eucalypti | −1.52 | 0 | n.s. | n.s. |
Compared to RC | Compared to SC | |||
Root 7 dai | SI−RI | RI−RC | SI−RI | SI−SC |
Olpidium brassicae | −2.78 | 0 | 0 | 0 |
Rhizophlyctis rosea | −3.39 | 0 | −3.4 | 0 |
Root 21 dai | SI−RI | RI−RC | SI − RI | SI−SC |
Linnemannia fatshederae | −1.48 | 0 | n.s. | n.s. |
Linnemannia hyalina | −2.42 | 0 | −1.79 | 0 |
Mortierella globalpina | −1.73 | 0 | n.s. | n.s. |
Root 35DAI | SI−RI | RI−RC | SI−RI | SI−SC |
Fusicolla aquaeductuum | −2.14 | 0 | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordero-Elvia, J.; Galindo-González, L.; Fredua-Agyeman, R.; Hwang, S.-F.; Strelkov, S.E. Impact of Plasmodiophora brassicae on Canola Root and Rhizosphere Microbiomes and Its Implications for Clubroot Biocontrol. Pathogens 2025, 14, 904. https://doi.org/10.3390/pathogens14090904
Cordero-Elvia J, Galindo-González L, Fredua-Agyeman R, Hwang S-F, Strelkov SE. Impact of Plasmodiophora brassicae on Canola Root and Rhizosphere Microbiomes and Its Implications for Clubroot Biocontrol. Pathogens. 2025; 14(9):904. https://doi.org/10.3390/pathogens14090904
Chicago/Turabian StyleCordero-Elvia, Jorge, Leonardo Galindo-González, Rudolph Fredua-Agyeman, Sheau-Fang Hwang, and Stephen E. Strelkov. 2025. "Impact of Plasmodiophora brassicae on Canola Root and Rhizosphere Microbiomes and Its Implications for Clubroot Biocontrol" Pathogens 14, no. 9: 904. https://doi.org/10.3390/pathogens14090904
APA StyleCordero-Elvia, J., Galindo-González, L., Fredua-Agyeman, R., Hwang, S.-F., & Strelkov, S. E. (2025). Impact of Plasmodiophora brassicae on Canola Root and Rhizosphere Microbiomes and Its Implications for Clubroot Biocontrol. Pathogens, 14(9), 904. https://doi.org/10.3390/pathogens14090904