A Proposal for Reinforcement of Historical Masonry Minarets: Gaziantep Kabasakal Mosque Minaret
Abstract
:1. Introduction
2. Gaziantep Historical Masonry Minarets
3. Gaziantep Kabasakal Mosque and Minaret
3.1. Historical and Architectural Features
3.2. Finite Element Model
3.3. Material Properties
4. Proposed Reinforcement Details
5. Numerical Analyses
5.1. Modal Analyses
5.2. Dynamic Analyses
6. Results and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OM | Original state |
RM | Reinforced model |
References
- Demir, A.; Celebi, E.; Ozturk, H.; Ozcan, Z.; Ozocak, A.; Bol, E.; Mert, N. Destructive impact of successive high magnitude earthquakes occurred in Türkiye’s Kahramanmaraş on February 6, 2023. Bull. Earthq. Eng. 2025, 23, 893–919. [Google Scholar] [CrossRef]
- Atmaca, B.; Atmaca, E.E.; Roudane, B.; Güleş, O.; Demİrkaya, E.; Aykanat, B.; Altunişik, A.C.; Günaydin, M.; Arslan, M.E.; Kahya, V.; et al. Field Observations and Numerical Investigations on Seismic Damage Assessment of RC and Masonry Minarets During the February 6th, 2023, Kahramanmaraş (Mw 7.7 Pazarcık and Mw 7.6 Elbistan) Earthquakes in Türkiye. Int. J. Arch. Heritage 2024, 1–26. [Google Scholar] [CrossRef]
- Kahya, V.; Genç, A.F.; Sunca, F.; Roudane, B.; Altunişik, A.C.; Yilmaz, S.; Günaydin, M.; Dok, G.; Kirtel, O.; Demir, A.; et al. Evaluation of earthquake-related damages on masonry structures due to the 6 February 2023 Kahramanmaraş-Türkiye earthquakes: A case study for Hatay Governorship Building. Eng. Fail. Anal. 2023, 156, 107855. [Google Scholar]
- Statista n.d. Natural Disaster Occurrences in Turkey. Available online: https://www.statista.com/statistics/269648 (accessed on 23 October 2024).
- AFAD. Disaster Management and Natural Disaster Statistics in Turkey Report. 2018. Available online: https://www.afad.gov.tr/kurumlar/afad.gov.tr/35429/xfiles/turkiye_de_afetler.pdf (accessed on 6 April 2025).
- AFAD. Natural Evet Statistics for the Year 2023. 2024. Available online: https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_Kutuphane/Istatistikler/2023yilidogakaynakliolayistatistikleri-_1_.pdf (accessed on 23 October 2024).
- Presidency of the Republic of Turkey, Strategy and Budget Presidency. 2023 Kahramanmaraş and Hatay Earthquakes Report. Available online: https://www.sbb.gov.tr/wp-content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay-Depremleri-Raporu.pdf (accessed on 23 October 2024).
- AFAD. 6 February 2023 Pazarcik-Elbistan Kahramanmaraş (Mw:7.7-Mw:7.6) Earthquakes Report. 2023. Available online: https://deprem.afad.gov.tr/assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20Raporu_02.06.2023.pdf (accessed on 6 April 2025).
- TUIK. Turkish Statistical Institute. 2024. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Cultural-Heritage-Statistics-2023-53640 (accessed on 23 October 2024).
