Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Antibiotic Resistance Phenotypes of E. coli Isolates
3.2. Antibiotic Resistance Genes of E. coli Isolates
3.3. Mobile Genetic Elements (Plasmids and Phages) of E. coli Isolates
3.4. Heatmap Clustering and Phylogenetic Analysis of the Examined E. coli Isolates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Painter, J.; Hoekstra, R.; Ayers, T.; Tauxe, R.; Braden, C.; Angulo, F.; Griffin, P. Attribution of Foodborne Illnesses, Hospitalizations, and Deaths to Food Commodities by using Outbreak Data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407–415. [Google Scholar] [CrossRef] [PubMed]
- CDC. Surveillance for Foodborne Disease Outbreaks, United States, 2017, Annual Report; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/fdoss/pdf/2017_FoodBorneOutbreaks_508.pdf (accessed on 3 April 2025).
- FDA. Guidance for Industry #263, "Recommendations for Sponsors of Medically Important Antimicrobial Drugs Approved for Use in Animals to Voluntarily Bring Under Veterinary Oversight All Products That Continue to be Available Over-the-Counter"; Food and Drug Administration (FDA): Rockville, MD, USA, 2021.
- Page, E.T.; Short, G.; Sneeringer, S.; Bowman, M. The Market for Chicken Raised Without Antibiotics, 2012–17; EIB-224; U.S. Department of Agriculture, Economic Research: Washington, DC, USA, 2021.
- Cho, S.; Hiott, L.M.; Barrett, J.B.; McMillan, E.A.; House, S.L.; Humayoun, S.B.; Adams, E.S.; Jackson, C.R.; Frye, J.G. Prevalence and characterization of Escherichia coli isolated from the Upper Oconee Watershed in Northeast Georgia. PLoS ONE 2018, 13, e0197005. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, K.; Sampers, I.; Callens, B.; Dewulf, J.; Uyttendaele, M. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl. Environ. Microbiol. 2013, 79, 6677–6683. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2019. [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2013; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2013. Available online: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/ar-threats-2013-508.pdf (accessed on 3 April 2025).
- Gekenidis, M.T.; Kläui, A.; Smalla, K.; Drissner, D. Transferable Extended-Spectrum β-Lactamase (ESBL) Plasmids in Enterobacteriaceae from Irrigation Water. Microorganisms 2020, 8, 978. [Google Scholar] [CrossRef] [PubMed]
- Dorr, M.; Silver, A.; Smurlick, D.; Arukha, A.; Kariyawasam, S.; Oladeinde, A.; Cook, K.; Denagamage, T. Transferability of ESBL-encoding IncN and IncI1 plasmids among field strains of different Salmonella serovars and Escherichia coli. J. Glob. Antimicrob. Resist. 2022, 30, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, K.; Malekzadah, J.; Malorny, B.; Käsbohrer, A.; Schwarz, S.; Meemken, D.; Hammerl, J.A. Characterization of qnrB-carrying plasmids from ESBL- and non-ESBL-producing Escherichia coli. BMC Genom. 2022, 23, 365. [Google Scholar] [CrossRef] [PubMed]
- Poole, T.L.; Callaway, T.R.; Norman, K.N.; Scott, H.M.; Loneragan, G.H.; Ison, S.A.; Beier, R.C.; Harhay, D.M.; Norby, B.; Nisbet, D.J. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients. J. Glob. Antimicrob. Resist. 2017, 11, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Card, R.M.; Cawthraw, S.A.; Nunez-Garcia, J.; Ellis, R.J.; Kay, G.; Pallen, M.J.; Woodward, M.J.; Anjum, M.F. An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli. mBio 2017, 8, e00777-17. [Google Scholar] [CrossRef] [PubMed]
- Dobrindt, U.; Chowdary, M.G.; Krumbholz, G.; Hacker, J. Genome dynamics and its impact on evolution of Escherichia coli. Med. Microbiol. Immunol. 2010, 199, 145–154. [Google Scholar] [CrossRef] [PubMed]
- CLSL. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2020. [Google Scholar]
- FDA. National Antimicrobial Resistance Monitoring System–Enteric Bacteria (NARMS): 2011 Executive Report; Food and Drug Administration (FDA): Rockville, MD, USA, 2013. Available online: https://www.fda.gov/media/89149/download?attachment (accessed on 3 April 2025).
