Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Sample Processing
4.2. Molecular Examination/Genotyping
4.3. Identification with the Use of MALDI-TOF MS Method
4.4. Susceptibility to Antifungal Drugs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khawcharoenporn, T.; Apisarnthanarak, A.; Mundy, L.M. Non-neoformans cryptococcal infections: A systematic review. Infection 2007, 35, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Hagen, F.; Khayhan, K.; Theelen, B.; Kolecka, A.; Polacheck, I.; Sionov, E.; Falk, R.; Parnmen, S.; Lumbsch, H.T.; Boekhout, T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet. Biol. 2015, 78, 16–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon-Chung, K.J.; Bennett, J.E.; Wickes, B.L.; Meyer, W.; Cuomo, C.A.; Wollenburg, K.R.; Bicanic, T.A.; Castañeda, E.; Chang, Y.C.; Chen, J.; et al. The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere 2017, 2, e00357-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, W.; Aanensen, D.M.; Boekhout, T.; Cogliati, M.; Diaz, M.R.; Esposto, M.C.; Fisher, M.; Gilgado, F.; Hagen, F.; Kaocharoen, S.; et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med. Mycol. 2009, 47, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Farrer, R.A.; Chang, M.; Davis, M.J.; van Dorp, L.; Yang, D.H.; Shea, T.; Sewell, T.R.; Meyer, W.; Balloux, F.; Edwards, H.M.; et al. A new lineage of Cryptococcus gattii (VGV) discovered in the central Zambezian Miombo woodlands. mBio 2019, 10, e02306–e02319. [Google Scholar] [CrossRef] [Green Version]
- Kwon-Chung, K.J. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 1976, 68, 821–833. [Google Scholar] [CrossRef]
- Lin, X.; Hull, C.M.; Heitman, J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 2005, 434, 1017–1021. [Google Scholar] [CrossRef]
- Firacative, C.; Roe, C.C.; Malik, R.; Ferreira-Paim, K.; Escandón, P.; Sykes, J.E.; Castañón-Olivares, L.R.; Contreras-Peres, C.; Samayoa, B.; Sorrell, T.C.; et al. MLST and whole-genome-based population analysis of Cryptococcus gattii VGIII links clinical, veterinary and environmental strains, and reveals divergent serotype specific sub-populations and distant ancestors. PLoS Negl. Trop. Dis. 2016, 10, e0004861. [Google Scholar] [CrossRef] [Green Version]
- Kidd, S.E.; Hagen, F.; Tscharke, R.L.; Huynh, M.; Bartlett, K.H.; Fyfe, M.; Macdougall, L.; Boekhout, T.; Kwon-Chung, K.J.; Meyer, W. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. National. Acad. Sci. USA 2004, 101, 17258–17263. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Randhawa, H.S.; Boekhout, T.; Hagen, F.; Klaassen, C.H.; Meis, J.F. Temperate climate niche for Cryptococcus gattii in Northern Europe. Emerg. Infecti. Dis. 2012, 18, 172–174. [Google Scholar] [CrossRef]
- Kwon-Chung, K.J.; Fraser, J.A.; Doering, T.L.; Wang, Z.A.; Janbon, G.; Idnurm, A.; Bahn, Y.S. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb. Perspec. Med. 2014, 4, a019760. [Google Scholar] [CrossRef] [PubMed]
- Cogliati, M.; D’Amicis, R.; Zani, A.; Montagna, M.T.; Caggiano, G.; De Giglio, O.; Balbino, S.; De Donno, A.; Serio, F.; Susever, S.; et al. Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean Basin. FEMS Yeast Res. 2016, 16, 045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhary, A.; Randhawa, H.S.; Prakash, A.; Meis, J.F. Environmental prevalence of Cryptococcus neoformans and Cryptococcus gattii in India: An update. Crit. Rev. Microbiol. 2012, 38, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Castro e Silva, D.M.; Santos, D.C.S.; Martins, M.A.; Oliveira, L.; Szeszs, M.W.; Melhem, M.S.C. First isolation of Cryptococcus neoformans genotype VNI MAT-alpha from wood inside hollow trunks of Hymenaea courbaril. Med. Mycol. 2016, 54, 97–102. [Google Scholar] [PubMed]