- Doğangün, A.; Sezen, H.; Tuluk, Ö.I.; Livaoğlu, R.; Acar, R. Traditional Turkish Masonry Monumental Structures and their Earthquake Response. Int. J. Arch. Herit. 2007, 1, 251–271. [Google Scholar]
- Gürbüz, M.; Kocaman, I. Enhancing seismic resilience: A proposed reinforcement technique for historical minarets. Eng. Fail. Anal. 2023, 156, 107832. [Google Scholar]
- Dogangun, A.; Acar, R.; Sezen, H.; Livaoglu, R. Investigation of dynamic response of masonry minaret structures. Bull. Earthq. Eng. 2008, 6, 505–517. [Google Scholar] [CrossRef]
- Bayraktar, A.; Hökelekli, E.; Şermet, F.; Özcan, Z. Effects of Velocity Pulse-Like Ground Motions on the Seismic Failure Behavior of Masonry Minarets. Int. J. Arch. Herit. 2024, 1–14. [Google Scholar] [CrossRef]
- Işık, E.; Avcil, F.; Arkan, E.; Büyüksaraç, A.; Izol, R.; Topalan, M. Structural damage evaluation of mosques and minarets in Adıyaman due to the 06 February 2023 Kahramanmaraş earthquakes. Eng. Fail. Anal. 2023, 151, 107345. [Google Scholar] [CrossRef]
- TRT Haber. n.d. Depremler Adıyaman’ın Kültür Varlıklarına da Hasar Verdi. Available online: https://www.trthaber.com/foto-galeri/depremler-adiyamanin-kultur-varliklarina-da-hasar-verdi/54292/sayfa-2.html (accessed on 23 October 2024).
- Yetkin, G.C.; Kuyucu, F. Valuation of Earthquake Damages in the Historical Urban Texture of Gaziantep After Gaziantep, Kahramanmaraş and Hatay Earthquakes. Tasar. Kuram 2024, 20, 105–122. [Google Scholar] [CrossRef]
- Almaç, U. Depremlerin Kültür Varlıklarına Etkileri ve Korumaya ilişkin Gözlemler. Mimarlık 2023, 431, 15–19. [Google Scholar]
- Medya Urfa n.d. Şanlıurfa’da Depremde Hasar Gören Minare Kontrollü Yıkıldı. Available online: https://www.medyaurfa.com/sanliurfada-depremde-hasar-goren-minare-kontrollu-yikildi (accessed on 23 October 2024).
- Ahunbay, Z.; Altay, G.; Arun, E.G.; Aydemir, O.; Atasagun, F.D.; Celep, Z.; Erberik, M.A.; İlki, A.; Kuran, F.; Ünal, Z.G.; et al. A Guideline for Earthquake Risk Management of Historical Structures in Turkey. In Proceedings of the 4th International Conference on Earthquake Engineering and Seismology, Eskişehir, Turkey, 11–13 October 2017. [Google Scholar]
- Usta, P. Assessment of seismic behavior of historic masonry minarets in Antalya, Turkey. Case Stud. Constr. Mater. 2021, 15, e00665. [Google Scholar] [CrossRef]
- Hoseynzadeh, H.; Mortezaei, A. Seismic Vulnerability and Rehabilitation of One of The World’s Oldest Masonry Minaret under The Different Earthquake Frequency Contents. J. Rehabil. Civ. Eng. 2021, 9, 12–36. [Google Scholar]
- Şentürk, I.; Ergün, M.; Artar, M. Seismic behavior assessment of historical Alaeddin Bey Mosque and strengthening suggestions by CFRP fabric and steel plate. Eng. Fail. Anal. 2022, 137, 106242. [Google Scholar]
- Altunişik, A.C. Dynamic response of masonry minarets strengthened with Fiber Reinforced Polymer (FRP) composites. Nat. Hazards Earth Syst. Sci. 2011, 11, 2011–2019. [Google Scholar] [CrossRef]
- Preciado, A.; Sperbeck, S.T.; Ramírez-Gaytán, A. Seismic vulnerability enhancement of medieval and masonry bell towers externally prestressed with unbonded smart tendons. Eng. Struct. 2016, 122, 50–61. [Google Scholar]
