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Abstract: Chlamydia trachomatis is an obligate intracellular pathogenic bacterium with a biphasic de-
velopmental cycle manifesting two distinct morphological forms: infectious elementary bodies (EBs)
and replicative intracellular reticulate bodies (RBs). Current standard protocols for quantification of
the isolates assess infectious particles by titering inclusion-forming units, using permissive cell lines,
and analyzing via immunofluorescence. Enumeration of total particle counts is achieved by counting
labeled EBs/RBs using a fluorescence microscope. Both methods are time-consuming with a high risk
of observer bias. For a better assessment of C. trachomatis preparations, we developed a simple and
time-saving flow cytometry-based workflow for quantifying small particles, such as EBs with a size
of 300 nm. This included optimization of gain and threshold settings with the addition of a neutral
density filter for small-particle discrimination. The nucleic acid dye SYBR® Green I (SGI) was used
together with propidium iodide and 5(6)-carboxyfluorescein diacetate to enumerate and discriminate
between live and dead bacteria. We found no significant differences between the direct particle count
of SGI-stained C. trachomatis preparations measured by microscopy or flow cytometry (p > 0.05).
Furthermore, we completed our results by introducing a cell culture-independent viability assay. Our
measurements showed very good reproducibility and comparability to the existing state-of-the-art
methods, indicating that the evaluation of C. trachomatis preparations by flow cytometry is a fast and
reliable method. Thus, our method facilitates an improved assessment of the quality of C. trachomatis
preparations for downstream applications.

Keywords: flow cytometry; Chlamydia trachomatis; quantification; viability; quality control

1. Introduction

Chlamydia trachomatis remains the most commonly reported sexually transmitted
bacterial pathogen in the world [1]. The WHO estimated that there were 131 million
new cases of chlamydial infection globally among adults in 2012 [2]. In the United States
alone, where prevention programs benefit from strong data provided by the Centers for
Disease Control and Prevention, nearly two million cases have been reported annually,
with an increasing rate since the year 2000 [3]. The infection caused by C. trachomatis
manifests a broad spectrum of distinct clinical symptoms, which are also conditioned by
a strict tissue tropism determined by different serovars. Serovars A to C are responsible
for the leading cause of blindness in developing countries, where strategy programs have
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been initiated to eliminate trachoma [4]. In contrast, serovars D to K represent the most
prevalent sexually transmitted organism in high-income countries [5]. Serovars L1 to L3
cause invasive urogenital and anorectal infections with an increasing incidence among
HIV-infected men who have sex with men [6].

C. trachomatis harbors one of the smallest bacterial genomes. However, this obligate
intracellular bacterium presents a manifold biological background with a complex biphasic
developmental cycle, which is characterized by two distinct morphological forms: (i) the
infectious elementary body (EB); and (ii) the replicative intracellular reticulate body (RB).
During the course of an infection, EBs bind to susceptible host cells and enter as phagocytic
vesicles. In these vesicles, the developing EBs form the chlamydial inclusion, where each
individual EB differentiates into one RB. RBs depend on host cell metabolites to develop
and divide by binary fission. After several divisions, RBs differentiate into EBs, which
finally leave the host cell by lysis or extrusion [7]. Size is a main morphological trait serving
to discriminate between the distinct stages. At 300 nm, chlamydial EBs are considerably
smaller than RBs, which are approximately 1000 nm [8]. In addition, the intermediate body
(IB), a transitional stage between the distinct EBs and RBs, has been described.

The state-of-the-art method to purify EBs and RBs is density gradient centrifugation
followed by the assessment of infectious particles by titration of inclusion-forming units
(IFUs) using immunofluorescence of the infected host cells [9]. To determine viability, a
comparison of the IFU titer with the total bacterial counts is required [10]. Other options to
assess Chlamydia viability are viability PCR and messenger RNA detection [11]. However,
the limitations of these methods are uncertainties concerning the degradation and stability
of messenger RNA, strong dependency on membrane integrity, and bacterial load.

Flow cytometry-based methods to measure viability have been successfully applied
to other microorganisms, including bacteria from water samples and cultured bacteria,
such as Escherichia coli, Pseudomonas aeruginosa and Legionella species [12–17]. In fact, flow
cytometric methods have been also performed for analyses of infectivity, persistence, and
growth of Chlamydia within eukaryotic host cells [18–20]. However, these studies did not
determine the quantity and viability of purified Chlamydia preparations. Only one study
by Vromman and colleagues performed direct measurement of EBs by flow-cytometry with-
out presenting a detailed methodology or including viability measurements [21]. Although
both the number of EBs and their viability affect the outcome of an infection [22,23], respec-
tive methods to determine these parameters in C. trachomatis preparations are rarely utilized
and compared [10,24]. Therefore, we analyzed in this study whether flow-cytometry can
be used for quantification and qualification of EBs in purified preparations despite their
small size that makes them hardly distinguishable from background noise. We also hypoth-
esized that it might be possible to use viability markers already used in flow-cytometry
for an objective evaluation of the viability of C. trachomatis preparations. Finally, we tested
whether we are able to distinguish different developmental stages of C. trachomatis by
flow-cytometry and how the new methodology can be brought into connection with al-
ready well-established methods. In our opinion, a precise quality control of Chlamydia
preparations is a prerequisite when performing, in particular, infectivity assays or experi-
ments with immune cells in which it is necessary to discriminate between viable/infective
and non-viable stages. To the best of our knowledge, a detailed methodology for a host
cell-independent quantitative assessment of chlamydial infectious particles has not yet
been established. Therefore, we develop and describe here a novel flow-cytometric method
for the simple and time-saving quantification and viability assessment of C. trachomatis
preparations.

