Experimental Study on Seismic Behavior of Novel Prefabricated RC Joints with Welded Cover-Plate Steel Sleeve and Bolted Splice
Abstract
1. Introduction
2. Experimental Progress
2.1. Specimens Designed
2.2. Theoretical Design
2.3. A Pivotal Parameter Selected Based on ABAQUS Software
2.4. Material Properties
2.5. Loading Setup and Protocol
3. Analysis of Experimental Results
3.1. Failure Phenomena
3.2. Hysteresis Curves
3.3. Skeleton Curves
3.4. Ductility
3.5. Dissipation Capacity
3.6. Stiffness Degradation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.C.; Yu, B.; Li, B. Hybrid conformal prediction framework for reliable seismic failure mode identification in reinforced concrete columns. Eng. Struct. 2026, 346, 121617. [Google Scholar] [CrossRef]
- Jiang, L.X.; Lin, X.S.; Wu, Y.F. Numerical study of FRP-reinforced compression yielding beams with perforated and confined compression cast concrete. Structures 2025, 80, 109943. [Google Scholar] [CrossRef]
- Jia, S.; Zhan, D.J.; Jiang, H.; Ye, S.-D. Life-cycle seismic resilience and sustainability assessment method of reinforced concrete buildings. Structures 2025, 80, 109919. [Google Scholar] [CrossRef]
- Chen, W.Q.; Yang, T.; Huang, J.R.; Zhao, K. Show more. Collapse performance of composite frames utilizing perfobond rib shear connectors in frame beams. J. Build. Eng. 2025, 111, 113209. [Google Scholar] [CrossRef]
- Liu, Y.B.; Guo, Z.; Ding, J.H.; Wang, X.; Liu, Y. Experimental study on seismic behaviour of plug-in assembly concrete beam-column connections. Eng. Struct. 2020, 221, 111049. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Cheng, X.W.; Li, Y.; Diao, M.; An, Y. Progressive collapse analysis of precast reinforced concrete beam-column assemblies’ with different dry connections. Eng. Struct. 2023, 287, 116174. [Google Scholar] [CrossRef]
- Lago, B.D.; Negro, P.; Lago, A.D. Seismic design and performance of dry-assembled precast structures with adaptable joints. Soil Dyn. Earthq. Eng. 2018, 106, 182–195. [Google Scholar] [CrossRef]
- Ertas, O.; Ozden, S.; Ozturan, T. Ductile connections in precast concrete moment resisting frames. PCI J. 2006, 51, 66–76. [Google Scholar] [CrossRef]
- Aydın, A.C.T.; Kılıç, M.; Maali, M.; Sağıroğlu, M. Experimental assessment of the semi-rigid connections behavior with angles and stiffeners. J. Constr. Steel Res. 2015, 114, 338–348. [Google Scholar] [CrossRef]
- Ding, K.W.; Ye, Y.; Ma, W. Seismic performance of precast concrete beam-column joint based on the bolt connection. Eng. Struct. 2021, 232, 111884. [Google Scholar] [CrossRef]
- Wang, H.S.; Marino, E.M.; Pan, P.; Liu, H.; Nie, X. Experimental study of a novel precast prestressed reinforced concrete beam-to-column joint. Eng. Struct. 2018, 156, 68–81. [Google Scholar] [CrossRef]
- Nzabonimpa, J.D.; Hong, W.K.; Park, S.C. Experimental investigation of dry mechanical beam–column joints for precast concrete based frames. Struct. Des. Tall Spec. Build. 2017, 26, e1302. [Google Scholar] [CrossRef]
- Wu, C.L.; Yu, S.J.; Liu, J.M.; Chen, G. Development and testing of hybrid precast steel-reinforced concrete column-to-H shape steel beam connections under cyclic loading. Eng. Struct. 2020, 211, 110460. [Google Scholar] [CrossRef]
- Li, S.F.; Li, Q.N.; Jiang, H.T.; Zhang, H.; Zhang, L. Experimental research on seismic performance of a new-type of R/C beam-column joints with end plates. Shock Vib. 2017, 11, 3823469. [Google Scholar] [CrossRef]
- Zhang, R.J.; Zhang, Y.; Li, A.Q.; Yang, T. Experimental study on a new type of precast beam-column joint. J. Build. Eng. 2022, 51, 104252. [Google Scholar] [CrossRef]