- Orlando, M.; Betti, M.; Spinelli, P. Assessment of structural behaviour and seismic retrofitting for an Italian monumental masonry building. J. Build. Eng. 2020, 29, 101115. [Google Scholar]
- Ataş, Z. Change and Transformation of Monumental Structures and Their Surroundings in the Historical Process: Gaziantep Mosques. Ph.D. Thesis, Maltepe University Graduate Education Institute, Istanbul, Turkey, 2023. [Google Scholar]
- Altın, A. Gaziantep Turkish-Islamic Architecture (From Ayyubids to the Republic). Ph.D. Thesis, Atatürk University, Department of Turkish Islamic Arts, Erzurum, Turkey, 2015. [Google Scholar]
- Çam, N. Türk Kültür Varlıkları Envanteri Gaziantep 27. Ank. Türk Tar. Kurumu Yayınları 2006, 10, 652. [Google Scholar]
- Güzelbey, C.C. Gaziantep Camileri Tarihi; Oya Matbaası: Gaziantep, Turkey, 1992; pp. 100–103. [Google Scholar]
- Tutar, A.I.; Cakir, F.; Subasi, A.C. Investigating the synergistic performance of masonry buildings with steel slabs in structural Design: A case of historical Mahmut Nedim Kurkcuoglu mansion in Turkey. Eng. Fail. Anal. 2024, 164, 108637. [Google Scholar]
- Ferrante, A.; Giordano, E.; Clementi, F.; Milani, G.; Formisano, A. FE vs. DE Modeling for the Nonlinear Dynamics of a Historic Church in Central Italy. Geosciences 2021, 11, 189. [Google Scholar] [CrossRef]
- Orlando, M.; Becattini, G.; Betti, M. Multilevel structural evaluation and rehabilitation design of an historic masonry fortress. J. Build. Eng. 2022, 63, 105379. [Google Scholar]
- Demirel, B.B.C.; Yardimci, Y.C.; Kurucay, H.N. Seismic Behavior Analysis of a 14th Century Anatolian Seljuk Kumbet. Buildings 2024, 14, 3921. [Google Scholar] [CrossRef]
- Requena-Garcia-Cruz, M.; Romero-Sánchez, E.; López-Piña, M.; Morales-Esteban, A. Preliminary structural and seismic performance assessment of the Mosque-Cathedral of Cordoba: The Abd al-Rahman I sector. Eng. Struct. 2023, 291, 116465. [Google Scholar] [CrossRef]
- Kocaman, I.; Gürbüz, M. Collapse mechanism of narthex part of historical masonry mosques. Eng. Fail. Anal. 2023, 151, 107387. [Google Scholar] [CrossRef]
- Kocaman, I.; Kazaz, I. Collapse mechanism of historical masonry mosques under strong ground motions. Eng. Fail. Anal. 2022, 144, 106983. [Google Scholar] [CrossRef]
- Kiral, A.; Ergün, M.; Tonyali, Z.; Artar, M.; Şentürk, I. A case study comparing seismic retrofitting techniques for a historically significant masonry building’s minaret. Eng. Fail. Anal. 2024, 166, 108873. [Google Scholar]
- Romero-Sánchez, E.; Requena-Garcia-Cruz, M.-V.; Morales-Esteban, A. Impact of the soil-foundation-structure interaction in the seismic behaviour of a heritage masonry tower: The Giralda of Seville. Eng. Fail. Anal. 2024, 163, 108580. [Google Scholar]
- Ergün, M.; Tayfur, B. Evaluation of the seismic performance pre- and post-restoration of a masonry clock tower’s FE model updated via experimental and optimization methods. Eng. Fail. Anal. 2024, 158, 107986. [Google Scholar] [CrossRef]
- Valente, M. Seismic vulnerability assessment and earthquake response of slender historical masonry bell towers in South-East Lombardia. Eng. Fail. Anal. 2021, 129, 105656. [Google Scholar] [CrossRef]
- Valente, M. Seismic behavior and damage assessment of two historical fortified masonry palaces with corner towers. Eng. Fail. Anal. 2022, 134, 106003. [Google Scholar]
