Validation of the Use of Dried Blood Samples for the Detection of Toxoplasma gondii Antibodies in Stray Cats (Felis s. catus)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Serological Examination
4.3. Analysis of the Results
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, J.V.; Alexander, J.R.; Adam, B.W.; Hannon, W.H. Use of filter paper for the collection and analysis of human whole blood specimens. J. Nutr. 2001, 131, 1631S–1636S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubay, S.A.; Rosenstock, S.S.; Stallknecht, D.E.; deVos, J.C., Jr. Determining prevalence of bluetongue and epizootic hemorrhagic disease viruses in mule deer in Arizona (USA) using whole blood dried on paper strips compared to serum analyses. J. Wildl. Dis. 2006, 42, 159–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dusek, R.J.; Hall, J.S.; Nashold, S.W.; TeSlaa, J.L.; Ip, H.S. Evaluation of Nobuto filter paper strips for the detection of avian influenza virus antibody in waterfowl. Avian Dis. 2011, 55, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Wasniewski, M.; Barrat, J.; Combes, B.; Guiot, A.L.; Cliquet, F. Use of filter paper blood samples for rabies antibody detection in foxes and raccoon dogs. J. Virol. Methods 2014, 204, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Kalayou, S.; Tadelle, H.; Bsrat, A.; Abebe, N.; Haileselassie, M.; Schallig, H.D. Serological evidence of Leishmania donovani infection in apparently healthy dogs using direct agglutination test (DAT) and rk39 dipstick tests in Kafta Humera, north-west Ethiopia. Transbound. Emerg. Dis. 2011, 58, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Rosypal, A.C.; Pick, L.D.; Esquivel Hernandez, J.O.; Lindsay, D.S. Evaluation of a novel dried blood spot collection device (HemaSpotTM) to test blood samples collected from dogs for antibodies to Leishmania infantum. Vet. Parasitol. 2014, 205, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Uggla, A.; Nilsson, L.A. Evaluation of a solid-phase immunoassay (DIG-ELISA) for the serodiagnosis of ovine toxoplasmosis. Vet. Immunol. Immunopathol. 1987, 14, 309–318. [Google Scholar] [CrossRef]
- Parker, S.P.; Cubitt, W.D. The use of the dried blood spot sample in epidemiological studies. J. Clin. Pathol. 1999, 52, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Curry, P.S.; Elkin, B.T.; Campbell, M.; Nielsen, K.; Hutchins, W.; Ribble, C.; Kutz, S. Filter-paper blood samples for ELISA detection of Brucella antibodies in caribou. J. Wildl. Dis. 2011, 47, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zimmerman, C.; Stone, R.; Engle, R.E.; Elkins, W.; Nardone, G.A.; Emerson, S.U.; Robert, H.; Purcell, R.H. Using improved technology for filter paper-based blood collection to survey wild Sika deer for antibodies to hepatitis E virus. J. Virol. Methods 2007, 142, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.; Pradel, R.; Aubert, D.; Geers, R.; Villena, I.; Poulle, M.-L. A multi-event capture–recapture analysis of Toxoplasma gondii seroconversion dynamics in farm cats. Parasites Vectors 2018, 11, 339. [Google Scholar] [CrossRef]
- Gilbert, A.T.; Fooks, A.R.; Hayman, D.T.S.; Horton, D.L.; Müller, T.; Plowright, R.; Peel, A.J.; Bowen, R.; Wood, J.L.N.; Mills, A.A.; et al. Deciphering serology to understand the ecology of infectious disease in wildlife. EcoHealth 2013, 10, 298–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, P.W.; Elliott, I.; Peeling, R.W.; Mabey, D.; Newton, P.N. Review article: An overview of the clinical use of filter paper in the diagnosis of tropical diseases. Am. J. Trop. Med. Hyg. 2014, 90, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. Toxoplasmosis of Animals and Man, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; p. 313. [Google Scholar]
- Brouat, C.; Diagne, C.A.; Ismaïl, K.; Aroussi, A.; Dalecky, A.; Bâ, K.; Kane, M.; Niang, Y.; Diallo, M.; Sow, A.; et al. Seroprevalence of Toxoplasma gondii in commensal rodents sampled across Senegal, West Africa. Parasite 2018, 25, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, C.N.; Kaur, T.; Koenen, K.; DeStefano, S.; Zajac, A.M.; Lindsay, D.S. Prevalence of agglutinating antibodies to Toxoplasma gondii and Sarcocystis neurona in beavers (Castor canadensis) from Massachusetts. J. Parasitol. 2005, 91, 1228–1229. [Google Scholar] [CrossRef] [PubMed]