- Li, Z.H.; Qi, Y.H.; Teng, J. Experimental investigation of prefabricated beam-to-column steel joints for precast concrete structures under cyclic loading. Eng. Struct. 2020, 209, 110217. [Google Scholar] [CrossRef]
- Zhang, W.; Kim, S.; Lee, D.; Ju, H.; Dai, L.; Wang, L. Seismic performance of innovative precast dry and strong beam-column connection. J. Build. Eng. 2025, 106, 112711. [Google Scholar] [CrossRef]
- Elsayed, M.; Mohamed, E.H.; Hamdy, A.E.; Osman, M. Finite element analysis of beam-to-column joints in steel frames under cyclic loading. Alex. Eng. J. 2011, 50, 91–104. [Google Scholar]
- Elsayed, M.; Mohamed, E.H.; Hamdy, A.E.; Osman, M. Behavior of four-bolt extended end-plate connection subjected to lateral loading. Alex. Eng. J. 2011, 50, 79–90. [Google Scholar]
- Nzabonimpa, J.D.; Hong, W.K.; Kim, J. Nonlinear finite element model for the novel mechanical beam-column joints of precast concrete-based frames. Comput. Struct. 2017, 189, 31–48. [Google Scholar] [CrossRef]
- Díaz, C.; Victoria, M.; Martí, P.; Querin, O.M. FE model of beam-to-column extended end-plate joints. J. Constr. Steel Res. 2011, 67, 1578–1590. [Google Scholar] [CrossRef]
- Liu, X.C.; Cui, F.Y.; Zhan, X.X.; Yu, C.; Jiang, Z.Q. Seismic performance of bolted connection of H-beam to HSS-column with web end-plate. J. Constr. Steel Res. 2019, 156, 167–181. [Google Scholar] [CrossRef]
- Liu, X.C.; Li, B.Z.; Chen, X.S.; Zhang, Y.X.; Zhang, A.L. Seismic performance of bolted middle joint for modular steel structure. J. Constr. Steel Res. 2024, 220, 108861. [Google Scholar] [CrossRef]
- Wu, C.L.; Liu, X.; Pan, W.; Mou, B. Restoring force model for modular prefabricated steel-reinforced concrete column to H-shaped steel beam composite joints. J. Build. Eng. 2021, 42, 102845. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Zhang, G.D.; Han, Q.; Li, Z.; Xu, L.; Du, X. Nonlinear hysteretic model of prefabricated pier-cap beam joint with CFST socket connection. Eng. Struct. 2025, 330, 119908. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Z.H.; Guo, L.; Wang, B.; Yang, Y. Analytical performance and design of CECFST column assembled to PEC beam joint. KSCE J. Civ. Eng. 2021, 25, 2567–2586. [Google Scholar] [CrossRef]
- Rumman, W.; Brian, U.; Thai, H.T. Experimental and numerical behavior of blind bolted flush endplate composite connections. J. Constr. Steel Res. 2019, 153, 179–195. [Google Scholar]
- GB/T 50010-2010; Code for Design of Concrete Structures. National Standard of the People’s Republic of China: Beijing, China, 2024.
- GB 50017-2017; Code for Design of Steel Structures. National Standard of the People’s Republic of China: Beijing, China, 2017.
- Brunesi, E.; Nascimbene, R.; Rassati, G.A. Response of partially-restrained bolted beam-to-column connections under cyclic loads. J. Constr. Steel Res. 2014, 97, 24–38. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, T.P.; Pei, Y.L.; Hwang, H.-J.; Hu, X.; Yi, W.; Deng, L. Static load test on progressive collapse resistance of fully assembled precast concrete frame structure. Eng. Struct. 2019, 200, 109719. [Google Scholar] [CrossRef]
- Bursi, O.S.; Jaspart, J.P. Benchmarks for finite element modeling of bolted steel connections. J. Constr. Steel Res. 1997, 43, 17–42. [Google Scholar] [CrossRef]
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. National Standard of the People’s Republic of China: Beijing, China, 2019.
- GB/T 228.1-2021; Tensile Testing Method for Metallic Materials. National Standard of the People’s Republic of China: Beijing, China, 2021.
- JGJ/T 101-2015; Specification for Seismic Test of Buildings. National Standard of the People’s Republic of China: Beijing, China, 2015.
- GB/T 50011-2010; Code for Seismic Design of Buildings. National Standard of the People’s Republic of China: Beijing, China, 2024.