- Kocaman, I.; Mercimek, Ö.; Gürbüz, M.; Erbaş, Y.; Anıl, Ö. The effect of Kahramanmaraş earthquakes on historical Malatya Yeni Mosque. Eng. Fail. Anal. 2024, 161, 108310. [Google Scholar]
- Fırat University; Karaton, M.; Çanakçı, K. Micro model analysis of JD6 and JD7 Eindhoven walls with fixed smeared crack model. J. Struct. Eng. Appl. Mech. 2020, 3, 18–24. [Google Scholar] [CrossRef]
- Bartoli, G.; Betti, M.; Borri, C. Numerical Modeling of the Structural Behavior of Brunelleschi’s Dome of Santa Maria del Fiore. Int. J. Arch. Heritage 2014, 9, 408–429. [Google Scholar] [CrossRef]
- Kocaman, I.; Gedik, Y.; Okuyucu, D. Assessment of seismic behavior of historical masonry cupolas: Case of Emir Saltuk Cupola. J. Build. Eng. 2023, 82, 108275. [Google Scholar] [CrossRef]
- Kocaman, İ. Determination of Drift-Based Damage Limits for Historical Masonry Mosques. Ph.D. Dissertation, Erzurum Technical University, Graduate Scholl of Natural and Applied Science, Erzurum, Turkey, 2022. [Google Scholar]
- Kocaman, İ. The effect of the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6) on historical masonry mosques and minarets. Eng Fail Anal. 2023, 149, 107225. [Google Scholar] [CrossRef]
- Avşaroğlu, N.; Anadolu’nun Binlerce Yıllık Doğal Taşları. MTA Genel Müd. 2020. Available online: https://www.researchgate.net/publication/339149519_ANADOLU'NUN_BINLERCE_YILLIK_DOGALTASLARI (accessed on 6 April 2025).
- Tel, H.Ö.; Sarıışık, G.; Yüksel, F.Ş.K. Investigation of usability of Urfa stone in urban furniture design. J. Fac. Eng. Archit. Gazi Univ. 2021, 36, 2287–2299. [Google Scholar]
- Yetki, G.C.; Çobancaoğlu, T. Dünden Bugüne Gaziantep Geleneksel Mimarisinde Taşın Kullanımı. Art-Sanat. Dergisi. 2019, 12, 129–162. [Google Scholar] [CrossRef]
- Baykasoglu, A.; Gullu, H.; Canakci, H.; Ozbakir, L. Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst. Appl. 2008, 35, 111–123. [Google Scholar] [CrossRef]
- Turgut, P.; Yesilnacar, M.I.; Bulut, H. Physico-thermal and mechanical properties of Sanliurfa limestone, Turkey. Bull. Eng. Geol. Environ. 2008, 67, 485–490. [Google Scholar] [CrossRef]
- Güllü, H.; Karabekmez, M. Gaziantep Kurtuluş camisinin deprem davranışının incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Derg. 2016, 7, 455–470. [Google Scholar]
- Altunisik, A.C.; Bayraktar, A.; Genc, A.F. A study on seismic behaviour of masonry mosques after restoration. Earthq. Struct. 2016, 10, 1331–1346. [Google Scholar] [CrossRef]
- Dinani, A.T.; Bisol, G.D.; Ortega, J.; Lourenço, P.B. Structural Performance of the Esfahan Shah Mosque. J. Struct. Eng. 2021, 147, 05021006. [Google Scholar] [CrossRef]
- Karantoni, F.V.; Dimakopoulou, D. Displacement-based assessment of the Gazi Hasan Pasha mosque in Kos island (GR) under the 2017 M6.6 earthquake and Eurocode 8, with proposals for upgrading. Bull. Earthq. Eng. 2020, 19, 1213–1230. [Google Scholar] [CrossRef]
- Mangia, L.; Ghiassi, B.; Sayın, E.; Onat, O.; Lourenço, P. Pushover Analysis of Historical Elti Hatun Mosque. 2016. Available online: https://www.researchgate.net/publication/309416092_Pushover_Analysis_of_Historical_Eltihatun_Mosque (accessed on 6 April 2025).
