Q Fever Vaccine Development: Current Strategies and Future Considerations
Abstract
:1. A Brief History of Q Fever Vaccine Development
2. Correlates of Protection and Immunologic Considerations for an Effective Q Fever Vaccine
2.1. Rodent Models
2.2. Humans
2.3. Summary
3. The Role of Bacterial Antigens in C. burnetii Vaccine-Induced Protection
3.1. Antigenic Identification
3.2. LPS as a Mediator of Protective Responses
4. Current Approaches in Q Fever Vaccine Development
4.1. Modified WCVs
4.2. Subunit Vaccines
4.3. Coxiellosis Vaccines
5. Looking towards the Future: Considerations for an Improved Q Fever Vaccine
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angelakis, E.; Raoult, D. Q Fever. Vet. Microbiol. 2010, 140, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Honarmand, H. Q Fever: An Old but Still a Poorly Understood Disease. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 131932. [Google Scholar] [CrossRef] [Green Version]
- Madariaga, M.G.; Rezai, K.; Trenholme, G.M.; Weinstein, R.A. Q fever: A biological weapon in your backyard. Lancet. Infect. Dis. 2003, 3, 709–721. [Google Scholar] [CrossRef]
- Cox, H.R. Rickettsia Diaporica and American Q Fever. Am. J. Trop. Med. 1940, 1, 463–469. [Google Scholar] [CrossRef]
- Smadel, J.E.; Snyder, M.J.; Robbins, F.C. Vaccination against Q fever. Am. J. Hyg. 1948, 47, 71–81. [Google Scholar] [CrossRef]
- Maurin, M.; Raoult, D. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef] [Green Version]
- Benenson, A.S.; Tigertt, W.D. Studies on Q fever in man. Trans. Assoc. Am. Physicians 1956, 69, 98–104. [Google Scholar]
- Meiklejohn, G.; Lennette, E.H. Q fever in California. I. Observations on vaccination of human beings. Am. J. Hyg. 1950, 52, 54–64. [Google Scholar]
- Bell, J.F.; Lackman, D.B.; Meis, A.; Hadlow, W.J. Recurrent reaction of site of Q fever vaccination in a sensitized person. Mil. Med. 1964, 129, 591–595. [Google Scholar] [CrossRef]
- Schoffelen, T.; Herremans, T.; Sprong, T.; Nabuurs-Franssen, M.; van der Meer, J.W.; Joosten, L.A.; Netea, M.G.; Bijlmer, H.A.; van Deuren, M. Immunogenicity of the Q fever skin test. J. Infect. 2014, 69, 161–164. [Google Scholar] [CrossRef]
- Ormsbee, R.A.; Bell, E.J.; Lackman, D.B. Antigens of Coxiella burnetii. I. Extraction of antigens with non-aqueous organic solvents. J. Immunol. 1962, 88, 741–749. [Google Scholar] [PubMed]
- Lackman, D.B.; Bell, E.J.; Bell, J.F.; Pickens, E.G. Intradermal sensitivity testing in man with a purified vaccine for Q fever. Am. J. Public Health Nations Health 1962, 52, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Ormsbee, R.A.; Bell, E.J.; Lackman, D.B.; Tallent, G. The influence of phase on the protective potency of Q fever vaccine. J. Immunol. 1964, 92, 404–412. [Google Scholar]
- Lackman, D.B.; Bell, J.F.; Larson, C.L.; Casey, M.L.; Benson, W.W. An intradermal sensitivity test for Q fever in man. Arch. Inst. Pasteur Tunis 1959, 36, 557–569. [Google Scholar]
- Q fever: Antigens and vaccines. Lancet 1984, 2, 1435–1436.