2. Results
2.1. TEM of C. trachomatis Preparations

The ultrastructural analysis of preparations showed the presence of EBs characterized
by small size (∼300 nm diameter) and highly condensed chromatin, as well as larger RBs
(up to 1000 nm diameter) with relaxed chromatin (Figure 1). Because the EB-enriched



Pathogens 2021, 10, 1617 3 of 17

fraction collected at the 44/54% interface also contained RBs, it is thus referred to in the
following as EB/RB preparation.
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Figure 1. Electron micrographs of C. trachomatis serovar E (left panel) and serovar L2 (right panel)
samples prepared by using Gastrografin® gradient centrifugation. Based on their characteristic
morphological features, a mixture of EBs and RBs was detected in both preparations. EBs (black
arrows) contain highly condensed material appearing as electron-dense and electron-lucent, whereas
RBs (white arrows) represent larger structures containing relaxed, reticulated nucleoid material. In-
termediate morphologies where characteristics of both are observed may represent IBs (grey arrows).

2.2. Measurements of DPCs, Sample Characteristics and Voltage Optimization

Preparations of C. trachomatis were stained with either cLPS mAb or nucleic acid
stain SYBR® Green I (SGI). Comparative measurements show no significant differences in
particle counts between the staining methods when using flow cytometry. These results
indicate that SGI nucleic acid stain is a convenient alternative for the direct enumeration
of C. trachomatis stock preparations with a no-wash-out staining protocol to enable the
quantification of preparations without loss of material. Therefore, SGI was used in the
following experiments and for setting optimization. However, significant differences in
particle counts are seen between direct particle counts (DPC)-microscopy and DPC-flow-
cytometry at serial dilutions from 1:100 to 1:10,000 (Figure 2). Therefore, to improve the
comparability between microscopy and flow cytometry, we performed further adaptations
in terms of optimized voltage and threshold settings.

2.3. Impact of Thresholding and Sample Dilution on Event Counts and Coincidence

Comparative measurements of different threshold settings were performed at different
serial dilutions. Different threshold settings show specific contour plot profiles (Figure 3).
The DPCs measured by flow cytometry—when including the fluorescence (FL-1 5000) and
SSC (SSC 100) threshold (Figure 3C)—were comparable to DPC by microscopy (p > 0.05).
Other threshold settings did not achieve the same accuracy (Figure 4). In addition, we
observed alterations in height (SSC-H) vs. area (SSC-A) plots between measurements with
different threshold settings (Figure S1). The principle of height and area is described below
in Materials and Methods.
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Figure 2. (A) Representative dot plots of C. trachomatis (serovar E) EB/RB preparations, side scatter
(SSC) vs. forward scatter (FSC), compared to phosphate-buffered saline (PBS). (B) Representative
dot plots of C. trachomatis preparations (concentration of 2.39 × 106/mL) stained with either FITC-
conjugated cLPS mAb B410F or nucleic acid stain SGI; SSC (488-10+OD2 filter) vs. fluorescence
intensity (FL-1, emission filter 530/30 nm, log scale) is shown. PBS supplemented with both dyes
without EBs/RBs was measured to determine the background noise; fluorescence cut-off values were
set at 1% (black line) and the SSC threshold at 100 (red line). (C) Counts of SGI- vs. cLPS-stained
EB/RB-dilutions (from 1:100 to 1:1,000,000) measured by flow cytometry compared to the DPCs of
SYBRTM Gold (SG)-stained EBs/RBs analyzed by epifluorescence microscopy. The exponential trend
lines were fitted and shown with a graph of standard linear relation (y = x, grey line).
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Figure 3. Standard instrument filter settings. Representative contour plots of EBs/RBs (serovar E)
at a concentration of 2.39 × 107/mL stained with SGI (blue) in comparison to SGI-incubated PBS
reagent control (red). The measurement was performed with different threshold settings: (A) SCC
100, (B) SSC 300 and FSC 1000, (C) SCC 100 and FL-1 5000, (D) SSC 300 and FSC 1000 and FL-1 5000.
The thresholds are marked with corresponding lines (SSC 100 or SSC 300—red, FSC 1000—green,
FL-1 5000—blue). The gating strategy (black lines) including the corresponding histograms with a
definition of the positive population in gate quadrant 2 (Q2) is shown in the last row.
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Figure 4. Strong dependency of the particle count on the threshold settings when using standard
instrument filters. (A) Serial dilutions (from 1:1,000 to 1:1,000,000) of EBs/RBs (serovar E) counted by
fluorescence microscopy (DPC microscopy) compared to measurements by flow cytometry (Figure 3,
gate Q2) at different thresholds (log scale) with fitting exponential trend lines. (B) The statistical
analysis was done using one-way ANOVA and Dunnett’s multiple comparisons test. p values < 0.05
were considered statistically significant; * p < 0.05, ** p < 0.01, **** p < 0.0001. The analysis is
exemplified at two dilutions: 2.41 × 106/mL (upper panel) and 2.98 × 105/mL (lower panel).

