Optimisation of Glass and Carbon Fibre-Reinforced Concrete with External Enzymatic Self-Healing: An Experimental and Environmental Impact Study
Abstract
1. Introduction
2. Research Significance
3. Materials and Methods
3.1. Materials
3.2. Mix Proportions
3.3. Experimental Procedure
3.3.1. Fresh Properties
3.3.2. Hardened Properties
3.3.3. Rate of Water Absorption
3.3.4. Bulk Density
3.3.5. Moisture Content
3.3.6. Enzymatic Self-Healing Procedure
- HP = Healing Percentage (%);
- = Crack Width at time t (mm);
- = Initial Crack Width (mm).
3.4. Life Cycle Assessment
3.4.1. Goal and Scope Definition
3.4.2. Life Cycle Inventory (LCI)
3.4.3. Interpretations of Embodied Carbon Factor and Embodied Energy
- ECFi = Embodied Carbon Factor of material i (in kgCO2e per kg);
- Qi = Quantity of material i (in kg);
- n = Total number of different materials or components.
4. Results and Discussion
4.1. Experimental Work
4.1.1. Fresh Properties
4.1.2. Hardened Properties
4.1.3. Rate of Water Absorption
4.1.4. Bulk Density
4.1.5. Moisture Content
4.2. Life Cycle Assessment
4.2.1. Embodied Carbon
4.2.2. Embodied Energy
4.3. Enzymatic Self-Healing
5. Conclusions
- Both glass and carbon fibres were found to reduce the compressive strength of the concrete, with the detrimental effect being more pronounced for carbon fibres, particularly at higher concentrations. Conversely, the inclusion of both fibre types enhanced the split tensile strength, peaking at an optimal dosage of 0.22%. Glass fibres provided a significantly greater improvement (+70%) compared to carbon fibres (+35%) at this concentration.
- A critical trade-off was identified in the durability of the mixes. The addition of glass fibres consistently increased the rate of water absorption, suggesting higher permeability. In contrast, the low dosage of 0.12% carbon fibre resulted in a pronounced reduction in water absorption (33.33%) compared to the control, indicating enhanced durability.
- The life cycle assessment indicated that fibre inclusion increases the environmental footprint of the concrete. This impact was most significant for the carbon fibre mixes, which led to a substantial increase in embodied energy (up to 141%) compared to both the control and the glass fibre mixes.
- The application of an external enzymatic self-healing solution was more effective on fibre-reinforced specimens than on the plain control, suggesting that fibres act as nucleation sites. The optimal carbon fibre concrete (C-2) exhibited the highest healing potential, achieving up to 30% crack closure after 56 days, representing a 13.33% improvement over the control mix.
- The CA enzymatic self-healing solution demonstrated a crack healing capacity (0.45 mm) comparable to or exceeding several microbial-based systems, highlighting its potential as a competitive and practical alternative for self-healing concrete.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CA | Carbonic Anhydrase |
LCA | Life Cycle Assessment |
MICP | Microbial-Induced Carbonate Precipitation |
CaCO3 | Calcium Carbonate |
OPC | Ordinary Portland Cement |
GF | Glass Fibre |
CF | Carbon Fibre |
CaCl2 | Calcium Chloride |
FRC | Fiber-Reinforced Concrete |
LCI | Life Cycle Inventory |
LCIA | Life Cycle Impact Assessment |
ICE | Inventory of Carbon and Energy |
GHG | Greenhouse gas |
GFC | Glass fibre concrete |
CFC | Carbon fibre concrete |
Fibre volume fraction |
References
- Qu, F.; Li, W.; Dong, W.; Tam, V.W.Y.; Yu, T. Durability Deterioration of Concrete under Marine Environment from Material to Structure: A Critical Review. J. Build. Eng. 2021, 35, 102074. [Google Scholar] [CrossRef]
