Dishwashers as an Extreme Environment of Potentially Pathogenic Yeast Species
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Fungal Material
4.2. Collection of the Fungal Samples
4.3. Identification of Yeasts
4.3.1. Morphological Identification of Yeasts
4.3.2. Molecular Identification of Yeasts
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gostinčar, C.; Grube, M.; Gunde-Cimerman, N. Evolution of fungal pathogens in domestic environments? Fungal Biol. 2011, 115, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F. Environmental stress and evolvability in microbial systems. Clin. Microbiol. Infect. 2009, 15, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Biedunkiewicz, A.; Schulz, Ł. Fungi of the genus Exophiala in tap water-potential etiological factors of phaeohyphomycoses. Med. Mycol. 2012, 19, 23–26. [Google Scholar]
- Zalar, P.; Novak, M.; de Hoog, G.S.; Gunde-Cimerman, N. Dishwashers—A man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal. Biol. 2011, 115, 997–1007. [Google Scholar] [CrossRef]
- Döğen, A.; Kaplan, E.; Öksüz, Z.; Serin, M.S.; Ilkit, M.; de Hoog, G.S. Dishwashers are a major source of human opportunistic yeast-like fungi in indoor environments in Mersin, Turkey. Med. Mycol. 2013, 5, 493–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak-Babič, M.; Zalar, P.; Ženko, B.; Schroers, H.J.; Džeroski, S.; Gunde-Cimerman, N. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residental washing mashines. Fungal Biol. 2015, 119, 95–113. [Google Scholar] [CrossRef]
- Zupančič, J.; Novak-Babič, M.; Zalar, P.; Gunde-Cimerman, N. The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. PLoS ONE 2016, 11, 1–29. [Google Scholar] [CrossRef]
- Gümral, R.; Özhak-Baysan, B.; Tümgör, A.; Saraçlı, M.A.; Yıldıran, Ş.T.; Ilkit, M.; Zupančič, J.; Novak-Babič, M.; Gunde-Cimerman, N.; Zalar, P.; et al. Dishwashers provide a selective extreme environment for human-opportunistic yeast-like fungi. Fungal Div. 2016, 76, 1–9. [Google Scholar] [CrossRef]
- Lian, X.; de Hoog, G.S. Indoor wet cells harbour melanized agents of cutaneous infection. Med. Mycol. 2010, 48, 622–628. [Google Scholar] [CrossRef] [Green Version]
- Isola, D.; Selbmann, L.; de Hoog, G.S.; Fenice, M.; Onofri, S.; Prenafeta-Boldú, F.X.; Zucconi, L. Isolation and screening of black fungi as degrades of volatile aromatic hydrocarbons. Mycopathologia 2013, 175, 369–379. [Google Scholar] [CrossRef]
- Raghupathi, P.K.; Zupančič, J.; Brejnrod, A.D.; Jacquiod, S.; Houf, K.; Burmølle, M.; Gunde-Cimerman, N.; Sørensen, S.J. Microbiomes in dishwashers: Analysis of the microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities. Appl. Environ. Microbiol. 2018, 84, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, J.; Mukherjee, P.K. Candida biofilms: Development, architecture, and resistance. Microbiol. Spectr. 2015, 3, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Baillie, G.S.; Douglas, L.J. Candida biofilms and their susceptibility to antifungal agents. Methods Enzymol. 1999, 310, 644–656. [Google Scholar] [CrossRef]
- Inci, M.; ltay, M.A.; Koç, A.N.; Yula, E.; Evirgen, Ö.; Durmaz, S.; Demir, G. Investigating virulence factors of clinical Candida isolates in relation to atmospheric conditions and genotype. Turc. J. Med. Sci. 2012, 42, 1476–1483. [Google Scholar] [CrossRef]