- Coil, D.; Jospin, G.; Darling, A.E. A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2014, 31, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A Fast Phage Search Tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Charlesworth, J.; Achtman, M. HierCC: A multi-level clustering scheme for population assignments based on core genome MLST. Bioinformatics 2021, 37, 3645–3646. [Google Scholar] [CrossRef] [PubMed]
- Waters, N.R.; Abram, F.; Brennan, F.; Holmes, A.; Pritchard, L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol. 2020, 2, acmi000143. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum beta-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M.; Hasman, H.; Veldman, K.; Mevius, D. Evaluation of eight different cephalosporins for detection of cephalosporin resistance in Salmonella enterica and Escherichia coli. Microb. Drug Resist. 2010, 16, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Kiet, B.T.; Nhung, N.T.; Yen, N.T.P.; Phu, D.H.; Dung, N.T.T.; Yen, L.K.; Thu, H.T.V.; Carrique-Mas, J.J. Impact of Freeze Storage on the Estimation of Phenotypic Antimicrobial Resistance Prevalence in Escherichia coli Collected from Faecal Samples from Healthy Humans and Chickens. Antibiotics 2022, 11, 1643. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Abbott, A.N.; Hindler, J.A. Understanding and Addressing CLSI Breakpoint Revisions: A Primer for Clinical Laboratories. J. Clin. Microbiol. 2019, 57, e00203-19. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Bibi, E. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol. 1997, 179, 2274–2280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lin, R.; Zhou, Z.; Ma, J.; Lin, H.; Zheng, X.; Wang, J.; Wu, J.; Dong, Y.; Jiang, H.; et al. Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China. Front. Microbiol. 2022, 13, 1018682. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Potter, R.F.; Ferreiro, A.; Wallace, M.A.; Rahim, A.; Ali Malik, A.; Siddique, N.; Abbas, M.A.; D’Souza, A.W.; Burnham, C.-A.D.; et al. Genomic Characterization of Antibiotic Resistant Escherichia coli Isolated From Domestic Chickens in Pakistan. Front. Microbiol. 2020, 10, 3052. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Rehman, M.A.; Yin, X.; Carrillo, C.D.; Wang, Q.; Yang, C.; Gong, J.; Diarra, M.S. Antimicrobial Resistance Phenotypes and Genotypes of Escherichia coli Isolates from Broiler Chickens Fed Encapsulated Cinnamaldehyde and Citral. J. Food Prot. 2021, 84, 1385–1399. [Google Scholar] [CrossRef] [PubMed]
- Racewicz, P.; Majewski, M.; Biesiada, H.; Nowaczewski, S.; Wilczyński, J.; Wystalska, D.; Kubiak, M.; Pszczoła, M.; Madeja, Z.E. Prevalence and characterisation of antimicrobial resistance genes and class 1 and 2 integrons in multiresistant Escherichia coli isolated from poultry production. Sci. Rep. 2022, 12, 6062. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Husna, A.; Elshabrawy, H.A.; Alam, J.; Runa, N.Y.; Badruzzaman, A.T.M.; Banu, N.A.; Al Mamun, M.; Paul, B.; Das, S.; et al. Isolation and molecular characterization of multidrug-resistant Escherichia coli from chicken meat. Sci. Rep. 2020, 10, 21999. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, I.; Willemsen, I.; Rijnsburger, M.; Eustace, A.; Xu, L.; Hawkey, P.; Heck, M.; Savelkoul, P.; Vandenbroucke-Grauls, C.; van der Zwaluw, K.; et al. Extended-Spectrum β-Lactamase Genes of Escherichia coli in Chicken Meat and Humans, the Netherlands. Emerg. Infect. Dis. 2011, 17, 1216. [Google Scholar] [CrossRef] [PubMed]