| Connection Type | Connection Principle | Load Transfer Characteristics | Ease of Disassembly |
|---|---|---|---|
| Bolt-Welded | Employing a composite mode of bolt positioning, weld load-bearing, and cover plate sleeve stress dispersion. | The synergistic load transfer mechanism—combining bolt shear capacity, weld tensile and compressive strength, and cover plate sleeve stress dispersion—effectively reduces localized stress concentration at the joint. | Using a wrench to loosen the bolts allows for quick separation and replacement of components. |
| Fully bolted | Load transfer occurs through the shear action of high-strength bolts and the friction at the contact surfaces. | The load is primarily borne by bolt shear and friction at the component contact surfaces, with a single load transfer path. | Simply remove the bolts to separate the components, facilitating future maintenance, replacement, and structural modifications. |
| wet-connected | Cast-in-place concrete transfers loads through the bonded interaction between concrete and reinforcing steel. | Transferred to concrete through lap splicing and anchoring, relying on the adhesive properties of the material. | Disassembly requires destructive cutting, and components cannot be reused. |
| socket-type | Load transfer is achieved through the compression interlocking of sleeves and structural members, threaded wedging, or grouting bonding. | The load is transmitted from one end member to the sleeve, then transferred to the other end member through the contact between the sleeve and the member. | Threaded sleeves can be removed without damage. Compression-type and grout-filled sleeves require destructive removal of the sleeve and structural member. |
| Specimen | Test Yield Displacement Δ/mm | Simulated Yield Displacement Δ/mm |
|---|---|---|
| JD-1 | 15.7 | 16.2 |
| JD-2 | 14.9 | 15.6 |
| JD-3 | 14.5 | 15.3 |
| Specimen | Joint Connection Type | Bolt Specification | End Plate Thickness t/mm | Axial Compression Ratio |
|---|---|---|---|---|
| XJ | Cast-in-place | 0.3 | ||
| JD-1 | Prefabricated | 10.9M16 | 8 | 0.3 |
| JD-2 | Prefabricated | 10.9M16 | 10 | 0.3 |
| JD-3 | Prefabricated | 10.9M16 | 12 | 0.3 |
| Category | Diameter (d)/Thickness (t) (mm) | Yield Strength fy (MPa) | Tensile Strength fu (MPa) | Modulus of Elasticity E (N/mm2) |
|---|---|---|---|---|
| HRB400 | 14 | 410 | 582 | 2.00 × 105 |
| HRB400 | 16 | 415 | 590 | 2.00 × 105 |
| S355JR | 6 | 371 | 478 | 2.02 × 105 |
| S355JR | 8 | 365 | 494 | 2.02 × 105 |
| S355JR | 10 | 361 | 513 | 2.02 × 105 |
| S355JR | 12 | 359 | 526 | 2.02 × 105 |
| S355JR | 20 | 389 | 531 | 2.02 × 105 |
| Indicator | Δ/(mm) | P/(kN) | Strain ε (10−6) | Stress σ (MPa) | Bending Moment Mσ (Derived from Stress Calculation) (kN·m) | Bending Moment Mp (Derived from Thrust Calculation) (kN·m) | |
|---|---|---|---|---|---|---|---|
| Strain Point | |||||||
| XJ-2#, 4# | 2.8 | 5.1 | 575 | 115.0 | 5.51 | 5.61 | |
| 14.0 | 14.3 | 1937 | 387.4 | 15.39 | 15.73 | ||
| 21.0 | 17.2 | 2417 | 410.0 | 16.04 | 18.92 | ||
| 42.0 | 20.2 | 3281 | - | - | 22.22 | ||
| 54.1 | 17.8 | 3532 | - | - | 19.58 | ||
| JD1-2#, 4# | 2.8 | 5.2 | 589 | 117.8 | 5.64 | 5.72 | |
| 14.0 | 14.1 | 1917 | 383.4 | 15.29 | 15.51 | ||
| 21.0 | 17.1 | 2337 | 410.0 | 16.04 | 18.81 | ||
| 42.0 | 18.6 | 3071 | - | - | 20.46 | ||