- Faris, N.; Zayed, T.; Fares, A. Review of Condition Rating and Deterioration Modeling Approaches for Concrete Bridges. Buildings 2025, 15, 219. [Google Scholar] [CrossRef]
- Noeiaghaei, T.; Mukherjee, A.; Dhami, N.; Chae, S.-R. Biogenic Deterioration of Concrete and Its Mitigation Technologies. Constr. Build. Mater. 2017, 149, 575–586. [Google Scholar] [CrossRef]
- Kiani, B.; Liang, R.Y.; Gross, J. Material Selection for Repair of Structural Concrete Using VIKOR Method. Case Stud. Constr. Mater. 2018, 8, 489–497. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, M.; Du, F.; Chen, D.; Xiao, L.; Chen, W.; Du, W.; Ding, Q. State-of-the-Art Review of Microcapsule Self-Repairing Concrete: Principles, Applications, Test Methods, Prospects. Polymers 2024, 16, 3165. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Ebead, U.; al-Hamrani, A.; Rabie, M. Influence of Steel Reinforced Grout Configuration, and Reinforcement Ratio on the Flexural Performance of Strengthened Continuous RC Beams. Struct. Concr. 2025. [Google Scholar] [CrossRef]
- Ma, C.-K.; Apandi, N.M.; Sofrie, C.S.Y.; Ng, J.H.; Lo, W.H.; Awang, A.Z.; Omar, W. Repair and Rehabilitation of Concrete Structures Using Confinement: A Review. Constr. Build. Mater. 2017, 133, 502–515. [Google Scholar] [CrossRef]
- Kumpati, R.; Skarka, W.; Ontipuli, S.K. Current Trends in Integration of Nondestructive Testing Methods for Engineered Materials Testing. Sensors 2021, 21, 6175. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-Destructive Testing and Evaluation of Composite Materials/Structures: A State-of-the-Art Review. Adv. Mech. Eng. 2020, 12, 168781402091376. [Google Scholar] [CrossRef]
- Raza, S.S.; Qureshi, L.A.; Ali, B.; Raza, A.; Khan, M.M. Effect of Different Fibers (Steel Fibers, Glass Fibers, and Carbon Fibers) on Mechanical Properties of Reactive Powder Concrete. Struct. Concr. 2021, 22, 334–346. [Google Scholar] [CrossRef]
- More, F.M.D.S.; Subramanian, S. Impact of Fibres on the Mechanical and Durable Behaviour of Fibre-Reinforced Concrete. Buildings 2022, 12, 1436. [Google Scholar] [CrossRef]
- Mohamed, O.; Zuaiter, H. Fresh Properties, Strength, and Durability of Fiber-Reinforced Geopolymer and Conventional Concrete: A Review. Polymers 2024, 16, 141. [Google Scholar] [CrossRef]
- Ali, B.; Qureshi, L.; Shah, S.; Rehman, S.; Hussain, I.; Iqbal, M. A Step towards Durable, Ductile and Sustainable Concrete: Simultaneous Incorporation of Recycled Aggregates, Glass Fiber and Fly Ash. Constr. Build. Mater. 2020, 251, 118980. [Google Scholar] [CrossRef]
- Tahir, H.; Khan, M.B.; Shafiq, N.; Radu, D.; Nyarko, M.H.; Waqar, A.; Almujibah, H.R.; Benjeddou, O. Optimisation of Mechanical Characteristics of Alkali-Resistant Glass Fibre Concrete towards Sustainable Construction. Sustainability 2023, 15, 11147. [Google Scholar] [CrossRef]
- Ahmad, J.; González-Lezcano, R.A.; Majdi, A.; Ben Kahla, N.; Deifalla, A.F.; El-Shorbagy, M.A. Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis. Materials 2022, 15, 5111. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, J.; Dolati, S.S.K.; Malla, P.; Nanni, A.; Mehrabi, A. FRP-Reinforced/Strengthened Concrete: State-of-the-Art Review on Durability and Mechanical Effects. Materials 2023, 16, 1990. [Google Scholar] [CrossRef]
- Ruben, N.; Venkatesh, C.; Durga, C.; Chand, M. Comprehensive Study on Performance of Glass Fibers-Based Concrete. Innov. Infrastruct. Solut. 2021, 6, 112. [Google Scholar] [CrossRef]
- Bio-Based Solutions for Concrete Infrastructure: A Review of Microbial-Induced Carbonate Precipitation in Crack Healing. Available online: https://www.mdpi.com/2075-5309/15/7/1052 (accessed on 1 August 2025).