- Ellis, D.H.; Pfeiffer, T.J. Ecology, life cycle, and infectious propagule of Cryptococcus neoformans. Lancet 1990, 336, 923–925. [Google Scholar] [CrossRef]
- Montagna, M.T.; De Donno, A.; Caggiano, G.; Serio, F.; De Giglio, O.; Bagordo, F.; D’Amicis, R.; Lockhart, S.R.; Cogliati, M. Molecular characterization of Cryptococcus neoformans and Cryptococcus gattii from environmental sources and genetic comparison with clinical isolates in Apulia, Italy. Environ. Res. 2018, 160, 347–352. [Google Scholar] [CrossRef]
- Hurst, S.; Lysen, C.; Cooksey, G.; Vugia, D.J.; Litvintseva, A.P.; Lockhart, S.R. Molecular typing of clinical and environmental isolates of Cryptococcus gattii species complex from southern California, United States. Mycoses 2019, 62, 1029–1034. [Google Scholar] [CrossRef]
- Chen, Y.; Litvintseva, A.P.; Frazzitta, A.E.; Haverkamp, M.R.; Wang, L.; Fang, C.; Muthoga, C.; Mitchell, T.G.; Perfect, J.R. Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana. Mol. Ecol. 2015, 24, 3559–3571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvintseva, A.P.; Kestenbaum, L.; Vilgalys, R.; Mitchell, T.G. Comparative analysis of environmental and clinical populations of Cryptococcus neoformans. J. Clin. Microbiol. 2005, 43, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Cogliati, M.; Desnos-Ollivier, M.; McCormick-Smith, I.; Rickerts, V.; Ferreira-Paim, K.; Meyer, W.; Boekhout, T.; Hagen, F.; Theelen, B.; Inácio, J.; et al. Genotypes and population genetics of Cryptococcus neoformans and Cryptococcus gattii species complexes in Europe and the Mediterranean Area. Fungal Genet. Biol. 2019, 129, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Hagen, F.; Colom, M.F.; Swinne, D.; Tintelnot, K.; Iatta, R.; Montagna, M.T.; Torres-Rodriguez, J.M.; Cogliati, M.; Velegraki, A.; Burggraaf, A.; et al. Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg. Infect. Dis. 2012, 18, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Albert, N.; Hodge, G.; Wilson, M.D.; Sykes, J.E.; Bays, D.J.; Firacative, C.; Meyer, W.; Kontoyiannis, D.P. Phenotypic differences of Cryptococcus molecular types and their implications for virulence in a Drosophila model of infection. Infect. Immun. 2014, 82, 3058–3065. [Google Scholar] [CrossRef] [Green Version]
- Torres-Rodriguez, J.M.; Morera, Y.; Baro, T.; Corominas, J.M.; Castaneda, E. Pathogenicity of Cryptococcus neoformans var gattii in an immunocompetent mouse model. Med. Mycol. 2003, 41, 59–63. [Google Scholar]
- Song, G.; Liang, G.; Liu, W. Fungal Co-infections Associated with Global COVID-19 Pandemic: A Clinical and Diagnostic Perspective from China. Mycopathologia 2020, 185, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Florek, M.; Nawrot, U.; Korzeniowska-Kowal, A.; Włodarczyk, K.; Wzorek, A.; Woźniak-Biel, A.; Brzozowska, M.; Galli, J.; Bogucka, A.; Król, J. An Analysis of the Population of Cryptococcus Neoformans Strains Isolated From Animals in Poland, in the Years 2015–2019. Sci. Rep. 2021, 11, 6639. [Google Scholar] [CrossRef] [PubMed]
- Florek, M.; Król, J.; Woźniak-Biel, A. Atypical URA5 gene restriction fragment length polymorphism banding profile in Cryptococcus neoformans strains. Folia Microbiol. 2019, 64, 857–860. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing—EUCAST. Available online: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 4 November 2021).