- Williams, J.C.; Cantrell, J.L. Biological and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Infect. Immun. 1982, 35, 1091–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waag, D.M.; England, M.J.; Bolt, C.R.; Williams, J.C. Low-Dose Priming before Vaccination with the Phase I Chloroform-Methanol Residue Vaccine against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella burnetii. Clin. Vaccine Immunol. 2008, 15, 1505–1512. [Google Scholar] [CrossRef] [Green Version]
- Waag, D.M.; England, M.J.; Tammariello, R.F.; Byrne, W.R.; Gibbs, P.; Banfield, C.M.; Pitt, M.L. Comparative efficacy and immunogenicity of Q fever chloroform:methanol residue (CMR) and phase I cellular (Q-Vax) vaccines in cynomolgus monkeys challenged by aerosol. Vaccine 2002, 20, 2623–2634. [Google Scholar] [CrossRef]
- Anacker, R.L.; Lackman, D.B.; Pickens, E.G.; Ribi, E. Antigenic and Skin-Reactive Properties of Fractions of Coxiella Burnetii. J. Immunol. 1962, 89, 145. [Google Scholar]
- Brezina, R.; Urvolgyi, J. Study of the antigenic structure of Coxiella burnetii. I. Extraction of Phase I antigenic component by means of trichloroacetic acid. Acta Virol. 1962, 6, 4. [Google Scholar]
- Stoker, M.G.; Fiset, P. Phase variation of the Nine Mile and other strains of Rickettsia burneti. Can. J. Microbiol. 1956, 2, 310–321. [Google Scholar] [CrossRef]
- Moos, A.; Hackstadt, T. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect. Immun. 1987, 55, 1144–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.M.; Beare, P.A.; Cockrell, D.C.; Larson, C.L.; Heinzen, R.A. Comparative virulence of diverse Coxiella burnetii strains. Virulence 2019, 10, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Russell-Lodrigue, K.E.; Andoh, M.; Zhang, Y.; Hendrix, L.R.; Samuel, J.E. Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J. Immunol. 2007, 179, 8372–8380. [Google Scholar] [CrossRef] [Green Version]
- Beare, P.A.; Jeffrey, B.M.; Long, C.M.; Martens, C.M.; Heinzen, R.A. Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation. PLoS Pathog. 2018, 14, e1006922. [Google Scholar] [CrossRef] [Green Version]
- Vivona, S.; Lowenthal, J.P.; Berman, S.; Benenson, A.S.; Smadel, J.E. Report of a field study with Q fever vaccine. Am. J. Hyg. 1964, 79, 143–153. [Google Scholar] [CrossRef]
- Wisseman, C.L. Progress Report on the Development of Q Fever Vaccines. Mil. Med. 1964, 389–392. [Google Scholar] [CrossRef]
- Genig, V.A. Experience in mass immunization of humans with the M-44 live vaccine against Q-fever. 2. Skin and oral routes of immunization. Vopr. Virusol. 1965, 10, 703–707. [Google Scholar]
- Robinson, D.M.; Hasty, S.E. Production of a potent vaccine from the attenuated M-44 strain of Coxiella burneti. Appl. Microbiol. 1974, 27, 777–783. [Google Scholar] [CrossRef]
- Pittman, P.R.; Plotkin, S.A. Biodefense and Special Pathogen Vaccines. Plotkin’s Vaccines 2018, 149–160.e147. [Google Scholar] [CrossRef]
- Ackland, J.R.; Worswick, D.A.; Marmion, B.P. Vaccine prophylaxis of Q fever. A follow-up study of the efficacy of Q-Vax (CSL) 1985-1990. Med. J. Aust. 1994, 160, 704–708. [Google Scholar] [CrossRef]
- Sellens, E.; Bosward, K.L.; Willis, S.; Heller, J.; Cobbold, R.; Comeau, J.L.; Norris, J.M.; Dhand, N.K.; Wood, N. Frequency of Adverse Events Following Q Fever Immunisation in Young Adults. Vaccines 2018, 6, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isken, L.D.; Kraaij-Dirkzwager, M.; Vermeer-de Bondt, P.E.; Rümke, H.C.; Wijkmans, C.; Opstelten, W.; Timen, A. Implementation of a Q fever vaccination program for high-risk patients in the Netherlands. Vaccine 2013, 31, 2617–2622. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, S.; Wolfe, D.N. Vaccination against Q fever for biodefense and public health indications. Front. Microbiol. 2014, 5, 726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, C.M.; Marzi, A. Biodefence research two decades on: Worth the investment? Lancet Infect. Dis. 2021, 21, e222–e233. [Google Scholar] [CrossRef]