2.4. Measurements Performed Using the Small Particle Filter and Identification of Populations

Consecutive measurements of the samples were performed by implementing the SSC
488-10 filter. A good separation of populations in the SSC was possible at different dilutions
of the cell suspension (Figure 5A–C). This approach even made it possible to enumerate
unstained particles at a concentration of 1 × 106–5 × 106 particles/mL (Figure 5D). This
underscores the importance of appropriate dilution. The filter allows the omission of
the fluorescence trigger without compromising the coincidence rate and, consequently,
comparable particle counts using only the SSC trigger were achieved (Figure 5E). The
advantage of measuring without the fluorescence trigger is the possibility to also visualize
the unstained sample at the recommended coincidence rate.
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Figure 5. Superior discrimination of EBs/RBs with implementation of a small particle SSC filter.
Representative contour plots with corresponding histograms of SSC (SSC 488-10 filter) vs. FSC or
FL-1 fluorescence intensity (log scale, FL-1: 530/30-nm filter) of EBs/RBs (serovar E) at the following
concentrations: (A) 2.39 × 107/mL, (B) 2.41 × 106/mL and (C) 2.98 × 105/mL stained with SGI. The
positive population is shown in gate Q2. PBS stained with SGI (red) is used as a reagent control.
(D) Unstained EBs/RBs (blue) at 2.41 × 106/mL are shown in gate Q1 and compared to PBS (red). For
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presentation purposes the threshold was set on SSC 100 and completed with threshold marks used
in further measurements: SSC 1000 (red lines), FL-1 5000 (blue lines). The numbers represent
percentages of EB/RB preparations (blue contour plots) in the positive gate. (E) Measurements of
particle counts with new threshold settings. Serial dilutions (from 2.39 × 107/mL to 2.5 × 104/mL)
of EBs/RBs (serovar E) counted by fluorescence microscopy (DPC microscopy, black trend line)
compared to measurements by flow cytometry (gate Q2) without (SSC 1000) or with (SSC 1000 + FL-1
5000) a fluorescence trigger. The exponential trend lines were fitted with corresponding equations
and R-squared values. The statistical analysis was done using one-way ANOVA and Dunn’s multiple
comparisons test. p values < 0.05 were considered statistically significant; *** p < 0.001.

2.5. Measurements of Viability by Flow Cytometry

We also applied flow cytometry to employ viability indicators (such as membrane
integrity and esterase activity, previously used with numerous other bacterial species) for
the analysis of viable bacteria in C. trachomatis EB/RB preparations including serovars E,
F and L2. The EB/RB preparations did show considerable amounts of propidium iodide
(PI)-positive particles (from 48.2 to 73%) in fresh chlamydial stocks, indicating that the
majority of bacteria had compromised cell wall integrity. This consideration is supported,
first, by comparing the fresh EB/RB preparation after its inactivation with heat or ethanol;
in the latter, the PI-negative population shifted towards positivity (Figure 6A). Second,
viable E. coli preparations did not score PI-positively unless treated with heat or ethanol, as
shown in Figure 6B. Third, the 5(6)-carboxyfluorescein diacetate (CFDA) staining of viable
C. trachomatis preparations showed positive particles accounting from 39.3 to 60.5%. The
inactivated preparations did not show any remaining esterase activity (Figure 7).
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Figure 6. Measurements of membrane integrity by SGI/PI staining. Representative contour plots of
viable, heat- and C2H5OH-inactivated (A) C. trachomatis EBs/RBs (serovar E) and (B) E. coli stained
with SGI/PI are shown in blue. PBS stained with SGI/PI as a reagent control is shown in red.
PI-negative (live) bacteria with intact outer membranes are detected in the triangular gate. Threshold
settings: SSC 1000.
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Moreover, by flow cytometry, we also analyzed C. trachomatis samples over a time
course of 96 h and compared the particle counts per mL (Figure 8A). There was a significant
decrease in the number of particles over this time from 1.27 × 106/mL to 4.86 × 105/mL,
probably due to decay of EBs or aggregation of single particles. This decline must be
considered when calculating percentages of metabolically active particles as fractions of
DPCs. The viability stains analyzed over a time course of 48 h showed the strongest
decrease within the first six hours, from 38.0% to 22.3% and from 27.0% to 19.6% for CFDA
and SGI/PI, respectively (Figure 8B). In addition, esterase activity and membrane integrity
measured by flow cytometry were aligned with infectivity, which is defined as the ratio
between IFUs and the DPCs measured by epifluorescence microscopy. The infectivity of
freshly thawed stocks was 15.4% at baseline and already decreased to below 1% after 24 h.
This was in contrast to both viability stains measured by flow cytometry, which remained
stable after six hours and did not fall below 16% within 48 h (Figure 8B).
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Figure 8. Viability of C. trachomatis measured by flow cytometry over time. (A) Time course of SGI/PI- and CFDA-stained
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EBs/RBs (serovar E, Stock 1CTE) measured by flow cytometry compared to infectivity. The infectivity is calculated from the
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and CFDA-positive particle counts during 0 to 44 days (1056 h).