- Cogliati, M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An atlas of the molecular types. Scientifica 2013, 2013, 675213. [Google Scholar] [CrossRef] [Green Version]
- Maliehe, M.; Ntoi, M.A.; Lahiri, S.; Folorunso, O.S.; Ogundeji, A.O.; Pohl, C.H.; Sebolai, O.M. Environmental factors that contribute to the maintenance of Cryptococcus neoformans pathogenesis. Microorganisms 2020, 8, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pini, G.; Faggi, E.; Campisi, E. Enzymatic characterization of clinical and environmental Cryptococcus neoformans strains isolated in Italy. Rev. Iberoam. De Micol. 2017, 34, 77–82. [Google Scholar] [CrossRef]
- Rizzo, J.; Albuquerque, P.C.; Wolf, J.M.; Nascimento, R.; Pereira, M.D.; Nosanchuk, J.D.; Rodrigues, M.L. Analysis of multiple components involved in the interaction between Cryptococcus neoformans and Acanthamoeba castellanii. Fungal Biol. 2017, 121, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.S.; Liporagi-Lopes, L.C.; dos Santos, S.R.; Tenor, J.L.; Perfect, J.R.; Cuomo, C.A.; Casadevall, A. Amoeba Predation of Cryptococcus neoformans Results in Pleiotropic Changes to Traits Associated with Virulence. mBio 2021, 12, e00567-21. [Google Scholar] [CrossRef] [PubMed]
- Bosch, C.; Toplis, B.; Vreulink, J.M.; Volschenk, H.; Botha, A. Nitrogen concentration affects amphotericin B and fluconazole tolerance of pathogenic cryptococci. FEMS Yeast Res. 2020, 20, foaa010. [Google Scholar] [CrossRef] [PubMed]
- Linares, C.; Colom, M.F.; Torreblanca, M.; Esteban, V.; Romera, Á.; Hagen, F. Environmental sampling of Ceratonia siliqua (carob) trees in Spain reveals the presence of the rare Cryptococcus gattii genotype AFLP7/VGIV. Rev. Iberoam. Micol. 2015, 32, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Romeo, O.; Scordino, F.; Chillemi, V.; Criseo, G. Cryptococcus neoformans/Cryptococcus gattii species complex in Italy: An overview on the environmental diffusion of serotypes, genotypes and mating-types. Mycopathologia 2012, 174, 283–291. [Google Scholar] [CrossRef]
- Pllana-Hajdari, D.; Cogliati, M.; Čičmak, L.; Pleško, S.; Mlinarić-Missoni, E.; Mareković, I. First isolation, antifungal susceptibility, and molecular characterization of Cryptococcus neoformans from the environment in Croatia. J. Fungi. 2019, 5, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.S.; Sampaio, A.; Maduro, A.P.; Silva, I.; Teles, F.; Martins, M.D.L.; Inácio, J. Genotypic diversity of environmental Cryptococcus neoformans isolates from Northern Portugal. Mycoses 2014, 57, 98–104. [Google Scholar] [CrossRef]
- Vasilyeva, N.V.; Bosak, I.A.; Bogomolova, T.S.; Vybornova, I.V. Environmental isolates of Cryptococcus neoformans in Saint Petersburg, Russia. Mycoses 2009, 52, 54–55. [Google Scholar]
- Wójcik, A.; Błaszkowska, J.; Kurnatowski, P.; Góralska, K. Sandpits as a reservoir of potentially pathogenic fungi for children. Ann. Agric. Environ. Med. 2016, 23, 542–548. [Google Scholar] [CrossRef]
- Wójcik, A.; Kurnatowski, P.; Błaszkowska, J. Potentially pathogenic yeasts from soil of children’s recreational areas in the city of Łódź (Poland). Int. J. Occup. Med. Environ. Health 2013, 26, 477–487. [Google Scholar] [CrossRef]