- Robicsek, A.; Strahilevitz, J.; Jacoby, G.A.; Macielag, M.; Abbanat, D.; Hye Park, C.; Bush, K.; Hooper, D.C. Fluoroquinolone-modifying enzyme: A new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 2006, 12, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Frye, J.G.; Jackson, C.R. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 2013, 4, 135. [Google Scholar] [CrossRef] [PubMed]
- Varma, J.K.; Molbak, K.; Barrett, T.J.; Beebe, J.L.; Jones, T.F.; Rabatsky-Ehr, T.; Smith, K.E.; Vugia, D.J.; Chang, H.G.; Angulo, F.J. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations. J. Infect. Dis. 2005, 191, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Aworh, M.K.; Kwaga, J.K.P.; Hendriksen, R.S.; Okolocha, E.C.; Thakur, S. Genetic relatedness of multidrug resistant Escherichia coli isolated from humans, chickens and poultry environments. Antimicrob. Resist. Infect. Control 2021, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.R.; do Valle Barroso, M.; Gozi, K.S.; Fontana, H.; Nogueira, M.C.L.; Lincopan, N.; Casella, T. Genomic analysis of Escherichia coli circulating in the Brazilian poultry sector. Braz J. Microbiol. 2022, 53, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Ma, Y.; He, X.; Zhou, Q.; Chang, J.; Qian, M.; Xia, X.; Yang, H. Similar Antimicrobial Resistance of Escherichia coli Strains Isolated from Retail Chickens and Poultry Farms. Foodborne Pathog. Dis. 2021, 18, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Sharma, P.; McMillan, E.A.; Jackson, C.R.; Hiott, L.M.; Woodley, T.; Humayoun, S.B.; Barrett, J.B.; Frye, J.G.; McClelland, M. Genomic comparison of diverse Salmonella serovars isolated from swine. PLoS ONE 2019, 14, e0224518. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rubio, L.; Haarmann, N.; Schwidder, M.; Muniesa, M.; Schmidt, H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- FDA. New animal drugs; cephalosporin drugs; extralabel animal drug use; order of prohibition. Fed. Regist. 2012, 77, 735–745. [Google Scholar]
- FDA. Guidance for Industry #209, "The Judicious Use of Medically Important Antimicrobial Drugs in Food-Producing Animals"; Food and Drug Administration (FDA): Rockville, MD, USA, 2012.
Antibiotic Resistance Phenotype Pattern * | No. of Resistance (Drug) | No. of Resistance (Class) | No. of Isolates |
---|---|---|---|
Pan-susceptible | 0 | 0 | 1 |
Nal | 1 | 1 | 1 |
Str | 1 | 1 | 1 |
Tet | 1 | 1 | 1 |
AmpCipNal | 3 | 2 | 1 |
CipGenNal | 3 | 2 | 4 |
CipNalStr | 3 | 2 | 2 |
GenStrFis | 3 | 2 | 1 |
AugAmpFoxAxo | 4 | 1 | 13 |
AmpCipNalStr | 4 | 3 | 3 |
CipGenNalTet | 4 | 3 | 12 |
GenStrFisTet | 4 | 3 | 1 |
AugAmpFoxAxoNal | 5 | 2 | 1 |
AugAmpFoxAxoStr | 5 | 2 | 4 |
AugAmpFoxAxoFis | 5 | 2 | 1 |
AugAmpFoxAxoTet | 5 | 2 | 6 |
CipGenNalStrTet | 5 | 3 | 3 |
CipGenNalFisTet | 5 | 4 | 1 |
CipNalStrFisTet | 5 | 4 | 2 |
GenNalStrFisTet | 5 | 4 | 2 |
AugAmpFoxAxoStrTet | 6 | 3 | 4 |
AmpCipGenNalStrTet | 6 | 4 | 1 |
AziCipGenNalFisSxt | 6 | 4 | 1 |
AugAmpFoxAxoCipNalFis | 7 | 3 | 1 |