- Novak-Babič, M.; Zupančič, J.; Gunde-Cimerman, N.; Zalar, P. Yeasts in anthropogenic and polluted environments. In Yeasts in Natural Ecosystems: Diversity; Buzzini, P., Lachance, M.A., Yurkov, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 5, pp. 145–169. [Google Scholar] [CrossRef]
- Levy, S.B. Antibacterial household products: Cause for concern. Emer. Inf. Dis. 2001, 7, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Levits, M.S. Overview of host defences in fungal infections. Clin. Infect. Dis. 1992, 14, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lau, S.K.; Woo, P.C. Fungal infection risks associated with the use of cytokine antagonists and immune checkpoint inhibitors. Exp. Biol. Med. 2020, 245, 1104–1114. [Google Scholar] [CrossRef]
- Tamura, N.K.; Negri, M.F.; Bonassoli, L.A.; Svdzinski, T.I. Factores the virulenc virulência de Candida spp isoladas de cateteres venosos e mãos de servidores hospitalares. Rev. Soc. Bras. Med. Trop. 2007, 40, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vuvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef] [Green Version]
- Song, K.H.; Laureijssen-van de Sande, W.W.J.; Moreno, L.F.; Gerrits van den Ende, B.; Li, R.; de Hoog, S. Comparative Ecology of Capsular Exophiala Species Causing Disseminated Infection in Humans. Front. Microbiol. 2017, 8, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Gostinčar, C.; Gunde-Cimerman, N.; Grube, M. Polyextremotolerance as the fungal answer to changing environments. In Microbial Evolution Under Extreme Conditions. Life in Extreme Environments; Bakermans, C., Ed.; DeGruyter: Berlin, Germany; Boston, MA, USA, 2015; Volume 10, pp. 185–208. [Google Scholar] [CrossRef]
- Novak-Babič, M.; Gostinčar, C.; Gunde-Cimerman, N. Microorganisms populating the water-related indoor biome. Appl. Microbiol. Biotechnol. 2020, 104, 6443–6462. [Google Scholar] [CrossRef]
- Hamada, N.; Abe, N. Physiological characteristics of 13 common fungal species in bathrooms. Mycoscience 2009, 50, 421–429. [Google Scholar] [CrossRef]
- Callewaert, C.; van Nevel, S.; Kerckhof, F.; Granitsiotis, M.S.; Boon, N. Bacterial exchange in household washing machines. Front. Microbiol. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Qureshi, A.; Purohit, H.J. Biofilm microenvironments: Modeling Approach. In Optimization and Applicability of Bioprocesses; Purohit, H., Kalia, V., Vaidya, A., Khardenavis, A., Eds.; Springer: Singapore, 2017; pp. 305–322. [Google Scholar]
- Ghosh, S.; Qureshi, A.; Purohit, H.J. Enhanced expression of catechol 1,2 dioxygenase gene in biofilm forming Pseudomonas mendocina EGD-AQ5 under increasing benzoate stress. Int. Biodeter. Biodegrad. 2017, 118, 57–65. [Google Scholar] [CrossRef]
- Gu, J.D. Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. Int. Biodeter. Biodegr. 2003, 52, 69–91. [Google Scholar] [CrossRef]
- Arutchelvi, J.; Sudhakar, M.; Arkatar, A.; Doble, M.; Bhaduri, S.; Uppara, P.V. Biodegradation of polyethylene and polypropylene. Indian J. Biotechnol. 2008, 7, 9–22. [Google Scholar]
- Mincer, T.J.; Zettler, E.R.; Amaral-Zettler, L.A. Biofilms on Plastic Debris and Their Influence on Marine Nutrient Cycling, Productivity, and Hazardous Chemical Mobility. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Takada, H., Karapanagioti, H., Eds.; Springer: Cham, Switzerland, 2016; pp. 221–233. [Google Scholar]