| 55.7 | 15.2 | 3164 | - | - | 16.72 | ||
| JD1-14# | 2.8 | 5.2 | 159 | 32.12 | 6.34 | 6.50 | |
| 14.0 | 14.1 | 432 | 87.26 | 17.23 | 17.63 | ||
| 21.0 | 17.1 | 524 | 105.85 | 20.89 | 21.38 | ||
| 42.0 | 18.6 | 568 | 114.74 | 22.65 | 23.25 | ||
| 55.7 | 15.2 | 469 | 94.73 | 18.70 | 19.00 | ||
| JD2-2#, 4# | 2.8 | 5.4 | 604 | 120.8 | 5.77 | 5.94 | |
| 14.0 | 14.7 | 1986 | 397.2 | 15.67 | 16.17 | ||
| 21.0 | 17.5 | 2513 | 410.0 | 16.04 | 19.25 | ||
| 41.9 | 20.6 | 3348 | - | - | 22.66 | ||
| 54.6 | 18.3 | 3692 | - | - | 20.13 | ||
| JD2-14# | 2.8 | 5.4 | 167 | 33.73 | 6.66 | 6.75 | |
| 14.0 | 14.7 | 456 | 92.11 | 18.18 | 18.38 | ||
| 21.0 | 17.5 | 536 | 108.27 | 21.37 | 21.88 | ||
| 41.9 | 20.6 | 631 | 127.46 | 25.16 | 25.75 | ||
| 54.6 | 18.3 | 558 | 112.72 | 22.25 | 22.88 | ||
| JD3-2#, 4# | 2.8 | 5.7 | 617 | 123.4 | 5.89 | 6.27 | |
| 14.0 | 14.9 | 2035 | 407.0 | 15.95 | 16.39 | ||
| 21.0 | 18.9 | 2621 | 410.0 | 16.04 | 20.79 | ||
| 41.8 | 21.5 | 3467 | - | - | 23.65 | ||
| 54.2 | 19.3 | 3847 | - | - | 21.23 | ||
| JD3-14# | 2.8 | 5.7 | 169 | 34.14 | 6.74 | 7.13 | |
| 14.0 | 14.9 | 478 | 96.56 | 19.06 | 19.37 | ||
| 21.0 | 18.9 | 581 | 117.36 | 23.18 | 23.63 | ||
| 41.8 | 21.5 | 673 | 134.6 | 26.57 | 26.88 | ||
| 54.2 | 19.3 | 589 | 118.98 | 23.49 | 24.13 | ||
| Specimen | Direction | Yield Load | Yield Displacement | Peak Load | Peak Displacement | Ultimate Load | Ultimate Displacement | Ductility Coefficient |
|---|---|---|---|---|---|---|---|---|
| Py/kN | Δy/mm | Pm/kN | Δm/mm | Pu/kN | Δu/mm | μ | ||
| XJ | Positive | 14.8 | 14.6 | 20.1 | 42.0 | 17.8 | 54.1 | 3.71 |
| Negative | 14.5 | 15.1 | 19.0 | 41.9 | 16.5 | 56.0 | ||
| JD-1 | Positive | 14.7 | 15.7 | 18.6 | 42.0 | 15.2 | 55.7 | 3.47 |
| Negative | 14.3 | 16.5 | 17.8 | 35.0 | 14.2 | 56.0 | ||
| JD-2 | Positive | 14.9 | 14.9 | 20.6 | 41.9 | 18.3 | 54.6 | 3.57 |
| Negative | 14.7 | 15.8 | 19.8 | 42.0 | 16.9 | 55.0 | ||
| JD-3 | Positive | 15.1 | 14.5 | 21.5 | 41.8 | 19.3 | 54.2 | 3.64 |
| Negative | 14.8 | 15.2 | 20.4 | 41.3 | 17.6 | 53.8 |
| Specimen | XJ | JD-1 | JD-2 | JD-3 | |
|---|---|---|---|---|---|
| Displacement Ratio Δ/Δy | |||||
| 0.2% | 0.112 | 0.110 | 0.115 | 0.124 | |
| 1% | 0.073 | 0.071 | 0.074 | 0.077 | |
| 3% | 0.106 | 0.112 | 0.118 | 0.127 | |
| 4% | 0.120 | 0.131 | 0.137 | 0.144 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.-P.; Rao, K.; Wei, W.; Han, F.; Peng, S. Experimental Study on Seismic Behavior of Novel Prefabricated RC Joints with Welded Cover-Plate Steel Sleeve and Bolted Splice. Buildings 2025, 15, 4579. https://doi.org/10.3390/buildings15244579
Wu D-P, Rao K, Wei W, Han F, Peng S. Experimental Study on Seismic Behavior of Novel Prefabricated RC Joints with Welded Cover-Plate Steel Sleeve and Bolted Splice. Buildings. 2025; 15(24):4579. https://doi.org/10.3390/buildings15244579
Chicago/Turabian StyleWu, Dong-Ping, Kang Rao, Wei Wei, Fei Han, and Sheng Peng. 2025. "Experimental Study on Seismic Behavior of Novel Prefabricated RC Joints with Welded Cover-Plate Steel Sleeve and Bolted Splice" Buildings 15, no. 24: 4579. https://doi.org/10.3390/buildings15244579
APA StyleWu, D.-P., Rao, K., Wei, W., Han, F., & Peng, S. (2025). Experimental Study on Seismic Behavior of Novel Prefabricated RC Joints with Welded Cover-Plate Steel Sleeve and Bolted Splice. Buildings, 15(24), 4579. https://doi.org/10.3390/buildings15244579