AugAmpFoxAxoGenStrFis | 7 | 4 | 3 |
AugAmpFoxAxoStrFisTet | 7 | 4 | 3 |
AmpAziGenStrFisTetSxt | 7 | 5 | 5 |
AmpChlCipNalFisTetSxt | 7 | 5 | 1 |
AmpCipNalStrFisTetSxt | 7 | 5 | 2 |
ChlCipGenNalFisTetSxt | 7 | 5 | 1 |
AugAmpFoxAxoChlStrFisTet | 8 | 5 | 1 |
AugAmpFoxAxoGenStrFisTet | 8 | 4 | 4 |
AugAmpFoxAxoStrFisTetSxt | 8 | 4 | 1 |
AmpCipGenNalStrFisTetSxt | 8 | 5 | 4 |
AugAmpFoxAxoChlGenStrFisTet | 9 | 5 | 2 |
AugAmpFoxAxoGenStrFisTetSxt | 9 | 4 | 2 |
AugAmpFoxAxoCipGenNalStrFisTet | 10 | 5 | 1 |
AugAmpFoxAxoChlCipNalStrFisTetSxt | 11 | 6 | 1 |
AugAmpAziFoxAxoChlCipGenNalStrFisTetSxt | 13 | 7 | 1 |
Antibiotics | Minimum Inhibitory Concentrations (mg/mL) * | |||||||
---|---|---|---|---|---|---|---|---|
CRIS-Ec57 | CRIS-Ec58 | CRIS-Ec63 | CRIS-Ec82 | |||||
Original | Retested | Original | Retested | Original | Retested | Original | Retested | |
amoxicillin/clavulanic acid | 32 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
ampicillin | >32 | 4 | 4 | 4 | 2 | 2 | 2 | 4 |
azithromycin | N/A | 4 | N/A | 4 | N/A | 2 | N/A | 2 |
cefoxitin | >32 | 2 | 8 | 4 | 4 | 4 | 8 | 4 |
ceftriaxone | 16 | ≤0.25 | ≤0.25 | ≤0.25 | ≤0.25 | ≤0.25 | ≤0.25 | ≤0.25 |
chloramphenicol | 8 | 8 | 4 | 4 | 8 | 4 | 8 | 4 |
ciprofloxacin | ≤0.015 | ≤0.015 | >4 | ≤0.015 | >4 | ≤0.015 | >4 | >4 |
gentamicin | 0.5 | 0.5 | >16 | ≤0.25 | >16 | >16 | >16 | >16 |
nalidixic acid | 2 | 4 | >32 | 1 | >32 | 2 | >32 | >32 |
streptomycin | 64 | 8 | >64 | 32 | >64 | 64 | ≤32 | 8 |
sulfisoxazole | ≤16 | 32 | ≤16 | 32 | >256 | >256 | 32 | ≤16 |
tetracycline | >32 | >32 | >32 | ≤4 | 32 | ≤4 | >32 | ≤4 |
trimethoprim/sulfamethoxazole | ≤0.12 | ≤0.12 | 1 | ≤0.12 | 1 | 1 | 0.5 | 0.5 |
Phenotypic Resistance To | Amino Acid Substitutions In | No. of Isolates | |||||||
---|---|---|---|---|---|---|---|---|---|
gyrA | parC | parE | |||||||
nalidixic acid | S83L | - | - | - | - | - | I355T | - | 1 |
- | - | D87Y | - | - | - | - | - | 2 | |
S83L | - | - | - | - | - | - | - | 1 | |
ciprofloxacin + nalidixic acid | S83L | - | D87N | S80I | E84G | - | I355T | - | 24 |
S83L | - | D87N | S80I | E84A | - | - | - | 1 | |
S83L | - | D87N | S80I | - | A108T | - | - | 1 | |
S83L | - | D87N | S80I | - | - | I355T | - | 1 | |
S83L | - | D87N | S80I | - | - | - | S458A | 6 | |
S83L | - | D87N | S80I | - | - | - | - | 5 | |
S83L | - | D87N | S80R | - | - | - | - | 1 | |
S83L | - | D87Y | S80I | - | - | - | - | 2 | |
S83L | A84P | - | - | E84K | - | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Ramadan, H.; Hiott, L.M.; Frye, J.G.; Jackson, C.R. Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. Pathogens 2025, 14, 726. https://doi.org/10.3390/pathogens14080726
Cho S, Ramadan H, Hiott LM, Frye JG, Jackson CR. Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. Pathogens. 2025; 14(8):726. https://doi.org/10.3390/pathogens14080726
Chicago/Turabian StyleCho, Sohyun, Hazem Ramadan, Lari M. Hiott, Jonathan G. Frye, and Charlene R. Jackson. 2025. "Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States" Pathogens 14, no. 8: 726. https://doi.org/10.3390/pathogens14080726
APA StyleCho, S., Ramadan, H., Hiott, L. M., Frye, J. G., & Jackson, C. R. (2025). Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States. Pathogens, 14(8), 726. https://doi.org/10.3390/pathogens14080726