- Kurnatowski, P.; Rózga, A.; Rózga, B.; Babski, P.; Wójcik, A. Potentially pathogenic fungi in the waters of the Charzykowskie Lake in Zaborski Landscape Park. Wiad. Parazytol. 2007, 53, 109–115. [Google Scholar]
- Dąbrowski, W.; Bogusławska-Wąs, E.; Daczkowska-Kozon, E. Analysis od the Szczecin Lagoon waters fungi. Acta Mycol. 1988, 33, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Campisi, E.; Mancianti, F.; Pini, G.; Faggi, E.; Gargani, G. Investigation in central Italy of the possible association between Cryptococcus neoformans var Gattii and Eucalyptus camaldulensis. Eur. J. Epidemiol. 2003, 18, 357–362. [Google Scholar] [CrossRef]
- Cogliati, M.; Puccianti, E.; Montagna, M.T.; De Donno, A.; Susever, S.; Ergin, C.; Velegraki, A.; Ellabib, M.S.; Nardoni, S.; Macci, C.; et al. Fundamental niche prediction of the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii in Europe. Environ. Microbiol. 2017, 19, 4318–4325. [Google Scholar] [CrossRef] [PubMed]
- Alaniz, A.J.; Carvajal, J.G.; Carvajal, M.A.; Cogliati, M.; Vergara, P.M. Spatial quantification of the population exposed to Cryptococcus neoformans and Cryptococcus gattii species complexes in Europe: Estimating the immunocompetent and HIV/AIDS patients under risk. Risk Anal. 2020, 40, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Timarán, D.A.V.; Melo, C.J.B.; Caicedo, M.I.M.; Ceballos, A.M.C.; Vallejo, D.; Velásquez, C.A.C. Aislamiento de Cryptococcus neoformans en heces de palomas (Columba livia) en el casco urbano del municipio de Pasto, Colombia. Biosalud 2016, 15, 62–71. [Google Scholar] [CrossRef]
- Granados, D.P.; Castañeda, E. Isolation and characterization of Cryptococcus neoformans varieties recovered from natural sources in Bogotá, Colombia, and study of ecological conditions in the área. Microb. Ecol. 2005, 49, 282–290. [Google Scholar] [CrossRef]
- May, R.C.; Stone, N.R.; Wiesner, D.L.; Bicanic, T.; Nielsen, K. Cryptococcus: From environmental saprophyte to global pathogen. Nat. Rev. Microbiol. 2016, 14, 106–117. [Google Scholar] [CrossRef]
- Viviani, M.A.; Cogliati, M.; Esposto, M.C.; Lemmer, K.; Tintelnot, K.; Colom-Valiente, M.F.; Swinne, D.; Velegraki, A.; Velho, R.; European Confederation of Medical Mycology (ECMM) Cryptococcosis Working Group. Molecular analysis of 311 Cryptococcus neoformans isolates from a 30-month ECMM survey of cryptococcosis in Europe. FEMS Yeast Res. 2006, 6, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Cogliati, M.; Zani, A.; Rickerts, V.; McCormick, I.; Desnos-Ollivier, M.; Velegraki, A.; Escandon, P.; Ichikawa, T.; Ikeda, R.; Bienvenue, A.L.; et al. Multilocus sequence typing analysis reveals that Cryptococcus neoformans var neoformans is a recombinant population. Fungal Genet. Biol. 2016, 87, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.U.; Randhawa, H.S.; Kowshik, T.; Chowdhary, A.; Chandy, R. Antifungal susceptibility of Cryptococcus neoformans and Cryptococcus gattii isolates from decayed wood of trunk hollows of Ficus religiosa and Syzygium cumini trees in north-western India. J. Antimicrob. Chemother. 2007, 60, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Movahed, E.; Munusamy, K.; Tan, G.M.Y.; Looi, C.Y.; Tay, S.T.; Wong, W.F. Genome-wide transcription study of Cryptococcus neoformans H99 clinical strain versus environmental strains. PLoS ONE 2015, 10, e0137457. [Google Scholar] [CrossRef] [PubMed]