- Mercier, A.; Garba, M.; Bonnabau, H.; Kane, M.; Rossi, J.-P.; Dardé, M.-L.; Dobigny, G. Toxoplasmosis seroprevalence in urban rodents: A survey in Niamey, Niger. Mem. Inst. Oswaldo Cruz 2013, 108, 399–407. [Google Scholar] [CrossRef]
- Elmore, S.A.; Huyvaert, K.P.; Bailey, L.L.; Milhous, J.; Aliauskas, R.T.; Gajadhar, A.A.; Jenkins, E.J. Toxoplasma gondii exposure in arctic-nesting geese: A multi-state occupancy framework and comparison of serological assays. Int. J. Parasitol. 2014, 3, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maksimov, P.; Buschtöns, S.; Herrmann, D.C.; Conraths, F.J.; Gorlich, K.; Tenter, A.M.; Dubey, J.P.; Nagel-Kohl, U.; Thoms, B.; Botcher, L.; et al. Serological survey and risk factors for Toxoplasma gondii in domestic ducks and geese in Lower Saxony, Germany. Vet. Parasitol. 2011, 182, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Etheredge, G.D.; Michael, G.; Muehlenbein, M.P.; Frenkel, J.K. The roles of cats and dogs in the transmission of Toxoplasma infection in Kuna and Embera children in eastern Panama. Rev. Panam. Salud. Publica. 2004, 16, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmore, S.A.; Samelius, G.; Al-Adhami, B.; Huyvaert, K.P.; Bailey, L.L.; Alisauskas, R.T.; Gajadhar, A.A.; Jenkins, E.J. Estimating Toxoplasma gondii exposure in arctic foxes (Vulpes lagopus) while navigating the imperfect world of wildlife serology. J. Wildl. Dis. 2016, 52, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Parker, S.; Al-Adhami, B.; Bachand, N.; Jenkins, E. Comparison of tissues (heart vs. brain) and serological tests (MAT, ELISA and IFAT) for detection of Toxoplasma gondii in naturally infected wolverines (Gulo gulo) from the Yukon, Canada. Food Waterborne Parasitol. 2019, 12, e00046. [Google Scholar] [CrossRef]
- Aston, E.J.; Mayor, P.; Bowman, D.D.; Mohammed, H.O.; Liotta, J.L.; Kwok, O.; Dubey, J.P. Use of filter paper to determine seroprevalence of Toxoplasma gondii among hunted ungulates in remote Peruvian Amazon. Int. J. Parasitol. 2014, 3, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogami, S.; Kamata, H.; Maruyama, S.; Furaya, H.; Inoue, I. Preservation of feline anti-Toxoplasma gondii antibody activity using blood absorbed on filter paper stored under different conditions. Res. Vet. Sci. 1992, 52, 387–388. [Google Scholar] [CrossRef]
- Bolais, P.F.; Vignoles, P.; Pereira, P.F.; Keim, R.; Aroussi, A.; Ismail, K.; Dardé, M.-L.; Amendoeira, M.R.; Mercier, A. Toxoplasma gondii survey in cats from two environments of the city of Rio de Janeiro, Brazil by Modified Agglutination test on sera and filter-paper. Parasites Vectors 2017, 10, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, J.P.; Thulliez, P. Serologic diagnosis of toxoplasmosis in cats fed Toxoplasma gondii tissue cysts. J. Am. Vet. Med. Assoc. 1989, 194, 1297–1299. [Google Scholar] [PubMed]
- Dubey, J.P.; Lappin, M.R.; Thulliez, P. Diagnosis of induced toxoplasmosis in neonatal cats. J. Am. Vet. Med. Assoc. 1995, 207, 179–185. [Google Scholar] [PubMed]
- Macrί, G.; Sala, M.; Linder, A.M.; Pettirossi, N.; Scarpulla, M. Comparison of indirect fluorescence antibody test and modified agglutination test for detecting Toxoplasma gondii immunoglobilin G antibodies in dog and cat. Parasitol Res. 2009, 105, 35–40. [Google Scholar] [CrossRef]
- Astles, R. CLIA Proficiency Testing Criteria for Acceptable Performance. In Proceedings of the CLIAC (Clinical Laboratory Improvement Advisory Committee) Meeting; Atlanta, GA, USA, 1–2 September 2010, Laboratory Practice Standards Branch, Division of Laboratory Science and Standards at the Centers for Disease Control and Prevention: Atlanta, GA, USA, 2010. Available online: https://www.cdc.gov/cliac/docs/summary/cliac0910_summary.pdf (accessed on 7 June 2021).
