A Novel Flow Cytometric Approach for the Quantification and Quality Control of Chlamydia trachomatis Preparations
Abstract
:1. Introduction
2. Results
2.1. TEM of C. trachomatis Preparations
2.2. Measurements of DPCs, Sample Characteristics and Voltage Optimization
2.3. Impact of Thresholding and Sample Dilution on Event Counts and Coincidence
2.4. Measurements Performed Using the Small Particle Filter and Identification of Populations
2.5. Measurements of Viability by Flow Cytometry
2.6. Measurements of DPCs and Viability by Flow Cytometry in Comparison to Other Methods
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Microbial Strains and Purification of C. trachomatis Preparations
5.2. Analysis of C. trachomatis Stocks by Transmission Electron Microscopy
5.3. Titration of C. trachomatis Stocks and Total Cell Counts by Microscopy
5.4. Staining of Samples, Total Cell Counts and Viability Assays of C. trachomatis Preparations by Flow Cytometry
5.5. Instrumentation and Flow Cytometer Settings
5.6. Implementation of the Small Particle Filter
5.7. Data Acquisition by Flow Cytometry and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unemo, M.; Bradshaw, C.S.; Hocking, J.S.; de Vries, H.J.C.; Francis, S.C.; Mabey, D.; Marrazzo, J.M.; Sonder, G.J.B.; Schwebke, J.R.; Hoornenborg, E.; et al. Sexually transmitted infections: Challenges ahead. Lancet. Infect. Dis. 2017, 17, e235–e279. [Google Scholar] [CrossRef]
- World Health Organization. WHO guidelines for the treatment of Chlamydia trachomatis. In WHO Guidel; World Health Organization: Geneva, Switzerland, 2016; p. 47. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Sexually Transmitted Infections: Adopting a Sexual Health Paradigm; Vermund, S.H., Geller, A.B., Crowley, J.S., Eds.; The National Academies Press: Washington, DC, USA, 2021; ISBN 978-0-309-44298-5. [Google Scholar]
- Taylor, H.R.; Burton, M.J.; Haddad, D.; West, S.; Wright, H. Trachoma. In The Lancet; Elsevier: London, UK, 2014; Volume 384, pp. 2142–2152. [Google Scholar]
- Redmond, S.M.; Alexander-Kisslig, K.; Woodhall, S.C.; van den Broek, I.V.F.; van Bergen, J.; Ward, H.; Uusküla, A.; Herrmann, B.; Andersen, B.; Götz, H.M.; et al. Genital Chlamydia Prevalence in Europe and Non-European High Income Countries: Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0115753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Liere, G.A.F.S.; Hoebe, C.J.P.A.; Dukers-Muijrers, N.H.T.M. Evaluation of the anatomical site distribution of chlamydia and gonorrhoea in men who have sex with men and in high-risk women by routine testing: Cross-sectional study revealing missed opportunities for treatment strategies. Sex. Transm. Infect. 2014, 90, 58–60. [Google Scholar] [CrossRef]
- Hybiske, K.; Stephens, R.S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA 2007, 104, 11430–11435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barron, A.L. Microbiology of Chlamydia; Routledge Revivals; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781000013016. [Google Scholar]
- Scidmore, M. Cultivation and Laboratory Maintenance of Chlamydia trachomatis. In Current Protocols in Microbiology; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume Chapter 1A, pp. 11A.1.1–11A.1.25. ISBN 9780471729259. [Google Scholar]
- Omsland, A.; Sager, J.; Nair, V.; Sturdevant, D.E.; Hackstadt, T. Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium. Proc. Natl. Acad. Sci. USA 2012, 109, 19781–19785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, K.J.H.; Dirks, J.A.M.C.; Dukers-Muijrers, N.H.T.M.; Hoebe, C.J.P.A.; Wolffs, P.F.G. Review of Chlamydia trachomatis viability methods: Assessing the clinical diagnostic impact of NAAT positive results. Expert Rev. Mol. Diagn. 2018, 18, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Hoefel, D.; Grooby, W.L.; Monis, P.T.; Andrews, S.; Saint, C.P. A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity. J. Microbiol. Methods 2003, 52, 379–388. [Google Scholar] [CrossRef]