Generally, the viability stains by flow cytometry showed higher percentages of vi-
able bacteria in comparison to infectivity, but not to the same extent when comparing
different serovars (see below). However, at a later time point—especially after 24 h—the
discrepancy between infectivity and viability by flow cytometry became evident. Strikingly,
the metabolic activity and membrane integrity of the Chlamydia species remained intact
even after 44 days in a host-free environment at 4 ◦C and did not drop below 1 × 105/mL
(Figure 8C).
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2.6. Measurements of DPCs and Viability by Flow Cytometry in Comparison to Other Methods

To evaluate different preparations (including different serovars) of C. trachomatis, the
freshly thawed stocks were diluted and compared with the results either gathered by
standard methods or by our new methods using flow cytometry. The summary of these
comparative measurements is shown in Table 1, indicating very good comparability and
reproducibility of the DPCs measured by microscopy or flow cytometry for all serovars.
Comparing the viability methods, the differences depended on the given serovar. Serovar
L2 showed the highest CFDA activity (50.1%) compared to infectivity (10.5%) and mem-
brane integrity (37.8%), whereas for serovar E, the differences were less distinct. Serovar
F showed a high esterase activity (49.7%) as well as membrane integrity (51.8%), despite
relatively low infectivity (8.7%).

Table 1. Comparative measurements of C. trachomatis stocks using different methods. Measurements of DPCs of freshly
thawed stocks were performed by microscopy and flow cytometry with optimized threshold settings. Counting was
performed at the dilution of 1:10,000 of the original stock. The calculated infectivity is the quotient between IFUs and the
DPC measured by epifluorescence microscopy.

Stock Serovar Method
Concentration of Stock (/mL)

Infectivity (%)
CFDA Staining,

Flow Cytometry (%)
SGI/PI Staining,

Flow Cytometry (%)Mean SD

1CTE E IFU 2.98 × 109 2.78 × 109

DPC-microscopy 2.39 × 1010 9.77 × 109 15.4 ± 5.7 38.0 ± 12.5 27.0 ± 3.0
DPC-flow-cytometry 2.18 × 1010 3.90 × 109

2CTE E IFU 6.10 × 109 1.66 × 109

DPC-microscopy 2.10 × 1010 2.95 × 109 29.5 ± 4.4 60.5 ± 23.8 41.9 ± 1.8
DPC-flow-cytometry 1.27 × 1010 1.07 × 105

1CTL2 L2 IFU 1.05 × 109 4.96 × 107

DPC-microscopy 9.81 × 109 7.26 × 108 10.5 ± 0.8 50.1 ± 2.9 37.8 ± 2.2
DPC-flow-cytometry 7.60 × 109 7.33 × 108

1CTF F IFU 1.60 × 109 2.37 × 108

DPC-microscopy 2.11 × 1010 8.79 × 109 8.7 ± 3.3 49.7 ± 3.4 51.8 ± 0.4
DPC-flow-cytometry 1.88 × 1010 1.78 × 109

3. Discussion

Measuring small particles (<500 nm) by flow cytometry is challenging due to the lim-
ited resolution and sensitivity of most flow cytometers. Therefore, each approach requires
custom-tailored methods, and special adaptations of the flow cytometry settings must be
taken into account. These adaptations include threshold settings on a fluorescence trigger
or even combinations of different threshold parameters, while considering that the usual
background discrimination in the FSC and SSC is often not feasible. Guidelines for measur-
ing small particles have been established to a large extent by investigating extracellular
vesicles (EVs), for which standardization procedures have been published [25–27]. Apart
from EV research, another rapidly growing field for flow cytometry applications is the
analysis of bacterial or archaeal cells in natural environments. In particular, fastidious
bacterial species which are difficult to cultivate are very eligible for flow cytometry-based
quantification [28].

This includes C. trachomatis, which is difficult to cultivate due to its intracellular growth
and for which the methods of quantification are conspicuously time-consuming. Moreover,
to avoid observer bias and facilitate reproducible results, strictly standardized procedures
are needed. Recent advances in flow cytometry have paved the way for new applications
and thereby represent a means to overcome these limitations. Especially high-resolution or
nanoscale flow cytometry enables single-cell discrimination of submicron particles under
certain conditions. However, when studying small particles, the following adjustments
have to be considered: First, it must be noted that there are significant differences between
flow cytometers and most of them do not have nanoparticle sensitivity, which is the
prerequisite to detect particles smaller than 500 nm [29]. Provided that the available flow
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cytometer enables small particle discrimination, the next step is to identify the positive
population by choosing an appropriate staining method. For bacteria, nucleic acid dyes of
the SYBR® Green family have been successfully used for DPCs [13,30]. This approach was
later extended even to free-living viruses [31,32]. We utilized this technique and applied
it in a new manner to enumerate chlamydial stocks. No differences in terms of particle
counts were detected when comparing the DPCs of samples stained with anti-cLPS-specific
mAb or with SGI. Nevertheless, the SGI-stained samples provided a brighter signal and
facilitated a very simple staining technique (Figure 2).

To establish a user-independent flow cytometry-based counting method for Chlamydia,
we then estimated the appropriate dilution of the samples. Furthermore, it was essential to
set the right threshold for separating populations of interest from the background noise.
Both parameters strongly influenced the number of measured events per second and con-
sequently also the coincidence rate or swarming (Figure S1). Coincidence describes the
simultaneous passing of two or more particles through the interrogation point of the laser,
while still being distinguishable [33,34]. In contrast, swarming occurs in highly concen-
trated samples when the coincidence progresses to a permanent scatter and fluorescent
signal and it is no longer possible to separate individual events [35,36]. Allowance must be
made for these two phenomena when measuring small particles and focusing on the enu-
meration of total counts. To prevent the occurrence of either phenomenon, it was necessary
to use serial dilutions of chlamydial preparations after adapting the flow cytometer settings.
Our results showed an event rate displaying a linear correlation of the SGI-positive particle
concentration upon serial dilution, indicating a good separation of single events. However,
despite linearity, the DPC measured by flow cytometry was only comparable to the DPC
by microscopy at lower dilutions and showed strong dependency on the threshold settings
(Figure 2). This may be explained by the influence of non-fluorescent submicron-sized
particles on the light scatter detection of fluorescent-labeled events of interest, as previously
described by Libregts and colleagues [37].