- Omsland, A.; Cockrell, D.C.; Howe, D.; Fischer, E.R.; Virtaneva, K.; Sturdevant, D.E.; Porcella, S.F.; Heinzen, R.A. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl. Acad. Sci. USA 2009, 106, 4430–4434. [Google Scholar] [CrossRef] [Green Version]
- Beare, P.A. Genetic manipulation of Coxiella burnetii. Adv. Exp. Med. Biol. 2012, 984, 249–271. [Google Scholar] [CrossRef]
- Plotkin, S.A.; Plotkin, S.A. Correlates of Vaccine-Induced Immunity. Clin. Infect. Dis. 2008, 47, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Humphres, R.C.; Hinrichs, D.J. Role of antibody in Coxiella burnetii infection. Infect. Immun. 1981, 31, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Kazár, J.; El-Najdawi, E.; Brezina, R.; Schramek, S. Search for correlates of resistance to virulent challenge in mice immunized with Coxiella burnetii. Acta Virol. 1977, 21, 422–430. [Google Scholar]
- Zhang, G.; Zhang, Y.; Samuel, J.E. Components of protective immunity. Adv. Exp. Med. Biol. 2012, 984, 91–104. [Google Scholar] [CrossRef]
- Shannon, J.G.; Cockrell, D.C.; Takahashi, K.; Stahl, G.L.; Heinzen, R.A. Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent. BMC Immunol. 2009, 10, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, A.J.; Erickson, S.; Harmsen, A.G. Role of CD4+ and CD8+ T Cells in Clearance of Primary Pulmonary Infection with Coxiella burnetii. Infect. Immun. 2010, 78, 3019–3026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttrum, L.; Ledbetter, L.; Cherla, R.; Zhang, Y.; Mitchell, W.J.; Zhang, G. Both Major Histocompatibility Complex Class I (MHC-I) and MHC-II Molecules Are Required, while MHC-I Appears To Play a Critical Role in Host Defense against Primary Coxiella burnetii Infection. Infect. Immun. 2018, 86, e00602-17. [Google Scholar] [CrossRef] [Green Version]
- Ledbetter, L.; Cherla, R.; Chambers, C.; Zhang, Y.; Mitchell, W.J.; Zhang, G. MHC-II-restricted, CD4(+) T cell-dependent and -independent mechanisms are required for vaccine-induced protective immunity against Coxiella burnetii. Infect. Immun. 2019. [Google Scholar] [CrossRef]
- Mezouar, S.; Lepidi, H.; Omar Osman, I.; Gorvel, J.P.; Raoult, D.; Mege, J.L.; Bechah, Y. T-Bet Controls Susceptibility of Mice to Coxiella burnetii Infection. Front. Microbiol. 2020, 11, 1546. [Google Scholar] [CrossRef]
- Chen, C.; van Schaik, E.J.; Gregory, A.E.; Vigil, A.; Felgner, P.L.; Hendrix, L.R.; Faris, R.; Samuel, J.E. Chemokine Receptor 7 Is Essential for Coxiella burnetii Whole-Cell Vaccine-Induced Cellular Immunity but Dispensable for Vaccine-Mediated Protective Immunity. J. Infect. Dis. 2019, 220, 624–634. [Google Scholar] [CrossRef]
- Andoh, M.; Zhang, G.; Russell-Lodrigue, K.E.; Shive, H.R.; Weeks, B.R.; Samuel, J.E. T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect. Immun. 2007, 75, 3245–3255. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, G.H.; Kedl, R.M.; Hunter, C.A. The evolving role of T-bet in resistance to infection. Nat. Rev. Immunol. 2019, 19, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Long, C.M.; Beare, P.A.; Cockrell, D.C.; Fintzi, J.; Tesfamariam, M.; Shaia, C.I.; Heinzen, R.A. Contributions of lipopolysaccharide and the type IVB secretion system to Coxiella burnetii vaccine efficacy and reactogenicity. NPJ Vaccines 2021, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, R.A.; Johnson, J.W.; Kenyon, R.H.; Ascher, M.S.; Larson, E.W.; Pedersen, C.E., Jr. Cell-mediated immune responses of guinea pigs to an inactivated phase I Coxiella burnetii vaccine. Infect. Immun. 