- Gutch, R.S.; Nawange, S.R.; Singh, S.M.; Yadu, R.; Tiwari, A.; Gumasta, R.; Kavishwar, A. Antifungal susceptibility of clinical and environmental Cryptococcus neoformans and Cryptococcus gattii isolates in Jabalpur, a city of Madhya Pradesh in Central India. Braz. J. Microbiol. 2015, 46, 1125–1133. [Google Scholar] [CrossRef]
- Córdoba, S.; Isla, M.G.; Szusz, W.; Vivot, W.; Altamirano, R.; Davel, G. Susceptibility profile and epidemiological cut-off values of Cryptococcus neoformans species complex from Argentina. Mycoses 2016, 59, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A.; Aller, A.I.; Canton, E.; Castañón-Olivares, L.R.; Chowdhary, A.; Cordoba, S.; Cuenca-Estrella, M.; Fothergill, A.; Fuller, J.; Govender, N.; et al. Cryptococcus neoformans-Cryptococcus gattii species complex: An international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for amphotericin B and flucytosine. Antimicrob. Agents Chemother. 2012, 56, 3107–3113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selb, R.; Fuchs, V.; Graf, B.; Hamprecht, A.; Hogardt, M.; Sedlacek, L.; Schwarz, R.; Idelevich, E.A.; Becker, S.L.; Held, J.; et al. Molecular typing and in vitro resistance of Cryptococcus neoformans clinical isolates obtained in Germany between 2011 and 2017. Int. J. Med. Microbiol. 2019, 309, 151336. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Boyken, L.; Rice, C.; Tendolkar, S.; Hollis, R.J.; Doern, G.V.; Diekema, D.J. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J. Clin. Microbiol. 2005, 43, 2163–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhary, A.; Randhawa, H.S.; Sundar, G.; Kathuria, S.; Prakash, A.; Khan, Z.; Sun, S.; Xu, J. In vitro antifungal susceptibility profiles and genotypes of 308 clinical and environmental isolates of Cryptococcus neoformans var grubii and Cryptococcus gattii serotype B from north-western India. J. Med. Microbiol. 2011, 60, 961–967. [Google Scholar] [CrossRef]
- Carlson, T.; Lupinacci, E.; Moseley, K.; Chandrasekaran, S. Effects of environmental factors on sensitivity of Cryptococcus neoformans to fluconazole and amphotericin B. FEMS Microbiol. Lett. 2021, 368, fnab040. [Google Scholar] [CrossRef]
- Wang, Y.; Casadevall, A. Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl. Environ. Microbiol. 1994, 60, 3864–3866. [Google Scholar] [CrossRef] [Green Version]
- Thompson III, G.R.; Wiederhold, N.P.; Fothergill, A.W.; Vallor, A.C.; Wickes, B.L.; Patterson, T.F. Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans. Antimicrob. Agents Chemother. 2009, 53, 309–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Meara, T.R.; Alspaugh, J.A. The Cryptococcus neoformans capsule: A sword and a shield. Clin. Microbiol. Rev. 2012, 25, 387–408. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, H.C.S.; Ribeiro, N.Q.; Bastos, R.W.; Santos, D.A. Effect of non-antifungal agrochemicals on the pathogenic fungus Cryptococcus gattii. Med. Mycol. 2020, 58, 47–53. [Google Scholar] [CrossRef]