- Berney, M.; Vital, M.; Hülshoff, I.; Weilenmann, H.U.; Egli, T.; Hammes, F. Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res. 2008, 42, 4010–4018. [Google Scholar] [CrossRef]
- Khan, M.M.T.; Pyle, B.H.; Camper, A.K. Specific and Rapid Enumeration of Viable but Nonculturable and Viable-Culturable Gram-Negative Bacteria by Using Flow Cytometry. Appl. Environ. Microbiol. 2010, 76, 5088–5096. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Claeys, L.; van der Ha, D.; Verstraete, W.; Boon, N. Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry. Appl. Microbiol. Biotechnol. 2010, 87, 331–341. [Google Scholar] [CrossRef]
- Rüger, M.; Bensch, G.; Tüngler, R.; Reichl, U. A flow cytometric method for viability assessment of Staphylococcus aureus and Burkholderia cepacia in mixed culture. Cytom. Part A 2012, 81A, 1055–1066. [Google Scholar] [CrossRef]
- Schrammel, B.; Cervero-Aragó, S.; Dietersdorfer, E.; Walochnik, J.; Lück, C.; Sommer, R.; Kirschner, A. Differential development of Legionella sub-populations during short- and long-term starvation. Water Res. 2018, 141, 417–427. [Google Scholar] [CrossRef]
- Waldman, F.M.; Hadley, W.K.; Fulwyler, M.J.; Schachter, J. Flow cytometric analysis of Chlamydia trachomatis interaction with L cells. Cytometry 1987, 8, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Grün, M.; Liebisch, M.; Sauerwein, H.; Jahreis, G.; Sachse, K. Flow cytometric quantification of chlamydial infection in cell culture. J. Microbiol. Methods 2009, 78, 360–362. [Google Scholar] [CrossRef]
- Käser, T.; Pasternak, J.A.; Hamonic, G.; Rieder, M.; Lai, K.; Delgado-Ortega, M.; Gerdts, V.; Meurens, F. Flow cytometry as an improved method for the titration of Chlamydiaceae and other intracellular bacteria. Cytom. Part A 2016, 89, 451–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vromman, F.; Laverrière, M.; Perrinet, S.; Dufour, A.; Subtil, A. Quantitative Monitoring of the Chlamydia trachomatis Developmental Cycle Using GFP-Expressing Bacteria, Microscopy and Flow Cytometry. PLoS ONE 2014, 9, e99197. [Google Scholar]
- Mabey, D.C.W.; Hu, V.; Bailey, R.L.; Burton, M.J.; Holland, M.J. Towards a safe and effective chlamydial vaccine: Lessons from the eye. Vaccine 2014, 32, 1572–1578. [Google Scholar] [CrossRef] [Green Version]
- Stary, G.; Olive, A.; Radovic-Moreno, A.F.; Gondek, D.; Alvarez, D.; Basto, P.A.; Perro, M.; Vrbanac, V.D.; Tager, A.M.; Shi, J.; et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 2015, 348, aaa8205-1–aaa8205-14. [Google Scholar] [CrossRef] [Green Version]
- Moos, A.; Hackstadt, T. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect. Immun. 1987, 55, 1144–1150. [Google Scholar] [CrossRef] [Green Version]
- Cossarizza, A.; Chang, H.-D.; Radbruch, A.; Acs, A.; Adam, D.; Adam-Klages, S.; Agace, W.W.; Aghaeepour, N.; Akdis, M.; Allez, M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019, 49, 1457–1973. [Google Scholar] [CrossRef] [Green Version]
- Witwer, K.W.; Buzás, E.I.; Bemis, L.T.; Bora, A.; Lässer, C.; Lötvall, J.; Nolte-‘t Hoen, E.N.; Piper, M.G.; Sivaraman, S.; Skog, J.; et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013, 2, 20360. [Google Scholar] [CrossRef]