1978, 19, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishimoto, R.A.; Veltri, B.J.; Shirey, F.G.; Canonico, P.G.; Walker, J.S. Fat of Coxiella burnetti in macrophages from immune guinea pigs. Infect. Immun. 1977, 15, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, X.; Meng, Y.; Wang, X.; Qi, Y.; Li, J.; Duan, C.; Wen, B. Mice immunized with bone marrow-derived dendritic cells stimulated with recombinant Coxiella burnetii Com1 and Mip demonstrate enhanced bacterial clearance in association with a Th1 immune response. Vaccine 2012, 30, 6809–6815. [Google Scholar] [CrossRef] [PubMed]
- Marmion, B.P.; Ormsbee, R.A.; Kyrkou, M.; Wright, J.; Worswick, D.A.; Izzo, A.A.; Esterman, A.; Feery, B.; Shapiro, R.A. Vaccine prophylaxis of abattoir-associated Q fever: Eight years’ experience in Australian abattoirs. Epidemiol. Infect. 1990, 104, 275–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kersh, G.J.; Fitzpatrick, K.A.; Self, J.S.; Biggerstaff, B.J.; Massung, R.F. Long-Term immune responses to Coxiella burnetii after vaccination. Clin. Vaccine Immunol. 2013, 20, 129–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain-Yusuf, H.; Islam, A.; Healy, B.; Lockhart, M.; Nguyen, C.; Sukocheva, O.; Stenos, J.; Graves, S. An analysis of Q fever patients 6 years after an outbreak in Newport, Wales, UK. QJM Int. J. Med. 2012, 105, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Teunis, P.F.; Schimmer, B.; Notermans, D.W.; Leenders, A.C.; Wever, P.C.; Kretzschmar, M.E.; Schneeberger, P.M. Time-course of antibody responses against Coxiella burnetii following acute Q fever. Epidemiol. Infect. 2013, 141, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Worswick, D.; Marmion, B.P. Antibody responses in acute and chronic Q fever and in subjects vaccinated against Q fever. J. Med. Microbiol. 1985, 19, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Peacock, M.G.; Fiset, P.; Ormsbee, R.A.; Wisseman, C.L., Jr. Antibody response in man following a small intradermal inoculation with Coxiella burnetii phase I vaccine. Acta Virol. 1979, 23, 73–81. [Google Scholar]
- Marmion, B.P.; Ormsbee, R.A.; Kyrkou, M.; Wright, J.; Worswick, D.; Cameron, S.; Esterman, A.; Feery, B.; Collins, W. Vaccine prophylaxis of abattoir-associated Q fever. Lancet 1984, 2, 1411–1414. [Google Scholar] [CrossRef]
- Bond, K.A.; Franklin, L.J.; Sutton, B.; Firestone, S.M. Q-Vax Q fever vaccine failures, Victoria, Australia 1994-2013. Vaccine 2017, 35, 7084–7087. [Google Scholar] [CrossRef]
- Kazár, J.; Gajdosová, E.; Kovácová, E.; Valková, D. Immunogenicity and protective ability of corpuscular and soluble vaccines prepared from different Coxiella burnetii phase I strains. Acta Virol. 1995, 39, 243–249. [Google Scholar] [PubMed]
- Russell-Lodrigue, K.E.; Andoh, M.; Poels, M.W.; Shive, H.R.; Weeks, B.R.; Zhang, G.Q.; Tersteeg, C.; Masegi, T.; Hotta, A.; Yamaguchi, T.; et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect. Immun. 2009, 77, 5640–5650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazár, J.; Schramek, S.; Brezina, R. The value of skin test in Q fever convalescents and vaccinees as indicator of antigen exposure and inducer of antibody recall. Acta Virol. 1984, 28, 134–140. [Google Scholar] [PubMed]
- Izzo, A.A.; Marmion, B.P. Variation in interferon-gamma responses to Coxiella burnetii antigens with lymphocytes from vaccinated or naturally infected subjects. Clin. Exp. Immunol. 1993, 94, 507–515. [Google Scholar] [CrossRef]
- Keijmel, S.P.; Raijmakers, R.P.; Bleeker-Rovers, C.P.; van der Meer, J.W.; Netea, M.G.; Schoffelen, T.; van Deuren, M. Altered interferon-γ response in patients with Q-fever fatigue syndrome. J. Infect. 2016, 72, 478–485. [Google Scholar] [CrossRef]