- Lugauskas, A.L.; Levinskaite, L.; Peciulyte, D. Micromycetes as deterioration agents of polymeric materials. Int. Biodeter. Biodegrad. 2003, 52, 233–242. [Google Scholar] [CrossRef]
- Ejdys, E. Zasady biobezpieczeństwa i higieny pracy w laboratorium badawczym a przeżywalność grzybów potencjalnie chorobotwórczych. In Diagnozowanie Stanu Środowiska Metody Badawcze-Prognozy; Garbacz, J., Ed.; Multi-Prezentacja: Bydgoszcz, Poland, 2008; pp. 63–70. [Google Scholar]
- Wallström, S.; Karlsson, S. Biofilms on silicone rubber insulators; microbial composition and diagnostics of removal by use of ESEM/EDS—Composition of biofilms infecting silicone rubber insulators. Polym. Degrad. Stabil. 2004, 85, 841–846. [Google Scholar] [CrossRef]
- Stapleton, K.; Hill, K.; Day, D.J.; Dean, R.J. The potential impact of washing machines on laundry malodour generation. Lett. App. Microbiol. 2013, 56, 299–306. [Google Scholar] [CrossRef]
- Gutarowska, B. Niszczenie materiałów technicznych przez drobnoustroje. Syst. Res. Lab. 2013, 18, 10–14. [Google Scholar]
- Zupančič, J.; Raghupathi, P.K.; Houf, K.; Burmølle, M.; Sørensen, S.J.; Gunde-Cimerman, N. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers. Front. Microbiol. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Dögen, A.; Sav, H.; Gonca, S.; Kaplan, E.; Ilkit, M.; Novak-Babič, M.; Gunde-Cimerman, N.; de Hoog, G.S. Candida parapsilosis in domestic laundry machines. Med. Mycol. 2017, 55, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. The Yeast. A Taxonomic Study, 5th ed.; Elsevier: Tokyo, Japan, 2011. [Google Scholar]
- Bourcier, T.; Touzeau, O.; Thomas, F.; Chaumeil, C.; Baudrimont, M.; Borderie, V.; Laroche, L. Candida parapsilosis keratitis. Case Rep. 2003, 22, 51–55. [Google Scholar] [CrossRef]
- Trofa, D.; Gácser, A.; Nosanchuk, J.D. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 2008, 21, 606–625. [Google Scholar] [CrossRef] [Green Version]
- Van Baarlen, P.; van Belkum, A.; Summerbell, R.C.; Crous, P.W.; Thomma, B.P. Molecular mechanisms of pathogenicity: How do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol. Rev. 2007, 31, 239–277. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Padhye, A.A.; Ajello, L. Medical significance of the so-called black yeasts. Eur. J. Epidemiol. 1987, 3, 87–95. [Google Scholar] [CrossRef]
- Revankar, S.G.; Sutton, D.A. Melanized fungi in human disease. Clin. Microbiol. Rev. 2010, 23, 884–928. [Google Scholar] [CrossRef] [Green Version]
- Matos, T.; de Hoog, G.S.; de Boer, A.G.; Crom, I.; Haase, G. High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses 2002, 45, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.S.; Sutton, D.A.; Fothergill, A.W.; Rinaldi, M.G.; Harrak, M.J.; de Hoog, G.S. Spectrum of clinically relevant Exophiala species in the United States. J. Clin. Microbiol. 2007, 45, 3719–3720. [Google Scholar] [CrossRef] [Green Version]
- Kirchoff, L.; Olsowski, M.; Rath, P.M.; Steinmann, J. Exophiala dermatitidis: Key issues of an opportunistic fungal pathogen. Virulence 2019, 10, 984–998. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, D.C.; Howell, P.L. Biofilm exopolysaccharydes of pathogenic fungi: Lessons from bacteria. J. Biol. Chem. 2016, 291, 12529–12537. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, D.; Zavasky, D.; Chow, N.A.; Gade, L.; Zlatanic, E.; Elkind, S.; Litvintseva, A.P.; Pappas, P.G.; Perfect, J.R.; Revankar, S.; et al. Management of an Outbreak of Exophiala dermatitidis Bloodstream Infections at an Outpatient Oncology Clinic. Clin. Infect. Dis. 2018, 66, 959–962. [Google Scholar] [CrossRef]