- Nolte-’t Hoen, E.N.M.; van der Vlist, E.J.; Aalberts, M.; Mertens, H.C.H.; Bosch, B.J.; Bartelink, W.; Mastrobattista, E.; van Gaal, E.V.B.; Stoorvogel, W.; Arkesteijn, G.J.A.; et al. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 2012, 8, 712–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frossard, A.; Hammes, F.; Gessner, M.O. Flow Cytometric Assessment of Bacterial Abundance in Soils, Sediments and Sludge. Front. Microbiol. 2016, 7, 903. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, E.; Sturk, A.; van Leeuwen, T.; Nieuwland, R.; Coumans, F. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J. Thromb. Haemost. 2018, 16, 1236–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marie, D.; Partensky, F.; Jacquet, S.; Vaulot, D. Enumeration and Cell Cycle Analysis of Natural Populations of Marine Picoplankton by Flow Cytometry Using the Nucleic Acid Stain SYBR Green I. Appl. Environ. Microbiol. 1997, 63, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, R.T. Breakdown and microbial uptake of marine viruses and other lysis products. Aquat. Microb. Ecol. 1999, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tang, V.A.; Renner, T.M.; Fritzsche, A.K.; Burger, D.; Langlois, M.-A. Single-Particle Discrimination of Retroviruses from Extracellular Vesicles by Nanoscale Flow Cytometry. Sci. Rep. 2017, 7, 17769. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, H. Learning Flow Cytometry. In Practical Flow Cytometry; Wiley Online Books; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 61–72. ISBN 9780471722731. [Google Scholar]
- Nolan, J.P. Flow Cytometry of Extracellular Vesicles: Potential, Pitfalls, and Prospects. Curr. Protoc. Cytom. 2015, 73, 13.14.1–13.14.16. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, E.; van Gemert, M.J.C.; Sturk, A.; Nieuwland, R.; van Leeuwen, T.G. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 2012, 10, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Kormelink, T.G.; Arkesteijn, G.J.A.; Nauwelaers, F.A.; van den Engh, G.; Nolte-’t Hoen, E.N.M.; Wauben, M.H.M. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytom. Part. A 2016, 89, 135–147. [Google Scholar] [CrossRef]
- Libregts, S.F.W.M.; Arkesteijn, G.J.A.; Németh, A.; Nolte-’t Hoen, E.N.M.; Wauben, M.H.M. Flow cytometric analysis of extracellular vesicle subsets in plasma: Impact of swarm by particles of non-interest. J. Thromb. Haemost. 2018, 16, 1423–1436. [Google Scholar] [CrossRef] [Green Version]
- Vives-Rego, J.; Lebaron, P.; Nebe-von Caron, G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol. Rev. 2000, 24, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Grégori, G.; Citterio, S.; Ghiani, A.; Labra, M.; Sgorbati, S.; Brown, S.; Denis, M. Resolution of Viable and Membrane-Compromised Bacteria in Freshwater and Marine Waters Based on Analytical Flow Cytometry and Nucleic Acid Double Staining. Appl. Environ. Microbiol. 2001, 67, 4662–4670. [Google Scholar] [CrossRef] [Green Version]
- Phe, M.H.; Dossot, M.; Guilloteau, H.; Block, J.C. Nucleic acid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria. Water Res. 2005, 39, 3618–3628. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, J.; Nuutila, J.; Lilius, E.-M. Green fluorescent protein–propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability. Cytom. Part. A 2004, 60A, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Peeling, R.W.; Brunham, R.C. Neutralization of Chlamydia trachomatis: Kinetics and stoichiometry. Infect. Immun. 1991, 59, 2624–2630. [Google Scholar] [CrossRef] [Green Version]
- Skilton, R.J.; Cutcliffe, L.T.; Pickett, M.A.; Lambden, P.R.; Fane, B.A.; Clarke, I.N. Intracellular parasitism of chlamydiae: Specific infectivity of chlamydiaphage Chp2 in Chlamydophila abortus. J. Bacteriol. 2007, 189, 4957–4959. [Google Scholar] [CrossRef] [Green Version]