- Wang, R.; Bian, S.; Zhang, B.; Yan, L.; Feng, L.; Bai, J. Investigation of Microbial Induced Calcium Carbonate and Struvite Co-Precipitation on Cementitious Material Surfaces. J. Environ. Manag. 2025, 375, 124206. [Google Scholar] [CrossRef]
- Yan, Y.; Jia, G.; Li, Z.; Liu, W.; Zhang, Y.; Ma, G.; Gao, Y. “Smart” Concrete Based on Microbially Induced Carbonate Precipitation—A Review. Constr. Build. Mater. 2024, 451, 138904. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Zhu, J.; Wei, W.; Qu, X.; Wang, L.; Sun, N.; Zhang, L. Microbial Culture Condition Optimization and Fiber Reinforcement on Microbial-Induced Carbonate Precipitation for Soil Stabilization. Sustainability 2025, 17, 3101. [Google Scholar] [CrossRef]
- Zhang, D.; Shahin, M.A.; Yang, Y.; Liu, H.; Cheng, L. Effect of Microbially Induced Calcite Precipitation Treatment on the Bonding Properties of Steel Fiber in Ultra-High Performance Concrete. J. Build. Eng. 2022, 50, 104132. [Google Scholar] [CrossRef]
- Wan, S.; Shu, Z.; Kang, S.; Zhong, W.; Zhang, X.; Wu, H.; Liu, R. Microbial-Induced Calcium Carbonate Precipitation and Basalt Fiber Cloth Reinforcement Used for Sustainable Repair of Tunnel Lining Cracks. Buildings 2024, 14, 3609. [Google Scholar] [CrossRef]
- Rabie, M.; Shaaban, I.G. Glass Fibre Concrete: Experimental Investigation and Predictive Modeling Using Advanced Machine Learning with an Interactive Online Interface. Constr. Build. Mater. 2025, 472, 140951. [Google Scholar] [CrossRef]
- Amjad, H.; Arsalan Khushnood, R.; Ali Memon, S. Biomimetic Robust Self-Healing of Bacillus Subtilis Immobilized through Sisal Fiber for next-Generation Concrete Infrastructure. Constr. Build. Mater. 2023, 368, 130299. [Google Scholar] [CrossRef]
- Kawaai, K.; Nishida, T.; Saito, A.; Hayashi, T. Application of Bio-Based Materials to Crack and Patch Repair Methods in Concrete. Constr. Build. Mater. 2022, 340, 127718. [Google Scholar] [CrossRef]
- Oyewole, O.A.; Maddela, N.R.; Ibrahim, O.H.; Adebayo-Anwo, I.; Adejumo, T.E.; Agbese, E.O.; Egwim, E.C.; Prasad, R. Leveraging the Concretes Calcification with Carbonic Anhydrase Produced by Alcaligenes faecalis GA(B) (Mn847724.1). Bioresour. Technol. Rep. 2023, 22, 101434. [Google Scholar] [CrossRef]
- Rosewitz, J.A.; Wang, S.; Scarlata, S.F.; Rahbar, N. An Enzymatic Self-Healing Cementitious Material. Appl. Mater. Today 2021, 23, 101035. [Google Scholar] [CrossRef]
- Mwandira, W.; Mavroulidou, M.; Gunn, M.J.; Purchase, D.; Garelick, H.; Garelick, J. Concurrent Carbon Capture and Biocementation through the Carbonic Anhydrase (CA) Activity of Microorganisms -a Review and Outlook. Environ. Process. 2023, 10, 56. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, Y.; Shi, L.; Bian, H.; Shi, W. Experimental Investigation on Mechanical Behavior of Sands Treated by Enzyme-Induced Calcium Carbonate Precipitation with Assistance of Sisal-Fiber Nucleation. Front. Earth Sci. 2022, 10. [Google Scholar] [CrossRef]
- BS EN 197-1:2011; Composition, Specifications and Conformity Criteria for Common Cements. British Standards: London, UK, 2011.
- BS EN 812; Testing Aggregates-Part 112: Methods for Determination of Aggregate Impact Value (AIV). British Standards: Kowloon, Hong Kong, 1990.
- ASTM C33-03; Standard Spesification for Concrete Aggregate. American Society for Testing and Materials: Philadelphia, PA, USA, 2003.
- Travis Perkins | Builders’ Merchant | Building Supplies. Available online: https://www.travisperkins.co.uk/ (accessed on 20 June 2024).
- ACI Committee 544. Guide to Design with Fiber-Reinforced Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2018. [Google Scholar]
- BS EN 12350-2:2019-TC; Testing Fresh Concrete. Slump-Test. British Standards Institution: London, UK, 2019.
- BS 1881: Part 116:1983; Testing Concrete. Method for Determination of Compressive Strength of Concrete Cubes. British Standards Institution: London, UK, 1983.