- Schoffelen, T.; Textoris, J.; Bleeker-Rovers, C.P.; Ben Amara, A.; van der Meer, J.W.; Netea, M.G.; Mege, J.L.; van Deuren, M.; van de Vosse, E. Intact interferon-γ response against Coxiella burnetii by peripheral blood mononuclear cells in chronic Q fever. Clin. Microbiol. Infect. 2017, 23, 209.e9–209.e15. [Google Scholar] [CrossRef] [Green Version]
- Schoffelen, T.; Sprong, T.; Bleeker-Rovers, C.P.; Wegdam-Blans, M.C.; Ammerdorffer, A.; Pronk, M.J.; Soethoudt, Y.E.; van Kasteren, M.E.; Herremans, T.; Bijlmer, H.A.; et al. A combination of interferon-gamma and interleukin-2 production by Coxiella burnetii-stimulated circulating cells discriminates between chronic Q fever and past Q fever. Clin. Microbiol. Infect. 2014, 20, 642–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Kiss, K.; Seshadri, R.; Hendrix, L.R.; Samuel, J.E. Identification and Cloning of Immunodominant Antigens of Coxiella burnetii. Infect. Immun. 2004, 72, 844–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.Q.; Samuel, J.E. Identification and cloning potentially protective antigens of Coxiella burnetii using sera from mice experimentally infected with Nine Mile phase I. Ann. N. Y. Acad. Sci. 2003, 990, 510–520. [Google Scholar] [CrossRef]
- Vigil, A.; Chen, C.; Jain, A.; Nakajima-Sasaki, R.; Jasinskas, A.; Pablo, J.; Hendrix, L.R.; Samuel, J.E.; Felgner, P.L. Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Mol. Cell. Proteom. 2011, 10, M110.006304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Xiong, X.; Graves, S.; Stenos, J.; Wen, B. Protein array of Coxiella burnetii probed with Q fever sera. Sci. China Life Sci. 2013, 56, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Vigil, A.; Ortega, R.; Nakajima-Sasaki, R.; Pablo, J.; Molina, D.M.; Chao, C.C.; Chen, H.W.; Ching, W.M.; Felgner, P.L. Genome-wide profiling of humoral immune response to Coxiella burnetii infection by protein microarray. Proteomics 2010, 10, 2259–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beare, P.A.; Chen, C.; Bouman, T.; Pablo, J.; Unal, B.; Cockrell, D.C.; Brown, W.C.; Barbian, K.D.; Porcella, S.F.; Samuel, J.E.; et al. Candidate Antigens for Q Fever Serodiagnosis Revealed by Immunoscreening of a Coxiella burnetii Protein Microarray. Clin. Vaccine Immunol. 2008, 15, 1771–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, X.; Wang, X.; Wen, B.; Graves, S.; Stenos, J. Potential serodiagnostic markers for Q fever identified in Coxiella burnetiiby immunoproteomic and protein microarray approaches. BMC Microbiol. 2012, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, X.; Qi, Y.; Jiao, J.; Gong, W.; Duan, C.; Wen, B. Exploratory study on Th1 epitope-induced protective immunity against Coxiella burnetii infection. PLoS ONE 2014, 9, e87206. [Google Scholar] [CrossRef]
- Xiong, X.; Jiao, J.; Gregory, A.E.; Wang, P.; Bi, Y.; Wang, X.; Jiang, Y.; Wen, B.; Portnoy, D.A.; Samuel, J.E.; et al. Identification of Coxiella burnetii CD8+ T-Cell Epitopes and Delivery by Attenuated Listeria monocytogenes as a Vaccine Vector in a C57BL/6 Mouse Model. J. Infect. Dis. 2016, 215, 1580–1589. [Google Scholar] [CrossRef] [Green Version]
- Reeves, P.M.; Raju Paul, S.; Baeten, L.; Korek, S.E.; Yi, Y.; Hess, J.; Sobell, D.; Scholzen, A.; Garritsen, A.; De Groot, A.S.; et al. Novel multiparameter correlates of Coxiella burnetii infection and vaccination identified by longitudinal deep immune profiling. Sci. Rep. 2020, 10, 13311. [Google Scholar] [CrossRef]
- Lee, P.Y.; Wang, J.-X.; Parisini, E.; Dascher, C.C.; Nigrovic, P.A. Ly6 family proteins in neutrophil biology. J. Leukoc. Biol. 2013, 94, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Scholzen, A.; Richard, G.; Moise, L.; Baeten, L.A.; Reeves, P.M.; Martin, W.D.; Brauns, T.A.; Boyle, C.M.; Raju Paul, S.; Bucala, R.; et al. Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Front. Immunol. 2019, 10, 207. [Google Scholar] [CrossRef]