- Weiss, E.; Wilson, N.N. Role of exogenous adenosine triphosphate in catabolic and synthetic activities of Chlamydia psittaci. J. Bacteriol. 1969, 97, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Weiss, E.; Myers, W.F.; Dressler, H.R.; Chun-Hoon, H. Glucose metabolism by agents of the psittacosis-trachoma group. Virology 1964, 22, 551–562. [Google Scholar] [CrossRef]
- Sixt, B.S.; Siegl, A.; Müller, C.; Watzka, M.; Wultsch, A.; Tziotis, D.; Montanaro, J.; Richter, A.; Schmitt-Kopplin, P.; Horn, M. Metabolic Features of Protochlamydia amoebophila Elementary Bodies—A Link between Activity and Infectivity in Chlamydiae. PLoS Pathog. 2013, 9, e1003553. [Google Scholar] [CrossRef]
- Omsland, A.; Sixt, B.S.; Horn, M.; Hackstadt, T. Chlamydial metabolism revisited: Interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol. Rev. 2014, 38, 779–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasol, J.M.; Zweifel, U.L.; Peters, F.; Fuhrman, J.A.; Hagström, A. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 1999, 65, 4475–4483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skipp, P.; Robinson, J.; O’Connor, C.D.; Clarke, I.N. Shotgun proteomic analysis of Chlamydia trachomatis. Proteomics 2005, 5, 1558–1573. [Google Scholar] [CrossRef] [PubMed]
- Riepl, M.; Schauer, S.; Knetsch, S.; Holzhammer, E.; Farnleitner, A.H.; Sommer, R.; Kirschner, A.K.T. Applicability of solid-phase cytometry and epifluorescence microscopy for rapid assessment of the microbiological quality of dialysis water. Nephrol. Dial. Transpl. 2011, 26, 3640–3645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohren, C.F.; Huffman, D.R. Particles Small Compared with the Wavelength; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2007; pp. 130–157. [Google Scholar] [CrossRef]
Stock | Serovar | Method | Concentration of Stock (/mL) | Infectivity (%) | CFDA Staining, Flow Cytometry (%) | SGI/PI Staining, Flow Cytometry (%) | |
---|---|---|---|---|---|---|---|
Mean | SD | ||||||
1CTE | E | IFU | 2.98 × 109 | 2.78 × 109 | |||
DPC-microscopy | 2.39 × 1010 | 9.77 × 109 | 15.4 ± 5.7 | 38.0 ± 12.5 | 27.0 ± 3.0 | ||
DPC-flow-cytometry | 2.18 × 1010 | 3.90 × 109 | |||||
2CTE | E | IFU | 6.10 × 109 | 1.66 × 109 | |||
DPC-microscopy | 2.10 × 1010 | 2.95 × 109 | 29.5 ± 4.4 | 60.5 ± 23.8 | 41.9 ± 1.8 | ||
DPC-flow-cytometry | 1.27 × 1010 | 1.07 × 105 | |||||
1CTL2 | L2 | IFU | 1.05 × 109 | 4.96 × 107 | |||
DPC-microscopy | 9.81 × 109 | 7.26 × 108 | 10.5 ± 0.8 | 50.1 ± 2.9 | 37.8 ± 2.2 | ||
DPC-flow-cytometry | 7.60 × 109 | 7.33 × 108 | |||||
1CTF | F | IFU | 1.60 × 109 | 2.37 × 108 | |||
DPC-microscopy | 2.11 × 1010 | 8.79 × 109 | 8.7 ± 3.3 | 49.7 ± 3.4 | 51.8 ± 0.4 | ||
DPC-flow-cytometry | 1.88 × 1010 | 1.78 × 109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klasinc, R.; Reiter, M.; Digruber, A.; Tschulenk, W.; Walter, I.; Kirschner, A.; Spittler, A.; Stockinger, H. A Novel Flow Cytometric Approach for the Quantification and Quality Control of Chlamydia trachomatis Preparations. Pathogens 2021, 10, 1617. https://doi.org/10.3390/pathogens10121617
Klasinc R, Reiter M, Digruber A, Tschulenk W, Walter I, Kirschner A, Spittler A, Stockinger H. A Novel Flow Cytometric Approach for the Quantification and Quality Control of Chlamydia trachomatis Preparations. Pathogens. 2021; 10(12):1617. https://doi.org/10.3390/pathogens10121617
Chicago/Turabian StyleKlasinc, Romana, Michael Reiter, Astrid Digruber, Waltraud Tschulenk, Ingrid Walter, Alexander Kirschner, Andreas Spittler, and Hannes Stockinger. 2021. "A Novel Flow Cytometric Approach for the Quantification and Quality Control of Chlamydia trachomatis Preparations" Pathogens 10, no. 12: 1617. https://doi.org/10.3390/pathogens10121617