- ASTM C496/C496M-17; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- Irshidat, M.R.; Al-Nuaimi, N.; Rabie, M. Thermal Behavior and Post-Heating Fracture Characteristics of Polypropylene Microfiber-Reinforced Geopolymer Binders. Constr. Build. Mater. 2022, 332, 127310. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Nuaimi, N.; Rabie, M. Hybrid Effect of Carbon Nanotubes and Polypropylene Microfibers on Fire Resistance, Thermal Characteristics and Microstructure of Cementitious Composites. Constr. Build. Mater. 2021, 266, 121154. [Google Scholar] [CrossRef]
- Shu, Y.; Song, Y.; Fang, H.; Wang, D.; Lu, W.; Huang, Y.; Zhao, C.; Chen, L.; Song, X. Fiber-Reinforced Microbially Induced Carbonate Precipitation (MICP) for Enhancing Soil Stability: Mechanisms, Effects, and Future Prospects. J. Build. Eng. 2024, 94, 109955. [Google Scholar] [CrossRef]
- Kim, T.-K.; Park, J.-S. Performance Evaluation of Concrete Structures Using Crack Repair Methods. Sustainability 2021, 13, 3217. [Google Scholar] [CrossRef]
- ELE International—Crack Detection Microscope Magnification X 40 Measuring Range of 4 mm in 0.02 mm Divisions. Available online: https://www.ele.com/product/crack-detection-microscope-magnification-x-40-measuring-range-of-4mm-in-0-02mm-divisions (accessed on 11 August 2025).
- Sbahieh, S.; Rabie, M.; Ebead, U.; Al-Ghamdi, S.G. The Mechanical and Environmental Performance of Fiber-Reinforced Polymers in Concrete Structures: Opportunities, Challenges and Future Directions. Buildings 2022, 12, 1417. [Google Scholar] [CrossRef]
- Rabie, M.; Irshidat, M.R.; Al-Nuaimi, N. Ambient and Heat-Cured Geopolymer Composites: Mix Design Optimization and Life Cycle Assessment. Sustainability 2022, 14, 4942. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Nuaimi, N.; Rabie, M. Sustainable Utilization of Waste Carbon Black in Alkali-Activated Mortar Production. Case Stud. Constr. Mater. 2021, 15, e00743. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Nuaimi, N.; Ahmed, W.; Rabie, M. Feasibility of Recycling Waste Carbon Black in Cement Mortar Production: Environmental Life Cycle Assessment and Performance Evaluation. Constr. Build. Mater. 2021, 296, 123740. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Inaba, A.; Tan, R.B.H.; Christiansen, K.; Klüppel, H.J. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Blay-Armah, A.; Mohebbi, G.; Bahadori-Jahromi, A.; Fu, C.; Amoako-Attah, J.; Barthorpe, M. Evaluation of Embodied Carbon Emissions in UK Supermarket Constructions: A Study on Steel, Brick, and Timber Frameworks with Consideration of End-of-Life Processes. Sustainability 2023, 15, 14978. [Google Scholar] [CrossRef]
- Mohebbi, G.; Bahadori-Jahromi, A.; Ferri, M.; Mylona, A. The Role of Embodied Carbon Databases in the Accuracy of Life Cycle Assessment (LCA) Calculations for the Embodied Carbon of Buildings. Sustainability 2021, 13, 7988. [Google Scholar] [CrossRef]
- Rabie, M.; Ibrahim, M.; Ebead, U.; Shaaban, I.G. Optimising Sustainable Alkali-Activated Mortar: Experimental Work and Machine Learning Predictions. In Proceedings of the Institution of Civil Engineers-Structures and Buildings, London, UK, 25 July 2025. [Google Scholar] [CrossRef]
- Jones, G.H.C. Embodied Carbon—The ICE Database; Circular Ecology and University of Bath: Bath, UK, 2019. [Google Scholar]
- Hammond, G.; Jones, C. Inventory of Carbon & Energy: ICE; Sustainable Energy Research Team, Department of Mechanical Engineering: Bath, UK, 2008; Volume 5. [Google Scholar]
- Gültekin, A.; Beycioğlu, A.; Arslan, M.E.; Serdar, A.H.; Dobiszewska, M.; Ramyar, K. Fresh Properties and Fracture Energy of Basalt and Glass Fiber–Reinforced Self-Compacting Concrete. J. Mater. Civ. Eng. 2022, 34, 04021406. [Google Scholar] [CrossRef]
- Nadondu, B.; Surin, P.; Deeying, J. Multi-Objective Optimization on Mechanical Properties of Glass-Carbon and Durian Skin Fiber Reinforced Poly(Lactic Acid) Hybrid Composites Using the Extreme Mixture Design Response Surface Methodology. Case Stud. Constr. Mater. 2022, 17, e01675. [Google Scholar] [CrossRef]