- Holton, L.L.; Scott, E.M.; Nolan, A.M.; Reid, J.; Welsh, E.; Flaherty, D. Comparison of three methods used for assessment of pain in dogs. J. Am. Vet. Med. Assoc. 1998, 212, 61–66. [Google Scholar] [PubMed]
- Portejoie, Y.; Faure, E.; Georges, F.; Artois, M.; Peroux, R.; Guitton, J.S. Investigation of specific European brown hare syndrome antibodies in wild hares using blood samples dried on blotting paper. Eur. J. Wildl Res. 2008, 55, 53–58. [Google Scholar] [CrossRef]
- Sun, D.; Cho, Y.-I.; Comyn, P.; Yoon, K.-J. Use of blood collected onto and dried on filter paper for diagnosing pregnancy in cattle. Vet. J. 2013, 198, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Cizauskas, C.A.; Bellan, S.E.; Turner, W.C.; Vance, R.E.; Getz, W.M. Frequent and seasonally variable sub lethal anthrax infections are accompanied by short-lived immunity in an endemic system. J. Anim. Ecol. 2014, 83, 1078–1090. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.M.; Flores, S.R.; De Jesús, V.R. Influence of hematocrit and total-spot volume on performance of dried blood spots for newborn screening. Int. J. Neonatal Screen. 2015, 1, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.V.; Li, L.; Rasmussen, S.A.; Collier, S.; Frias, J.L.; Honein, M.A.; Shaw, G.H.; Lorey, F.; Meyer, R.; Chaing, S.; et al. Effect of specimen storage conditions on newborn dried blood spots used to assess Toxoplasma gondii immunoglobulin M (IgM). Clin. Chim. Acta 2011, 412, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Desmonts, G. Serological responses of equids fed Toxoplasma gondii oocysts. Equine Vet. J. 1987, 19, 337–339. [Google Scholar] [CrossRef]
- Dubey, J.P.; Lappin, M.R.; Thulliez, P. Long-term antibody responses of cats fed Toxoplasma gondii tissue cysts. J. Parasitol. 1995, 81, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Viera, A.J.; Garrett, J.M. Understanding inter-observer agreement: The kappa statistic. Fam Med. 2005, 37, 360–363. [Google Scholar] [PubMed]
- Brown, L.D.B.; Cai, T.T.; DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci. 2001, 16, 101–133. [Google Scholar] [CrossRef]
Trapping Period | Positive Serum Samples with MAT Titre ≥24 | Positive BP Samples with MAT Titre Toxoplasma ≥24 | Positive BP Samples with MAT Titre ≥12 |
---|---|---|---|
Period 1 | 36/54 (66.67%) [95% CI: 53.36–77.76] | 34/54 (62.96%) [95% CI: 49.63–74.58] | 41/54 (75.92%) [95% CI: 63.05–85.36] |
Period 2 | 31/39 (79.49%) [95% CI: 64.47–89.22] | 27/39 (69.23%) [95% CI: 53.58–81.43] | 31/39 (79.49%) [95% CI: 64.47–89.22] |
Period 3 | 34/56 (60.71%) [95% CI: 47.63–72.42] | 34/56 (60.71%) [95% CI: 47.63–72.42] | 35/56 (62.50%) [95% CI: 49.41–73.99] |