- Tomazevic, M. Earthquake-Resistant Design of Masonry Buildings; World Scientific: Hackensack, NJ, USA, 1999; Volume 1. [Google Scholar] [CrossRef]
- Onat, O.; Toy, A.T.; Özdemir, E. Block masonry equation-based model updating of a masonry minaret and seismic performance evaluation. J. Civ. Struct. Health Monit. 2023, 13, 1221–1241. [Google Scholar] [CrossRef]
- Hökelekli, E.; Demir, A.; Ercan, E.; Nohutçu, H.; Karabulut, A. Seismic Assessment in a Historical Masonry Minaret by Linear and Non-linear Seismic Analyses. Period. Polytech. Civ. Eng. 2020, 64, 438–448. [Google Scholar] [CrossRef]
- Serhatoğlu, C.; Livaoğlu, R. A fast and practical approximations for fundamental period of historical Ottoman minarets. Soil Dyn. Earthq. Eng. 2019, 120, 320–331. [Google Scholar] [CrossRef]
- Çalık, İ. Identification of Experimental Dynamic Characteristics of Historical Mosques and Minarets and Evaluation of Restoration Effects; Karadeniz Technical University, Institute of Science: Trabzon, Turkey, 2017. [Google Scholar]
- Le Costruzioni NTPER. Ministero Delle Infrastrutture e dei Trasporti; 2005; Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2005-09-23&atto.codiceRedazionale=05A08982&elenco30giorni=false (accessed on 6 April 2025).
- de Fomento, M. Norma de Construcción Sismorresistente: Parte General y Edificación (NCSE-02); 2009; Available online: https://www.transportes.gob.es/recursos_mfom/0820200.pdf (accessed on 6 April 2025).
- Rainieri, C.; Fabbrocino, G. Estimating the elastic period of masonry towers. Conf. Proc. Soc. Exp. Mech. Ser. 2012, 5, 243–248. [Google Scholar] [CrossRef]
- Shakya, M.; Varum, H.; Vicente, R.; Costa, A. Empirical Formulation for Estimating the Fundamental Frequency of Slender Masonry Structures. Int. J. Arch. Herit. 2014, 10, 55–66. [Google Scholar] [CrossRef]
- Afad Deprem n.d. Available online: https://deprem.afad.gov.tr/last-earthquakes.html (accessed on 18 October 2024).
- Türkeli, E.; Livaoğlu, R.; Doğangün, A. Dynamic response of traditional and buttressed reinforced concrete minarets. Eng. Fail. Anal. 2015, 49, 31–48. [Google Scholar] [CrossRef]
- Oliveira, C.S.; Çaktı, E.; Stengel, D.; Branco, M. Minaret behavior under earthquake loading: The case of historical Istanbul. Earthq. Eng. Struct. Dyn. 2011, 41, 19–39. [Google Scholar] [CrossRef]
- Sezen, H.; Acar, R.; Doğangün, A.; Livaoğlu, R. Dynamic analysis and seismic performance of reinforced concrete minarets. Eng. Struct. 2008, 30, 2253–2264. [Google Scholar] [CrossRef]
- Cakir, F.; Uckan, E.; Shen, J.; Seker, S.; Akbas, B. Seismic performance evaluation of slender masonry towers: A case study. Struct. Des. Tall Spec. Build. 2015, 25, 193–212. [Google Scholar] [CrossRef]
- Mazzotti, C.; Ferracuti, B.; Bellini, A. Experimental bond tests on masonry panels strengthened by FRP. Compos. Part B Eng. 2015, 80, 223–237. [Google Scholar] [CrossRef]