- Page, B.T.; Shields, C.E.; Merz, W.G.; Kurtzman, C.P. Rapid identification of acomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays. J. Clin. Microbiol. 2006, 44, 3167–3171. [Google Scholar] [CrossRef] [Green Version]
- Bouza, E.; Muñoz, P. Invasive infections caused by Blastoschizomyces capitatus and Scedosporium spp. Clin. Microbiol. Infect. 2004, 10, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C.; Boekhout, T.; Akova, M.; Meis, J.F.; Cornely, O.A.; Lortholary, O. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin. Microbiol. Infect. 2007, 3, 76–98. [Google Scholar] [CrossRef] [Green Version]
- Hattori, H.; Inoue, C.; Tomita, Y.; Kanbe, T. A case of oral geotrichosis caused by Geotrichum capitatum in an old patient. Jpn. J. Infect. Dis. 2007, 60, 300–301. [Google Scholar]
- De Hoog, G.S.; Guarro, J.; Gene, J.; Figuerras, M.J. Atlas of Clinical Fungi, 2nd ed.; Centraalbureau voor Schimmelcultures/Universitat Rovira and Virgili: Reus, Spain, 2000. [Google Scholar]
- Minari, A.; Hachem, R.; Raad, I. Candida lusitaniae: A cause of breakthrough fungemia in cancer patients. Clin. Infect. Dis. 2001, 32, 186–190. [Google Scholar] [CrossRef]
- Wawrysiuk, S.; Rechberger, T.; Futyma, K.; Miotła, P. Candida lusitaniae—A case report of an intraperitoneal infection. Menopause Rev. 2018, 17, 94–96. [Google Scholar] [CrossRef]
- Khan, Z.; Ahman, S.; Al-Sweih, N.; Khan, S.; Joseph, L. Candida lusitaniae in Kuwait: Prevalence, antifungal susceptibility and role in neonatal fungemia. PLoS ONE 2019, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Novak Babič, M.; Zalar, P.; Ženko, B.; Džeroski, S.; Gunde-Cimerman, N. Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecol. 2016, 20, 30–39. [Google Scholar] [CrossRef]
- Perniola, R.; Faneschi, M.L.; Manso, E.; Pizzolante, M.; Rizzo, A.; Sticchi Damiani, A.; Longo, R. Rhodotorula mucilaginosa outbreak in neonatal intensive care unit: Microbiological features, clinical presentation, an analysis of related variables. Eur. J. Microbiol. Infect. Dis. 2006, 25, 193–196. [Google Scholar] [CrossRef]
- Brands, B.; Honisch, M.; Merettig, N.; Bichler, S.; Stamminger, R.; Kinnius, J.; Seifert, M.; Hardacker, I.; Kessler, A.; Weide, M.; et al. Qualitative and Quantitative Analysis of Microbial Communities in Household Dishwashers in Germany. Tenside Surfact. Det. 2016, 53, 112–118. [Google Scholar] [CrossRef]
- Brands, B.; Bockmühl, D.P. Experimental Evaluation of Hygienic Conditions in Domestic Dishwashers. Tenside Surfact. Det. 2015, 52, 148–154. [Google Scholar] [CrossRef]
- Dynowska, M. Preparation of test material and diagnostics. In Laboratory Mycology; Dynowska, M., Ejdys, E., Eds.; Publ. UWM: Olsztyn, Poland, 2011; pp. 142–155. [Google Scholar]
- Ejdys, E.; Dynowska, M.; Biedunkiewicz, A. General and specyfic recomendations reffering to work in a mycological laboratory. In Laboratory Mycology; Dynowska, M., Ejdys, E., Eds.; Publ. UWM: Olsztyn, Poland, 2011; pp. 166–175. [Google Scholar]