C. trachomatis preparations purified by using density gradient centrifugation poten-
tially contain particles representing membrane vesicles from the host cell. Nevertheless,
when using the right flow cytometer settings under consideration of the appropriate
serial dilution, the DPC by flow cytometry showed high reproducibility (Figure 4 and
Table 1). After including the small particle filter, an increase in the dynamic range of the
SSC detection was achieved. Consequently, it was possible to separate chlamydial EB/RB
preparations from background noise by applying only the SSC trigger. Therefore, including
the fluorescence trigger was no longer a prerequisite for accurate DPC (Figure 5). This
approach with the visualization of the unstained control is closer to the analysis of, e.g.,
human cells and may be easier for the user to comprehend. It thus may also represent a
more convenient method to incorporate additional markers and perform a multi-panel
stain including compensation more approachable in a “small particle setting”. This specific
small particle filter also proved to be very valuable for the flow cytometry-based methods
of viability detection. To assess the viability of C. trachomatis preparations, we modified pre-
viously described viability methods of bacteria [12–17]; a summary is shown in Figure S2.
As an indicator of esterase activity, the fluorogenic substrate CFDA was previously used
as a marker of bacterial viability [12,13]. The principle of action is the passive entrance of
the substrate into the cell, followed by esterase-mediated hydrolyzation. This leads to the
generation of a highly fluorescent fluorophore when an intact cell membrane protects the
esterase from degradation [12,38].

We applied another method to access membrane integrity by adding PI to SGI-stained
samples (Figure 7). PI is a nucleic acid-staining dye that, unlike SGI, only enters cells with
damaged membranes. It has been widely used previously to identify viable bacteria in wa-
ter samples [13,39,40] and bacterial cultures [41]. With both staining methods, we identified
viable C. trachomatis in our preparations. However, when comparing the results with the
SGI/PI staining of E. coli (Figure 6B), we clearly demonstrated that even fresh preparations
of chlamydial stocks showed high percentages of PI-positive particles (Figure 6A). This
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finding indicates a high proportion of EB/RBs with damaged membranes, addressing once
more the issue of dead EBs in even highly purified preparations [42,43].

This observation contrasts with the findings of Vromman and colleagues, where the
DPC of purified green fluorescent protein (GFP) expressing Chlamydia measured by flow
cytometry was equal to the IFU [24]. One could explain this difference by a weak signal of
GFP in certain EBs that consequently results in an underestimation of measured particles.

The calculated infectivity of our samples was generally lower in comparison to the flow
cytometry-based viability methods. This may be explained by the fact that not all viable
cells are infective, but also viable cells can be overestimated in a preparation. However,
although viability cannot be equated with infectivity, through the correlation given between
measurements of particle counts by DNA staining, the viability staining and the infectivity
(IFU), we can extrapolate which proportions of infectious versus non-infectious or dead
Chlamydia are present in our preparations. Strikingly, there were considerable differences
when analyzing different serovars. Serovar F, in particular, showed the highest percentages
of viable cells by both flow cytometry-based methods, despite the lower level of infectivity
(Table 1). Serovars E and L2 showed a pronounced difference between CFDA-positive
and PI-negative cells. These differences diminished over time, as shown by the long-term
viability measurement of serovar E (Figure 8C). Currently, we cannot explain the reason for
the pronounced difference in esterase activity in serovars E and L2, also when compared
to the lower proportion of C. trachomatis with intact membranes. A prolonged but also
less specific persistence of esterase activity in certain samples may be the reason for this
difference. This issue was briefly addressed in a study [38] in which esterase activity was
measured in gamma-radiated cells for over two weeks. Another possibility may also be
the presence of host cell-derived CFDA-positive components in chlamydial preparations
that contribute to the elevated levels. However, when performing the same viability
assays with inactivated EB/RB preparations (ethanol-, heat- or UV-treated samples), both
staining methods stood out as highly reproducible and showed neither residual metabolic
activity nor membrane integrity (Figures 6 and 7). Both independent viability parameters
CFDA- and PI/SGI staining significantly correlate even after long-term measurements of
stored Chlamydia samples in a host-free environment, and further correlate with the IFU
(Figure 8B,C). Finally, both dyes were associated with long-term stability, indicating that a
respectable proportion of cells still exhibited viability markers after storage in a host-free
environment at 4 ◦C (Figure 8C).

Early research in chlamydial metabolism regarded EBs as metabolically inert parti-
cles [44,45]. More recently, evidence has emerged that offers contradictory findings and
requires this hypothesis to be reconsidered, since an increasing number of studies have
demonstrated metabolic activity involving transcription and protein biosynthesis in a host-
free environment in chlamydial EBs [10,46,47]. This is also in accordance with our results
that show long-term (44-day) esterase activity as well as membrane integrity of serovar
E measured by flow cytometry (Figure 8C). However, the importance of the prolonged
metabolic activity during host-free incubation of C. trachomatis despite the rapid decrease
in infectivity needs further clarification.