- Scholzen, A.; Richard, G.; Moise, L.; Hartman, E.; Bleeker-Rovers, C.P.; Reeves, P.M.; Raju Paul, S.; Martin, W.D.; De Groot, A.S.; Poznansky, M.C.; et al. Coxiella burnetii Epitope-Specific T-Cell Responses in Patients with Chronic Q Fever. Infect. Immun. 2019, 87. [Google Scholar] [CrossRef]
- Li, Q.; Niu, D.; Wen, B.; Chen, M.; Qiu, L.; Zhang, J. Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. Ann. N. Y. Acad. Sci. 2005, 1063, 130–142. [Google Scholar] [CrossRef]
- Gilkes, A.P.; Albin, T.J.; Manna, S.; Supnet, M.; Ruiz, S.; Tom, J.; Badten, A.J.; Jain, A.; Nakajima, R.; Felgner, J.; et al. Tuning Subunit Vaccines with Novel TLR Triagonist Adjuvants to Generate Protective Immune Responses against Coxiella burnetii. J. Immunol. 2019, ji1900991. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.C.; Hoover, T.A.; Waag, D.M.; Banerjee-Bhatnagar, N.; Bolt, C.R.; Scott, G.H. Antigenic structure of Coxiella burnetii. A comparison of lipopolysaccharide and protein antigens as vaccines against Q fever. Ann. N. Y. Acad. Sci. 1990, 590, 370–380. [Google Scholar] [CrossRef]
- Hackstadt, T.; Peacock, M.G.; Hitchcock, P.J.; Cole, R.L. Lipopolysaccharide variation in Coxiella burnetti: Intrastrain heterogeneity in structure and antigenicity. Infect. Immun. 1985, 48, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Zhang, Y.; Mitchell, W.J.; Zhang, G. Development of a lipopolysaccharide-targeted peptide mimic vaccine against Q fever. J. Immunol. 2012, 189, 4909–4920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, K.C.; Finkelstein, R.A. Bioassay of endotoxin: Correlation between pyrogenicity for rabbits and lethality for chick embryos. J. Infect. Dis. 1966, 116, 529–536. [Google Scholar] [CrossRef]
- Kokorin, I.N.; Pushkareva, V.I.; Kazár, J.; Schramek, S. Histological changes in mouse liver and spleen caused by different Coxiella burnetii antigenic preparations. Acta Virol. 1985, 29, 410–415. [Google Scholar] [PubMed]
- Williams, J.C.; Damrow, T.A.; Waag, D.M.; Amano, K. Characterization of a phase I Coxiella burnetii chloroform-methanol residue vaccine that induces active immunity against Q fever in C57BL/10 ScN mice. Infect. Immun. 1986, 51, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Kazár, J.; Votruba, D.; Propper, P.; Schramek, S. Onset and duration of immunity in guinea pigs and mice induced with different Q fever vaccines. Acta Virol. 1986, 30, 499–506. [Google Scholar]
- Williams, J.C.; Peacock, M.G.; Race, R.E. Immunization of dogs with Q fever vaccines: Comparison of phase I, II and phase I CMR Coxiella burnetii vaccines. Rev. Elev. Med. Vet. Pays. Trop. 1993, 46, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Waag, D.M.; England, M.J.; Pitt, M.L. Comparative efficacy of a Coxiella burnetii chloroform:methanol residue (CMR) vaccine and a licensed cellular vaccine (Q-Vax) in rodents challenged by aerosol. Vaccine 1997, 15, 1779–1783. [Google Scholar] [CrossRef]
- Fries, L.F.; Waag, D.M.; Williams, J.C. Safety and immunogenicity in human volunteers of a chloroform-methanol residue vaccine for Q fever. Infect. Immun. 1993, 61, 1251–1258. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Hu, X.; Fu, M.; Dai, L.; Yu, Y.; Luo, W.; Zhao, Z.; Lu, Z.; Du, Z.; Zhou, D.; et al. Enhanced protection against Q fever in BALB/c mice elicited by immunization of chloroform-methanol residue of Coxiella burnetii via intratracheal inoculation. Vaccine 2019, 37, 6076–6084. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zhi, N.; Yu, S.R.; Li, Q.J.; Yu, G.Q.; Zhang, X. Protective immunity induced by 67 K outer membrane protein of phase I Coxiella burnetii in mice and guinea pigs. Acta Virol. 1994, 38, 327–332. [Google Scholar] [PubMed]