- Kurtzman, C.P.; Fell, J.W. The Yeast. A Taxonomic Study, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Kozłowska, E.; Urbaniak, M.; Grzeszczuk, J.; Dymarska, M.; Stępień, Ł.; Pląskowska, E.; Kostrzewa-Susłow, E.; Janeczko, T. Cascade Biotranformation of Dehydroepiandrosterone (Dhea) by Beauveria Species. Sci Rep. 2018, 8, 1134–1149. [Google Scholar] [CrossRef]
- Boekhout, T.; Kurtzman, C.P. Principles and methods used in yeast classification and an overview of currently accepted yeast genera. In Non-Conventional Yeasts in Biotechnology; Wolf, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–81. [Google Scholar]
- Kwiatkowski, N.P.; Babiker, W.M.; Merz, W.G.; Carroll, K.C.; Zhang, S.X. Evaluation of nucleic acid sequencing of the D1/D2 region of the large subunit of the 28S rDNA and the internal transcribed spacer region using SmartGene IDNS [corrected] software for identification of filamentous fungi in a clinical laboratory. J. Mol. Diagn. 2012, 14, 393–401. [Google Scholar] [CrossRef]
- Hagiya, H.; Maeda, T.; Kusakabe, S.; Kawasaki, K.; Hori, Y.; Kimura, K.; Ueda, A.; Yoshioka, N.; Sunada, A.; Nishi, I.; et al. A fatal case of Exophiala dermatitidis disseminated infection in an allogenic hematopoietic stem cell transplant recipient during micafungin therapy. J. Infect. Chemother. 2019, 25, 463–466. [Google Scholar] [CrossRef]
- Tomczyk, Ł.; Stępień, Ł.; Urbaniak, M.; Szablewski, T.; Cegielska-Radziejewska, R.; Stuper-Szablewska, K. Characterisation of the Mycobiota on the Shell Surface of Table Eggs Acquired from Different Egg-Laying Hen Breeging Systems. Toxins 2018, 10, 293. [Google Scholar] [CrossRef] [Green Version]
Species | BSL | Rubber Door Seals | Sprinklers | Water Drain | Dishwasher Dispensers | Tap Water |
---|---|---|---|---|---|---|
Candida parapsilosis | 1 | I-4, 6, 7, 8, 10 II-4, 5, 10 IV-4 | III-10IV-2 | I-4, 5, 10 II-10 III-10 IV-1, 4, 10 | I-5 II-10 III-10 IV-5 | |
Clavispora lusitaniae | 2 | III-8 | II-8 | |||
Dipodascus capitatus | 2 | III-4 | ||||
Exophiala dermatitidis | 2 | I-5 III-5 IV-5 | I- 6 | I-6 | ||
Meyerozyma guilliermondii | 1 | IV-10 | I-10 IV-10 | |||
Rhodotorula mucilaginosa | 1 | I-4 |
Parameters of Use | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Frequency of use | A few times a week | Once a day | Once a day | A few times a week | Once a day | Once a day | Once a week | A few times a week | Sporadically | Several times a day |
Time to empty the dishwasher after the cycle | A few hours after the end of the cycle | A few hours after the end of the cycle | Immediately after the cycle | Immediately after the cycle | Immediately after the cycle | A few hours after the end of the cycle | A few hours after the end of the cycle | A few hours after the end of the cycle | A few hours after the end of the cycle | A few hours after the end of the cycle |
Chemical cleaning | Once a month | Twice a year | Rarely | Twice a year | Once a month | Once per quarter | Once per quarter | Once per quarter | Rarely | Twice a year |
Mechanical cleaning | Once per quarter | Twice a year | Twice a year | Once a month | Twice a year | Once a year | Once a month | Once per quarter | Once a month | Twice a year |
Use of “all-in-one” capsules | + | + | + | |||||||
Use of dishwasher rinse aid | + | + | + | + | + | + | + | |||
Use of freshener | + | + | + | + | + | |||||