SGI staining made it possible to gain specific flow cytometry profiles with a differen-
tiation of two populations in the fluorescence channel (Figure S3A). These two fractions
may represent the different developmental stages of C. trachomatis—EBs or RBs—with
a high or low content of nucleic acids, or may reflect differences in the ratio between
double-stranded DNA and RNA. Intriguingly, in serovar L2, this differentiation was even
seen by PI staining, in which the population with lower FL-1 signal intensity (P2) was
predominantly PI-positive, as we demonstrated by back-gating (Figure S3B). When looking
more closely at the PI negative populations in long-term measurements upon storage in
a host-free environment, the population in the P2 gate displayed up to 6 h, as two sub-
populations and the sub-population with the lowest fluorescence intensity slowly faded
away between 6 and 48 h. Furthermore, the percentage of the lower (P2) versus the higher
(P1) SGI-stained events shifted over time—74%/22% versus 50%/43% (Figure S4). These
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less stable sub-populations in gate P2 may represent RBs and/or IBs, suggesting differences
in membrane stability between different developmental stages. This is in accordance with
the findings of Sixt and colleagues who, using the redox dye 5-cyano-2,3-ditolyl tetrazolium
chloride, demonstrated that only EBs and not RBs of C. aemoebophila contributed to the
metabolic activity after 40 h of host-free incubation [46]. A similar flow cytometry-based
discrimination of bacterial populations in natural waters by SGI signal intensity with a high
or low content of nucleic acids has previously been discussed [13,48]. However, whether
EBs and IBs or RBs in our samples resemble populations with high and/or low nucleic
acid staining remains subject for further investigations.

The method presented in our study can also be seen as the basis for the separation and
flow-cytometric sorting of subpopulations in Chlamydia preparations. For this approach, as
for the analysis shown here, appropriate sample dilution and optimized threshold settings
are an absolute requirement for coincidence or swarm control. The flow cytometric analysis
of C. trachomatis preparations including sorting have a great potential, as they facilitate
the distinction and separation of subpopulations based on nucleic acid content, viability
or specific markers in these preparations. In addition, the identification of appropriate
subpopulation markers would help to establish a greater degree of accuracy on this mat-
ter. Thus, high-resolution flow cytometry-based analysis can assist in characterizing cell
culture-derived bacterial preparations with the potential to identify, apart from the well-
known EBs or RBs, membrane vesicles and other, so far unidentified submicron particles.
Unfortunately, due to current technical limitations of flow cytometers to sort small particles,
we were not able yet to sort the two populations seen in Figures S4 and S5 and prove
whether the one or the other represents EBs or RBs, respectively. Finally, our approach
is only applicable for purified Chlamydia preparations. However, due to contamination
with fragments from the host cells, crude preparations are of limited value in experimental
settings, in particular when studying host-pathogen interactions and immune responses
using in vitro and in vivo immunoassays. Therefore, due to this constraint we do not rec-
ommend the use of crude Chlamydia preparations but rather purified ones and to analyze
their quality by the flow-cytometry based approach described here.

4. Conclusions

In conclusion, we developed a highly reproducible flow cytometry-based method
to both quantify chlamydial preparations and assess viability. We optimized the flow
cytometry settings by implementing a neutral density filter. Thereby, we established a
method for a better quantitative and qualitative assessment of C. trachomatis preparations
for further downstream applications.

5. Material and Methods
5.1. Microbial Strains and Purification of C. trachomatis Preparations

C. trachomatis serovars E (DSM 19131), F (DSM 19410) and L2 (DSM 19102) were used
in this study and propagated in HeLa epithelial cells (ATCC® CCL-2TM) or McCoy [Mc-
CoyB] fibroblasts (ATCC® CRL-1696TM) with modifications, as previously described [9].
The eukaryotic cell lines were regularly tested for mycoplasma contamination by fluores-
cence microscopy using Hoechst stain No. 33342. In brief, confluent monolayers were
infected with C. trachomatis and grown in Iscove’s Modified Dulbecco’s Medium with
L-glutamine (GibcoTM, Thermo Fisher Scientific Waltham, MA, USA) containing 10 vol%
heat-inactivated fetal bovine serum (Biowest, Nuaillé, France; Cat. No. S181H-500). To
cultivate serovars E and F, 1 vol% minimum essential medium non-essential amino acids
solution (MEM NEAA, 100X, Gibco™, Thermo Fisher Scientific, Cat. No. 11140050) and
1 µg/mL cycloheximide (Sigma-Aldrich, Burlington, MA, USA; Cat. No. 01810) were
added to the medium described above. After 48 h post-infection at 37 ◦C in a 5% CO2
atmosphere, the cells were harvested by disrupting the monolayer with a cell scraper. The
cell suspension was sonicated using a sonic dismembrator (Model 120, FisherbrandTM) at
an amplitude of 30% for 2 × 20 s. The chlamydial EBs/RBs were obtained by sequential
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centrifugation of the lysates at 500× g (15 min, 4 ◦C) and 27,000× g (35 min; 4 ◦C). The
pelleted material was suspended in sucrose-phosphate-glutamic acid (SPG) buffer (0.2 M
sucrose, 3.8 mM KH2PO4, 7.2 mM Na2HPO4, 5 mM L-glutamic acid, pH 7.4) for further
density gradient purification, as previously described [49]. In brief, the partially pure
EB/RB preparations were layered onto 20% Gastrografin® (Bayer, Leverkusen, Germany;
Cat. No. 80375310) in K-36 buffer (0.1 M KCl, 0.015 M NaCl, and 0.05 M potassium
phosphate buffer, pH 7.0) and centrifuged at 40,000× g for 30 min in a Beckman SW28
rotor at 4 ◦C. Further purification followed by overlaying the chlamydial EBs/RBs onto a
discontinuous gradient of 34%, 44% and 54% Gastrografin® in K-36 buffer. The EB-enriched
fraction was collected at the 44/54% interface after centrifugation at 40,000× g for 1 h in a
Beckman SW28 rotor at 4 ◦C. The collected fractions were diluted in 10 times the volume
of SPG buffer and centrifuged at 18,650× g for 30 min at 4 ◦C. The pellet was resuspended
in SPG buffer and stored in aliquots at −80 ◦C.