- Bastos, R.W.; Carneiro, H.C.S.; Oliveira, L.V.N.; Rocha, K.M.; Freitas, G.J.C.; Costa, M.C.; Magalhães, T.F.F.; Carvalho, V.S.D.; Rocha, C.E.; Ferreira, G.F.; et al. Environmental triazole induces cross-resistance to clinical drugs and affects morphophysiology and virulence of Cryptococcus gattii and C. neoformans. Antimicrob. Agents Chemother. 2018, 62, e01179-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gusa, A.; Williams, J.D.; Cho, J.E.; Averette, A.F.; Sun, S.; Shouse, E.M.; Heitman, J.; Alspaugh, J.A.; Jinks-Robertson, S. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc. Natl. Acad. Sci. USA 2020, 117, 9973–9980. [Google Scholar] [CrossRef] [PubMed]
- Billmyre, R.B.; Clancey, S.A.; Li, L.X.; Doering, T.L.; Heitman, J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nat. Commun. 2020, 11, 127. [Google Scholar] [CrossRef] [Green Version]
- Pais, P.; Pires, C.; Costa, C.; Okamoto, M.; Chibana, H.; Teixeira, M.C. Membrane proteomics analysis of the Candida glabrata response to 5-flucytosine: Unveiling the role and regulation of the drug efflux transporters CgFlr1 and CgFlr2. Front. Microbiol. 2016, 7, 2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.H.A.; Arthur, I.; Merritt, A.; Leung, M. Molecular types of Cryptococcus neoformans and Cryptococcus gattii in Western Australia and correlation with antifungal susceptibility. Med. Mycol. 2019, 57, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Edwards, H.M.; Cogliati, M.; Kwenda, G.; Fisher, M.C. The need for environmental surveillance to understand the ecology, epidemiology and impact of Cryptococcus infection in Africa. FEMS Microbiol. Ecol. 2021, 97, fiab093. [Google Scholar] [CrossRef] [PubMed]
- Cogliati, M. Global warming impact on the expansion of fundamental niche of Cryptococcus gattii VGI in Europe. Environ. Microbiol. Rep. 2021, 13, 375–383. [Google Scholar] [CrossRef]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.; Jones, K.E.; Mitchell, C.E.; et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef]
- Chowdhary, A.; Hiremath, S.S.; Sun, S.; Kowshik, T.; Randhawa, H.S.; Xu, J. Genetic differentiation, recombination and clonal expansion in environmental populations of Cryptococcus gattii in India. Environ. Microbiol. 2011, 13, 1875. [Google Scholar] [CrossRef] [PubMed]
- Sanchini, A.; Smith, I.M.; Sedlacek, L.; Schwarz, R.; Tintelnot, K.; Rickerts, V. Molecular typing of clinical Cryptococcus neoformans isolates collected in Germany from 2004 to 2010. Med. Microbiol. Immunol. 2014, 203, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Averette, A.F.; Desnos-Ollivier, M.; Ni, M.; Dromer, F.; Heitman, J. Genetic diversity and genomic plasticity of Cryptococcus neoformans AD hybrid strains. G3: Genes|Genomes|Genet. 2012, 2, 83–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, W.; Castañeda, A.; Jackson, S.; Huynh, M.; Castañeda, E.; IberoAmerican Cryptococcal Study Group. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg. Infect. Dis. 2003, 9, 189. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST) Definitive Document E.DEF 7.3.1. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf (accessed on 4 November 2021).