- Schulze, L.S.C.; Borchardt, S.; Ouellet, V.; Heuwieser, W. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows. J. Dairy Sci. 2016, 99, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.C.; Peacock, M.G.; Waag, D.M.; Kent, G.; England, M.J.; Nelson, G.; Stephenson, E.H. Vaccines against coxiellosis and Q fever. Development of a chloroform:methanol residue subunit of phase I Coxiella burnetti for the immunization of animals. Ann. N. Y. Acad. Sci. 1992, 653, 88–111. [Google Scholar] [CrossRef]
- Schmeer, N.; Müller, P.; Langel, J.; Krauss, H.; Frost, J.W.; Wieda, J. Q fever vaccines for animals. Zent. Bakteriol. Mikrobiol. Hyg. A 1987, 267, 79–88. [Google Scholar] [CrossRef]
- Arricau-Bouvery, N.; Souriau, A.; Bodier, C.; Dufour, P.; Rousset, E.; Rodolakis, A. Effect of vaccination with phase I and phase II Coxiella burnetii vaccines in pregnant goats. Vaccine 2005, 23, 4392–4402. [Google Scholar] [CrossRef]
- Rousset, E.; Durand, B.; Champion, J.L.; Prigent, M.; Dufour, P.; Forfait, C.; Marois, M.; Gasnier, T.; Duquesne, V.; Thiéry, R.; et al. Efficiency of a phase 1 vaccine for the reduction of vaginal Coxiella burnetii shedding in a clinically affected goat herd. Clin. Microbiol. Infect. 2009, 15, 188–189. [Google Scholar] [CrossRef]
- Achard, D.R.; Annie, Q. Fever Vaccination in Ruminants: A Critical Review. In The Principles and Practice of Q Fever; Simoes, J.C.C., Anastacio, S.F., de Silva, G.J., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2017; pp. 367–389. [Google Scholar]
- Beare, P.A.; Samuel, J.E.; Howe, D.; Virtaneva, K.; Porcella, S.F.; Heinzen, R.A. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J. Bacteriol. 2006, 188, 2309–2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, J.E.; Frazier, M.E.; Mallavia, L.P. Correlation of plasmid type and disease caused by Coxiella burnetii. Infect. Immun. 1985, 49, 775–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrix, L.R.; Samuel, J.E.; Mallavia, L.P. Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J. Gen. Microbiol. 1991, 137, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Hackstadt, T. Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Infect. Immun. 1986, 52, 337–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, H.; Kett, V. Current prospects and future challenges for nasal vaccine delivery. Hum. Vaccines Immunother. 2017, 13, 34–45. [Google Scholar] [CrossRef]
- van Doremalen, N.; Purushotham, J.N.; Schulz, J.E.; Holbrook, M.G.; Bushmaker, T.; Carmody, A.; Port, J.R.; Yinda, C.K.; Okumura, A.; Saturday, G.; et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 2021, 13, eabh0755. [Google Scholar] [CrossRef]
- Gregory, A.E.; van Schaik, E.J.; Russell-Lodrigue, K.E.; Fratzke, A.P.; Samuel, J.E. Coxiella burnetii Intratracheal Aerosol Infection Model in Mice, Guinea Pigs, and Nonhuman Primates. Infect. Immun. 2019, 87, e00178-19. [Google Scholar] [CrossRef]
- Beasley, D.W.C.; Brasel, T.L.; Comer, J.E. First vaccine approval under the FDA Animal Rule. NPJ Vaccines 2016, 1, 16013. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, C.M. Q Fever Vaccine Development: Current Strategies and Future Considerations. Pathogens 2021, 10, 1223. https://doi.org/10.3390/pathogens10101223
Long CM. Q Fever Vaccine Development: Current Strategies and Future Considerations. Pathogens. 2021; 10(10):1223. https://doi.org/10.3390/pathogens10101223
Chicago/Turabian StyleLong, Carrie Mae. 2021. "Q Fever Vaccine Development: Current Strategies and Future Considerations" Pathogens 10, no. 10: 1223. https://doi.org/10.3390/pathogens10101223
APA StyleLong, C. M. (2021). Q Fever Vaccine Development: Current Strategies and Future Considerations. Pathogens, 10(10), 1223. https://doi.org/10.3390/pathogens10101223