5.2. Analysis of C. trachomatis Stocks by Transmission Electron Microscopy

For evaluation and quality control, samples of C. trachomatis serovars E and L2 were
analyzed by transmission electron microscopy (TEM). This method is broadly used to
classify ultrastructural characteristics and distinguish between different morphological
forms [10,46]. For this purpose, pellets of density gradient-purified EB-enriched fractions
of C. trachomatis preparations were fixed in 3% glutaraldehyde (Merck) in 0.1 M Sørensen
phosphate buffer (pH 7.4). After washing in Sørensen phosphate buffer, the specimens
were postfixed in a 1% solution of osmium tetroxide. Dehydration was performed by a
series of graded ethanol solutions (70%, 80%, 96% and 100%) subsequently infiltrated with
propylene oxide, followed by increasing ratios of epoxy resin-propylene oxide (1:1, 3:1)
and, finally, pure resin. After an additional change, the resin was polymerized at 60 ◦C.
Semi-thin sections were cut at 0.8 µm and stained with toluidine blue, ultra-thin sections
were cut at 70 nm, mounted on copper grids (Science Services, Munich, Germany), and
stained with uranyl acetate and lead citrate. Transmission electron micrographs were made
with an electron microscope (EM900, Zeiss, Oberkochen, Germany).

5.3. Titration of C. trachomatis Stocks and Total Cell Counts by Microscopy

Serial dilutions of C. trachomatis stocks in SPG were transferred to monolayer tissue
culture cells seeded in 24-well plates and centrifuged for 60 min at 900× g (room tempera-
ture) in a swinging bucket rotor for microtiter plates. After addition of 1 mL chlamydial
culture medium (described above), the samples were incubated for 30 to 48 h depending
on the specific serovar. After staining with fluorescein isothiocyanate- (FITC) conjugated
anti-Chlamydia lipopolysaccharide (cLPS) monoclonal antibody (mAb) B410F (Thermo
Fisher Scientific, Cat. No. MA1-7339), the number of IFUs was counted using an inverted
epifluorescence microscope and calculated, as previously described [9].

In brief, IFUs were counted manually, and selected images of the infected cell cultures
were further analyzed by ImageJ to objectify the size of the inclusions. All inclusions with a
size from 80 µm2 to 700 µm2 were considered. The average size of inclusions was 128.4 µm2

and 301.1 µm2 after 40 h and 60 h of incubation, respectively.
DPC-microscopy of C. trachomatis preparations (using a standard epifluorescence

microscope) were determined with few modifications, as previously described [10,20,50].
SG nucleic acid stain (Invitrogen, Carlsbad, CA, USA, Cat. No. 10358492) was used instead
of acridine orange and samples were filtered through a Whatman® Anodisc inorganic
filter membrane (Sigma Aldrich, Merck KGaA, Darmstadt, Germany) with a pore size
of 0.2 µm. The filter was mounted on 30 µL of a 1:400 dilution of the SG stock solution
and processed further according to Riepl and colleagues [50]. The numbers of bacteria
per mL were calculated as an average count of at least 15 randomly chosen grids within a
microscopic field. The measurements were repeated at least four times.
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5.4. Staining of Samples, Total Cell Counts and Viability Assays of C. trachomatis Preparations by
Flow Cytometry

The preparations, including different serovars of C. trachomatis stocks (previously enu-
merated by epifluorescence microscopy), were diluted in sterile-filtered (using a 0.22 µm
syringe filter) PBS solution (pH 7.4) from 1:100 to 1:1,000,000, accounting for particle
counts from 1 × 108–5 × 108 to 1 × 104–5 × 104 particles/mL. For long-time measure-
ments, diluted samples were stored in sterile-filtered PBS at 4 ◦C at a concentration of
1 × 107–5 × 107 particles/mL for up to 44 days.