- Espinel-Ingroff, A.; Aller, A.I.; Canton, E.; Castanon-Olivares, L.R.; Chowdhary, A.; Cordoba, S.; Cuenca-Estrella, M.; Fothergill, A.; Fuller, J.; Govender, N.; et al. Cryptococcus neoformans-Cryptococcus gattii species complex: An international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob. Agents Chemother. 2012, 56, 5898–5906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinel-Ingroff, A.; Chowdhary, A.; Gonzalez, G.M.; Guinea, J.; Hagen, F.; Meis, J.F.; Thompson, G.R.; Turnidge, J. Multicenter Study of Isavuconazole MIC Distributions and Epidemiological Cutoff Values for the Cryptococcus neoformans-Cryptococcus gattii Species Complex Using the CLSI M27-A3 Broth Microdilution Method. Antimicrob. Agents Chemother. 2014, 59, 666–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source of the Sample | No. of Trees | No. of Positive Trees | Isolation Percentage (%) | No. of Isolates | Strains |
---|---|---|---|---|---|
Oak (Quercus L.) | 309 | 9 | 2.91 | 14 | 1o*, 4’, 9a, D4, D2a^, D2b^, K1a^, K1b^, Fw1, Fw4*, Fw5, Fw6, Fw7*, Fw8* |
Black locust (Robinia pseudoacacia L.) | 23 | 0 | 0 | 0 | - |
Lime tree (Tilia L.) | 11 | 0 | 0 | 0 | - |
Plane tree (Platanus L.) | 36 | 0 | 0 | 0 | - |
Horse-chestnut (Aesculus hippocastanum L.) | 12 | 0 | 0 | 0 | - |
Hornbeam (Carpinus L.) | 10 | 0 | 0 | 0 | - |
Birch (Betula L.) | 10 | 1 | 10 | 1 | Fw3 |
Pine (Pinus L.) | 13 | 1 | 7.69 | 2 | Fw2*, Fw9* |
Fir (Abies Mill.) | 6 | 0 | 0 | 0 | - |
Willow (Salix L.) | 4 | 0 | 0 | 0 | - |
European beech (Fagus sylvatica L.) | 5 | 0 | 0 | 0 | - |
Common yew (Taxus baccata L.) | 2 | 0 | 0 | 0 | - |
Maple (Acer L.) | 30 | 0 | 0 | 0 | - |
Swedish whitebeam (Sorbus intermedia L.) | 2 | 0 | 0 | 0 | - |
Sycamore maple (Acer pseudoplatanus L.) | 2 | 0 | 0 | 0 | - |
Sea buckthorn (Hippophaë rhamnoides L.) | 1 | 0 | 0 | 0 | - |
Thuja (Thuja L.) | 10 | 0 | 0 | 0 | - |
Cottonwood (Populus L.) | 10 | 0 | 0 | 0 | - |
Larch (Larix Mill.) | 4 | 0 | 0 | 0 | - |
Spruce (Picea A. Dietr.) | 8 | 0 | 0 | 0 | - |
Alder (Alnus Mill.) | 9 | 0 | 0 | 0 | - |
Ash tree (Fraxinus L.) | 9 | 0 | 0 | 0 | - |
Douglas fir (Pseudotsuga menziesii) | 66 | 1 | 1.51 | 1 | 9x |
Trees in total: | 592 | 12 | 2.20 | 18 | |
Soil: | 10 | 1 | 10 | 1 | Fw10 |
In total: | 602 | 13 | 2.16 | 19 | - |
The Strain Name | PCM Number | Sero- and Mating Type | MMT According to URA5-RFLP | MALDI-TOF MS Original Base | MALDI-TOF MS Extended Base | ||
---|---|---|---|---|---|---|---|
Score | MMT Identification | Score | MMT Identification | ||||
1o | 3145 | Dα | VNIV | 1.865 | VNIV | 2.553 | VNIV |
9a | 3146 | Dα | VNIV | 1.968 | VNIV | 2.080 | VNIV |
9x | 3147 | Dα | VNIV | 1.881 | VNIV | 1.953 | VNIV |
4’ | 3150 | Dα | VNIV | 1.946 | VNIV | 1.946 | VNIV |
D2a | 3148 | Aα | VNI | 2.234 | VNI | 2.260 | VNI |
D2b | 3149 | Aα | VNI | 2.221 | VNI | 2.221 | VNI |
D4 | 3151 | Aα | VNI | 2.090 | VNI | 2.090 | VNI |
FW1 | 3153 | Aα | VNI | 2.112 | VNI | 2.112 | VNI |
FW2 | 3155 | Aα | VNI | 2.252 | VNI | 2.252 | VNI |
FW3 | 3158 | Dα | VNIV | 2.212 | VNIV | 2.212 | VNIV |
FW4 | 3160 | Dα | VNIV | 1.762 | VNIV | 1.762 | VNIV |
FW5 | 3161 | Aα | VNI | 2.045 | VNI | 2.045 | VNI |
FW6 | 3162 | Dα | VNIV | 1.963 | VNIV | 2.032 | VNIV |
FW7 | 3152 | Dα | VNIV | 2.108 | VNIV | 2.127 | VNIII |