Use of salt | + | + | + | + | + | + | + | + | ||
Number of yeasts isolated from dishwashers | 1 | 1 | 0 | 6 | 5 | 3 | 1 | 2 | 0 | 8 |
Number of yeasts isolated from tap water | 1 | 2 | 1 | 4 |
Designation of Fungal Strain | Identified Fungal Species | Sequence Identity |
---|---|---|
1/TW/4/07.03.16 | Rhodotorula mucilaginosa | 99% identity to the Rhodotorula mucilaginosa, acc. numbers: JQ965876.1, KY109096.1, MT550663.1 |
2/TW/5/07.03.16 | Candida parapsilosis | 98% identity to the Candida parapsilosis, acc. numbers: MK110313.1, MH704191.1, MT001243.1 |
3/TW/10/07.03.16 | Meyerozyma guilliermondii | 99.5% identity to the Meyerozyma guilliermondii, acc. numbers: KX791359.1, KF268282.1, JQ277247.1 |
4/RS/4/07.03.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MT001266.1, MH545914.1, MK110314.1 |
5/RS/5/07.03.16 | Exophiala dermatitidis | 94% identity to the Exophiala dermatitidis, acc. numbers: KF928509.1, MT023625.1, MH878058.1 |
6/RS/6/07.03.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: FJ480839.1, MT176532.1, KU316730.1 |
7/RS/7/07.03.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MT176532.1, MN067761.1, KU316730.1 |
8/RS/8/07.03.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: LC415311.1, MT176532.1, MH481614.1 |
9/RS/10/07.03.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MK110312.1, MK110091.1, MT001266.1 |
10/S/6/07.03.16 | Exophiala dermatitidis | 98% identity to the Exophiala dermatitidis, acc. numbers: KT756672.1, AY731737.1, MH876925.1 |
11/WD/7/07.03.16 | Exophiala dermatitidis | 91% identity to the Exophiala dermatitidis, acc. numbers: KT756672.1, AY731737.1, MH878057.1 |
12/DD/4/07.03.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: KP852497.1, FJ480839.1, MT176532.1 |
13/DD/5/07.03.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MT150862.1, MH545914.1, LC326042.1 |
14/DD/10/07.03.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: KP852497.1, JQ965835.1, FJ746058.1 |
15/TW/8/05.04.16 | Clavispora lusitaniae | 100% identity to the Clavispora lusitaniae, acc. numbers: KT075270.1, KJ756765.1, KU728127.1 |
16/TW/10/05.04.16 | Candida parapsilosis | 99% identity to the Candida parapsilosis, acc. numbers: MT001266.1, MH545914.1, MK110314.1 |
17/RS/4/05.04.16 | Candida parapsilosis | 99% identity to the Candida parapsilosis, acc. numbers: KP852497.1, LC415311.1, MH481614.1 |
18/RS/5/05.04.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: FJ480839.1, MT176532.1, LC413278.1 |
19/RS/10/05.04.16 | Candida parapsilosis | 99.5% identity to the Candida parapsilosis, acc. numbers: MH636034.1, JX441605.1, GU080054.1 |
20/DD/10/05.04.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MT151618.1, MH545914.1, MN545914.1 |
21/TW/10/11.05.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MT176532.1, MN067761.1, KU316730.1 |
22/RS/5/11.05.16 | Exophiala dermatitidis | 97% identity to the Exophiala dermatitidis, acc. numbers: MN447292.1, KF928510.1, MH878047.1 |
23/RS/8/11.05.16 | Clavispora lusitaniae | 99% identity to the Clavispora lusitaniae, acc. numbers: JQ665240, GQ179987.1, AJ539562.1 |
24/S/4/11.05.16 | Dipodascus capitatus | 100% identity to the Dipodascus capitatus, acc. numbers: KP761117.1, JF766627.1, KP761122.1 |
25/S/10/11.05.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: KU316730.1, FJ480839, MT176532.1 |