Serial dilutions of C. trachomatis stocks were stained with cLPS mAb and compared
to DPCs after staining with SGI nucleic acid stain (Sigma-Aldrich, Cat. No. S9430). In
addition, previously described cultivation-independent assessment methods were applied
to measure microbial viability. This procedure included a two-color-based assay containing
SGI with PI (Sigma Aldrich, Cat. No. P4170) added as a marker of membrane integrity [15]
and a single-color-based assay using CFDA (Sigma-Aldrich, Cat. C8166-25MG) as an
indicator of esterase activity [13]. The final concentrations were 3 µM and 25 µM for PI and
CFDA, respectively. To compare the results derived from the C. trachomatis preparations
with other bacteria, E. coli (NCTC 9001) suspensions were stained and measured under the
same conditions. Inactivated preparations of bacteria were prepared as follows: (i) heat
inactivation was performed at 80 ◦C for 15 min, (ii) for the ethanol-inactivation, 10 µL of
stock preparations were diluted in 90 µL sterile filtered 70% ethanol suspensions, and for
(iii) the UV-inactivation, dilutions of purified EB-enriched fractions were placed under a
UV-C lamp (254 nm; 15 W) at 5 cm distance for 30 min. The measurements of particle counts
(DPC-flow-cytometry) using stock aliquots at different serial dilutions were performed by
flow cytometry using optimized configuration settings, as described below.

5.5. Instrumentation and Flow Cytometer Settings

High-resolution flow cytometry of C. trachomatis preparations was performed on an
Attune NxT flow cytometer (Thermo Fisher Scientific) equipped with a 488-nm flat-top
laser at 50 mW. The standard daily quality control startup procedure was performed
as recommended by the manufacturer. The FSC and SSC light was collected from the
488 nm laser and emitted fluorescent light was collected using a 530/30 BP filter (FL-1)
or a 695/40 BP filter (FL-3). An overview of fluorochrome specifications, flow cytometry
filters and channels used in our experiments is shown in Table S1. The samples were run
at a sampling rate between 12.5 and 25 µL/min. The scatter and fluorescence parameters
were set to a logarithmic scale. The photomultiplier tube voltage was optimized by
using a voltage walk approach to define the optimal separation distances between the
unstained and stained populations. The threshold was set on the fluorescence channel FL-1
and on the SSC or FSC to eliminate noise events without excluding particles of interest.
This was achieved by successively raising the fluorescence threshold and the SSC or FSC
threshold without compromising the size of the detected positive population. The counts
of particles per mL measured by flow cytometry were repeated at least four times with
different threshold settings and the results were aligned to DPCs measured by microscopy,
as described above. In addition, the threshold levels and trigger channels were also
determined by acquiring a clean-filtered PBS sample (with or without addition of the dye
used for staining of the samples), thereby allowing an event rate of ≤100 events/s when
fluorescence threshold triggering was applied or ≤300 events/s when a SSC-based trigger
was applied. All samples were diluted in filtered PBS (using a 0.22 µm syringe filter). The
measurements were recorded after the fluid stream had stabilized, and the event rate had
reached a plateau and had been stable for at least 20 s. To avoid swarm effects, the event
rate never exceeded 2500 events/s. The thresholds were adapted in correspondence to the
filter and gain settings applied. After finalization of the optimized settings, a workspace
was loaded at the beginning of each measurement to calibrate the flow cytometer and to
ensure that the measurements were comparable between experiments.
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5.6. Implementation of the Small Particle Filter

For a better separation of small particles from the background noise, a small particle
filter was applied. The difference compared to the standard SSC filter (SSC 488-10+OD2) is
the absence of the regularly included neutral density filter with an optical density (OD)
of 2. Here, the OD describes the amount of energy that is blocked by the filter. A higher
transmission is achieved evenly across a specific spectrum without the neutral density
filter. This so-called small particle SSC filter (SSC 488-10) allows even unstained bacteria
to be separated from background noise by applying an SSC-based trigger only. Thereby,
it was possible to adapt the threshold settings by omitting the fluorescence trigger. This
furthermore makes it possible to display the unstained population within the threshold
range and enables the usage of additional fluorescence markers at an appropriate event
rate of 1000 to 2500 events/s.

5.7. Data Acquisition by Flow Cytometry and Statistical Analysis

The resolution of populations for C. trachomatis EBs/RBs detected in the SSC and
separation from background noise was superior to the resolution in the FSC, especially
after implementation of the small particle filter. Therefore, the fluorescence intensity was
preferably plotted against the SSC. Furthermore, the most accurate parameter for analyzing
small particles is the intensity of the signal displayed as height. For very small particles
(with a size smaller than any of the wavelengths of the incident light) [51], the time-of-flight
measurements or width become less accurate and consequently also the area, which is
the integrated value of the height and width of an electronic pulse. Therefore, the flow
cytometry data were displayed in height for all figures except in Figure S1, which shows
height (SSC-H) vs. area (SSC-A) plots. The flow cytometry data were analyzed using
Flowjo V10.7.1 (FLOWJO, LLC). Prism V7 (GraphPad Software) was used for the statistical
analysis and generation of graphs. ImageJ was used for image processing and analysis.
Statistical significance was determined between the groups with a one-way analysis of
variance (ANOVA) followed by Dunnett’s multiple comparisons test. Significance was set
at a p value of less than 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10121617/s1, Table S1: Overview of fluorochrome specifications and flow cytometry
filters/channels used in our experiments. Figure S1: Coincident detection of EBs/RBs (serovar E)
stained with SGI, measured at different concentrations with consideration of different thresholds
and flow rates. Figure S2: Assessment of bacterial infectivity and viability by flow cytometry.
Figure S3: Distinct flow cytometry profiles of different serovars. Figure S4: Flow cytometry profiles
of SGI-stained C. trachomatis EBs/RBs of serovar E over time.
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