- Al-Jaberi, Z.; Myers, J.J.; ElGawady, M.A. Experimental and Analytical Approach for Prediction of Out-of-Plane Capacity of Reinforced Masonry Walls Strengthened with Externally Bonded FRP Laminate. J. Compos. Constr. 2019, 23, 04019026. [Google Scholar] [CrossRef]
- Carozzi, F.G.; Colombi, P.; Poggi, C. Calibration of end-debonding strength model for FRP-reinforced masonry. Compos. Struct. 2015, 120, 366–377. [Google Scholar]
- Shahri, A.; Massumi, A.; Soltani Mohammadi, M.; Homami, P. Experimental evaluation of nonlinear behavior of unreinforced masonry (URM) walls retrofitted using center-core technique. J. Struct. Construct. Eng. 2021, 8, 59–80. [Google Scholar]
- Kouris, L.A.S.; Triantafillou, T.C. State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Constr. Build. Mater. 2018, 188, 1221–1233. [Google Scholar]
- Bloch, J.; Aronchik, A.; Goldman, A. A method of strengthening ancient domes and vaults, and problems of their stress-strain states in seismic regions. In High Performance Structures and Materials II; Brebbia, C.A., De Wilde, W.P., Eds.; WIT Press: Southampton, UK, 2004. [Google Scholar]
- Portioli, F.; Mammana, O.; Landolfo, R.; Mazzolani, F.M.; Krstevska, L.; Tashkov, L.; Gramatikov, K. Seismic Retrofitting of Mustafa Pasha Mosque in Skopje: Finite Element Analysis. J. Earthq. Eng. 2011, 15, 620–639. [Google Scholar]
- Moeeni, M.; Ghasem Sahab, M. Studying effect of expansive material in retrofitting of masonry domes in historical buildings. World Appl. Sci. J. 2013, 26, 548–552. [Google Scholar]
- Cascardi, A.; Micelli, F.; Aiello, M.A. FRCM-confined masonry columns: Experimental investigation on the effect of the inorganic matrix properties. Constr. Build. Mater. 2018, 186, 811–825. [Google Scholar] [CrossRef]
Model | Total Mass (t) | 1st Mode (X Direction) | 2nd Mode (Z Direction) | 3rd Mode (X Direction) | |||
---|---|---|---|---|---|---|---|
Freq. (Hz) | MPR | Freq. (Hz) | MPR | Freq. (Hz) | MPR | ||
OM | 142.5 | 1.75 | 0.441 | 1.84 | 0.435 | 10.95 | 0.106 |
RM | 142.8 | 1.74 | 0.440 | 1.83 | 0.435 | 10.96 | 0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocaman, İ.; Ertosun Yıldız, M.; Yıldız, M.A.; Eroğlu, E.; Çetin, S. A Proposal for Reinforcement of Historical Masonry Minarets: Gaziantep Kabasakal Mosque Minaret. Buildings 2025, 15, 1213. https://doi.org/10.3390/buildings15081213
Kocaman İ, Ertosun Yıldız M, Yıldız MA, Eroğlu E, Çetin S. A Proposal for Reinforcement of Historical Masonry Minarets: Gaziantep Kabasakal Mosque Minaret. Buildings. 2025; 15(8):1213. https://doi.org/10.3390/buildings15081213
Chicago/Turabian StyleKocaman, İrfan, Merve Ertosun Yıldız, Mehmet Akif Yıldız, Esma Eroğlu, and Sedanur Çetin. 2025. "A Proposal for Reinforcement of Historical Masonry Minarets: Gaziantep Kabasakal Mosque Minaret" Buildings 15, no. 8: 1213. https://doi.org/10.3390/buildings15081213
APA StyleKocaman, İ., Ertosun Yıldız, M., Yıldız, M. A., Eroğlu, E., & Çetin, S. (2025). A Proposal for Reinforcement of Historical Masonry Minarets: Gaziantep Kabasakal Mosque Minaret. Buildings, 15(8), 1213. https://doi.org/10.3390/buildings15081213