FW8 | 3157 | Dα | VNIV | 2.002 | VNIV | 2.041 | VNIII |
FW9 | 3159 | Aα | VNI | 1.853 | VNI | 1.853 | VNI |
FW10 | 3154 | Aα | VNI | 2.426 | VNI | 2.426 | VNI |
K1a | 3156 | Dα | VNIV | 1.965 | VNIV | 1.965 | VNIV |
K1b | 3000 | Dα | VNIV* | 2.070 | VNIV | 2.070 | VNIV |
The Strain Name | MIC (mg/L) | ||||||
---|---|---|---|---|---|---|---|
AMB | 5-FC | FLU | VOR | ISV | ITR | POS | |
Major Molecular Type VNI | |||||||
D2a | 1 | 16 | 0.5 | 0.06 | 0.03 | 0.03 | 0.06 |
D2b | 1 | 16 | 1 | 0.03 | 0.06 | 0.03 | 0.125 |
D4 | 1 | 16 | 1 | 0.03 | 0.06 | 0.03 | 0.125 |
FW1 | 0.5 | 32 | 32 | 0.25 | 0.125 | 0.25 | 0.25 |
FW 10 | 1 | 32 | 32 | 0.25 | 0.125 | 0.25 | 0.5 |
FW2 | 1 | 8 | 16 | 0.25 | 0.25 | 0.5 | 0.25 |
Fw9 | 1 | 32 | 32 | 0.125 | 0.015 | 0. 25 | 0.015 |
FW5 | 0.5 | 16 | 16 | 0.125 | 0.125 | 0.25 | 0.25 |
Median (range) of VNI | 1 (0.5–1) | 16 (8–32) | 16 (0.5–32) | 0.125 (0.03–0.25) | 0.0925 (0.015–0.25) | 0.25 (0.03–0.5) | 0.187 (0.015–0.5) |
Major Molecular Type VNIV | |||||||
1o | 1 | 16 | 0.5 | 0.125 | 0.125 | 0.03 | 0.06 |
9a | 0.5 | 16 | 0.5 | 0.06 | 0.06 | 0.03 | 0.06 |
9x | 1 | 32 | 0.5 | 0.06 | 0.06 | 0.03 | 0.06 |
4 | 1 | 16 | 0.5 | 0.03 | 0.06 | 0.03 | 0.25 |
Fw7 | 0.5 | 16 | 16 | 0.25 | 0.125 | 0.25 | 0.125 |
K1a | 1 | 8 | 8 | 0.125 | 0.015 | 0.125 | 0.015 |
Fw8 | 1 | 16 | 4 | 0.125 | 0.015 | 0.03 | 0.015 |
FW3 | 0.5 | 8 | 4 | 0.06 | 0.015 | 0.03 | 0.015 |
FW4 | 1 | 8 | 8 | 0.06 | 0.015 | 0.125 | 0.015 |
FW6 | 0.125 | 1 | 4 | 0.06 | 0.06 | 0.5 | 0.25 |
K1b | 1 | 64 | 1 | 0.03 | 0.03 | 0.125 | 0.125 |
Median (range) of VNIV | 1 (0.125–1) | 16 (1–64) | 4 (0.5–16) | 0.06 (0.03–0.25) | 0.06 (0.015–0.125) | 0.03 (0.03–0.5) | 0.06 (0.015–0.25) |
Median (range) of VNI and VNIV | 1 (0.125–1) | 16 (1–64) | 4 (0.5–32) | 0.06 (0.03–0.25) | 0.06 (0.015–0.25) | 0.0775 (0.03–0.5) | 0.0925 (0.015–0.5) |
MIC50 (VNI and VNIV) | 1 | 16 | 4 | 0.06 | 0.06 | 0.125 | 0.125 |
MIC90 (VNI and VNIV) | 1 | 32 | 32 | 0.25 | 0.125 | 0.25 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florek, M.; Korzeniowska-Kowal, A.; Wzorek, A.; Włodarczyk, K.; Marynowska, M.; Pogorzelska, A.; Brodala, M.; Ploch, S.; Buczek, D.; Balon, K.; et al. Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland. Pathogens 2022, 11, 8. https://doi.org/10.3390/pathogens11010008
Florek M, Korzeniowska-Kowal A, Wzorek A, Włodarczyk K, Marynowska M, Pogorzelska A, Brodala M, Ploch S, Buczek D, Balon K, et al. Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland. Pathogens. 2022; 11(1):8. https://doi.org/10.3390/pathogens11010008
Chicago/Turabian StyleFlorek, Magdalena, Agnieszka Korzeniowska-Kowal, Anna Wzorek, Katarzyna Włodarczyk, Maja Marynowska, Aleksandra Pogorzelska, Maria Brodala, Sebastian Ploch, Daniel Buczek, Katarzyna Balon, and et al. 2022. "Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland" Pathogens 11, no. 1: 8. https://doi.org/10.3390/pathogens11010008
APA StyleFlorek, M., Korzeniowska-Kowal, A., Wzorek, A., Włodarczyk, K., Marynowska, M., Pogorzelska, A., Brodala, M., Ploch, S., Buczek, D., Balon, K., & Nawrot, U. (2022). Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland. Pathogens, 11(1), 8. https://doi.org/10.3390/pathogens11010008