Period 4 | 36/50 (72%) [95% CI: 58.33–82.53] | 36/50 (72%) [95% CI: 58.33–82.53] | 37/50 (74%) [95% CI: 60.45–84.13] |
MAT Titre ≥24 | |||||
---|---|---|---|---|---|
Period 1 | Period 2 | Period 3 | Period 4 | Mean | |
Se | 91.67 [78.17–97.13] | 87.10 [71.15–94.87] | 100 [89.85–100] | 100 [90.36–100] | 94.69 ± 0.06 |
Sp | 94.44 [74.24–99.01] | 100 [67.56–100] | 100 [85.13–100] | 100 [78.47–100] | 98.61 ± 2.78 |
PPV | 97.06 [85.08–99.48] | 100 [87.54–100] | 100 [89.85–100] | 100 [90.36–100] | 99.26 ± 1.47 |
NPV | 85.00 [63.96–94.76] | 66.67 [39.08–86.19] | 100 [85.13–100] | 100 [78.47–100] | 87.92 ± 15.83 |
Co | 92.59 [82.45–97.08] | 89.74 [76.42–95.94] | 100 [93.58–100] | 100 [92.87–100] | 95.58 ± 5.23 |
Kappa | 0.84 [0.68–0.99] | 0.73 [0.49–0.98] | 1 | 1 | 0.89 ± 0.13 |
MAT Titre ≥12 | |||||
Period1 | Period2 | Period3 | Period4 | Mean | |
Se | 100 [90.36–100] | 100 [88.97–100] | 100 [89.85–100] | 100 [90.36–100] | 100.00 ± 0.00 |
Sp | 72.22 [49.13–87.50] | 100 [67.56–100] | 95.45 [78.20–99.19] | 92.86 [68.53–98.73] | 90.13 ± 12.30 |
VPP | 87.80 [74.46–94.68] | 100 [88.97–100] | 97.14 [85.47–99.49] | 97.30 [86.18–99.52] | 95.56 ± 5.33 |
VPN | 100 [77.19–100] | 100 [67.56–100] | 100 [84.54–100] | 100 [77.19–100] | 100.00 ± 0.00 |
Co | 90.74 [80.09–95.98] | 100 [91.03–100] | 98.21 [90.55–99.68] | 98 [89.5–99.65] | 96.79 ± 4.12 |
Kappa | 0.78 [0.59–0.96] | 1 | 0.96 [0.89–1.03] | 0.95 [0.85–1.05] | 0.92 ± 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, J.A.; Aubert, D.; Geers, R.; Villena, I.; Poulle, M.-L. Validation of the Use of Dried Blood Samples for the Detection of Toxoplasma gondii Antibodies in Stray Cats (Felis s. catus). Pathogens 2021, 10, 864. https://doi.org/10.3390/pathogens10070864
Simon JA, Aubert D, Geers R, Villena I, Poulle M-L. Validation of the Use of Dried Blood Samples for the Detection of Toxoplasma gondii Antibodies in Stray Cats (Felis s. catus). Pathogens. 2021; 10(7):864. https://doi.org/10.3390/pathogens10070864
Chicago/Turabian StyleSimon, Julie Alice, Dominique Aubert, Régine Geers, Isabelle Villena, and Marie-Lazarine Poulle. 2021. "Validation of the Use of Dried Blood Samples for the Detection of Toxoplasma gondii Antibodies in Stray Cats (Felis s. catus)" Pathogens 10, no. 7: 864. https://doi.org/10.3390/pathogens10070864
APA StyleSimon, J. A., Aubert, D., Geers, R., Villena, I., & Poulle, M.-L. (2021). Validation of the Use of Dried Blood Samples for the Detection of Toxoplasma gondii Antibodies in Stray Cats (Felis s. catus). Pathogens, 10(7), 864. https://doi.org/10.3390/pathogens10070864