26/DD/10/11.05.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: KP852497.1, MH481614.1, KU316730.1 |
27/TW/5/13.06.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: KP852497.1, MT176532.1, MH481614.1 |
28/TW/10/13.06.16 | Meyerozyma guilliermondii | 99% identity to the Meyerozyma guilliermondii, acc. numbers: MK907983.1, KY952484.1, KX907633.1 |
29/RS/4/13.06.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MT001266.1, MH545914.1, MK110314.1 |
30/RS/5/13.06.16 | Exophiala dermatitidis | 100% identity to the Exophiala dermatitidis, acc. numbers: MH876937.1, JN391398.1, KT756672.1 |
31/RS/10/13.06.16 | Meyerozyma guilliermondii | 100% identity to the Meyerozyma guilliermondii, acc. numbers: KMK034961.1, MH545918.1, MN653214.1 |
32/DD/1/13.06.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: EF629545.1, MK110312.1, MT001266.1 |
33/DD/4/13.06.16 | Candida parapsilosis | 99% identity to the Candida parapsilosis, acc. numbers: FJ480839.1, MT176532.1, LC413278.1 |
34/DD/10/13.06.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MH613040.1, MT444982.1, MH612989.1 |
35/S/2/13.06.16 | Candida parapsilosis | 100% identity to the Candida parapsilosis, acc. numbers: MK110313.1, MH704191.1, MH545914.1 |
Medium | Composition | |
---|---|---|
Sabouraud broth | Glucose | 20 g |
Peptone | 5 g | |
Sodium chloride (NaCl) | 2.5 g | |
Distilled water | 500 mL | |
pH | 7.2 | |
Sabouraud agar with chloramphenicol | Glucose | 20 g |
Peptone | 5 g | |
Agar | 8 g | |
Chloramphenicol | 0.25 g | |
Distilled water | 500 mL | |
pH | 5.6–5.8 | |
Slants with Sabouraud agar | Glucose | 20 g |
Peptone | 5 g | |
Agar | 11 g | |
Distilled water | 500 mL | |
Glucose | 2 g | |
Galactose | 2 g | |
Saccharose | 2 g | |
Maltose | 2 g | |
Lactose | 2 g | |
Peptone K | 0.5 g | |
Zymograms | 0.1% Bromothymol blue solution in 95% ethyl alcohol | Few drops |
Aqueous solution of bromocresol purple | Few drops | |
10% NaOH solution | Few drops | |
Distilled water | 100 mL | |
pH | 7.7 | |
Glucose | 5 g | |
Yeast-extract | 0.5 g | |
Dipotassium phosphate (K2HPO4) | 2 g | |
Monopotassium phosphate (KH2PO4) | 1 g | |
Nickerson agar | Ammonium nitrate (NH4NO3) | 0.5 g |
Sodium chloride (NaCl) | 0.5 g | |
Biotin | 1.25 g | |
Agar | 7.5 g | |
Distilled water | 500 mL | |
Trypan blue | 0.05 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulesza, K.; Biedunkiewicz, A.; Nowacka, K.; Dynowska, M.; Urbaniak, M.; Stępień, Ł. Dishwashers as an Extreme Environment of Potentially Pathogenic Yeast Species. Pathogens 2021, 10, 446. https://doi.org/10.3390/pathogens10040446
Kulesza K, Biedunkiewicz A, Nowacka K, Dynowska M, Urbaniak M, Stępień Ł. Dishwashers as an Extreme Environment of Potentially Pathogenic Yeast Species. Pathogens. 2021; 10(4):446. https://doi.org/10.3390/pathogens10040446
Chicago/Turabian StyleKulesza, Kamila, Anna Biedunkiewicz, Karolina Nowacka, Maria Dynowska, Monika Urbaniak, and Łukasz Stępień. 2021. "Dishwashers as an Extreme Environment of Potentially Pathogenic Yeast Species" Pathogens 10, no. 4: 446. https://doi.org/10.3390/pathogens10040446
APA StyleKulesza, K., Biedunkiewicz, A., Nowacka, K., Dynowska, M., Urbaniak, M., & Stępień, Ł. (2021). Dishwashers as an Extreme Environment of Potentially Pathogenic Yeast Species. Pathogens, 10(4), 446. https://doi.org/10.3390/pathogens10040446