- Abrishambaf, A.; Pimentel, M.; Nunes, S. Influence of Fibre Orientation on the Tensile Behaviour of Ultra-High Performance Fibre Reinforced Cementitious Composites. Cem. Concr. Res. 2017, 97, 28–40. [Google Scholar] [CrossRef]
- Fu, S.; Lauke, B. Effects of Fiber Length and Fiber Orientation Distributions on the Tensile Strength of Short-Fiber-Reinforced Polymers. Compos. Sci. Technol. 1996, 56, 1179–1190. [Google Scholar] [CrossRef]
- Safiuddin, M.; Abdel-Sayed, G.; Hearn, N. Absorption and Strength Properties of Short Carbon Fiber Reinforced Mortar Composite. Buildings 2021, 11, 300. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, P.; Liu, Z.; Dong, L.; Lin, J.; Yang, T.; Ren, Q.; Wu, C. Effect of Steel Fibre with Different Orientations on Mechanical Properties of 3D-Printed Steel-Fibre Reinforced Concrete: Mesoscale Finite Element Analysis. Cem. Concr. Compos. 2024, 150, 105545. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Li, L.; Zhou, J.; Mu, R.; Xu, M. Influence of Fiber Orientation on the Microstructures of Interfacial Transition Zones and Pull-out Behavior of Steel Fiber in Cementitious Composites. Cem. Concr. Compos. 2022, 128, 104459. [Google Scholar] [CrossRef]
- Safiuddin, M.; Yakhlaf, M.; Soudki, K.A. Key Mechanical Properties and Microstructure of Carbon Fibre Reinforced Self-Consolidating Concrete. Constr. Build. Mater. 2018, 164, 477–488. [Google Scholar] [CrossRef]
- Ji, Y.; Zou, Y.; Wan, X.; Li, W. Mechanical Investigation on Fiber-Doped Cementitious Materials. Polymers 2022, 14, 1663. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Jia, Y. Mechanical Properties and Microstructure of Glass Fiber and Polypropylene Fiber Reinforced Concrete: An Experimental Study. Constr. Build. Mater. 2021, 266, 121048. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, F.; Li, C.; Hong, B. Hygrothermal Resistance of Pultruded Carbon, Glass and Carbon/Glass Hybrid Fiber Reinforced Epoxy Composites. Constr. Build. Mater. 2022, 315, 125710. [Google Scholar] [CrossRef]
- Li, J.; Hajimohammadi, A.; Yu, Y.; Lee, B.Y.; Kim, T. Mechanism of PVA Fiber Influence in Foam Concrete: From Macroscopic to Microscopic View. J. Mater. Civ. Eng. 2023, 35, 04023447. [Google Scholar] [CrossRef]
- Jiang, F.; Deng, W.; Wang, Q.; Gu, Z.; Wang, J. The Influence of Fiber Dispersion on the Properties of MgO Concrete and Engineering Applications. Materials 2025, 18, 261. [Google Scholar] [CrossRef]
- Shi, X.; Ning, B.; Liu, J.; Wei, Z. Effects of Re-Dispersible Latex Powder-Basalt Fibers on the Properties and Pore Structure of Lightweight Foamed Concrete. J. Build. Eng. 2023, 75, 106984. [Google Scholar] [CrossRef]
- Groetsch, T.; Maghe, M.; Creighton, C.; Varley, R.J. Environmental, Property and Cost Impact Analysis of Carbon Fibre at Increasing Rates of Production. J. Clean. Prod. 2023, 382, 135292. [Google Scholar] [CrossRef]
- Stelzer, P.S.; Cakmak, U.; Eisner, L.; Doppelbauer, L.K.; Kállai, I.; Schweizer, G.; Prammer, H.K.; Major, Z. Experimental Feasibility and Environmental Impacts of Compression Molded Discontinuous Carbon Fiber Composites with Opportunities for Circular Economy. Compos. Part B Eng. 2022, 234, 109638. [Google Scholar] [CrossRef]
- Prenzel, T.M.; Hohmann, A.; Prescher, T.; Angerer, K.; Wehner, D.; Ilg, R.; von Reden, T.; Drechsler, K.; Albrecht, S. Bringing Light into the Dark—Overview of Environmental Impacts of Carbon Fiber Production and Potential Levers for Reduction. Polymers 2024, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Qian, C.; Rui, Y.; Feng, J. Exploring the Coupled Mechanism of Fibers and Bacteria on Self-Healing Concrete from Bacterial Extracellular Polymeric Substances (EPS). Cem. Concr. Compos. 2021, 116, 103896. [Google Scholar] [CrossRef]
- Feng, J.; Su, Y.; Qian, C. Coupled Effect of PP Fiber, PVA Fiber and Bacteria on Self-Healing Efficiency of Early-Age Cracks in Concrete. Constr. Build. Mater. 2019, 228, 116810. [Google Scholar] [CrossRef]
- Rauf, M.; Khaliq, W.; Khushnood, R.A.; Ahmed, I. Comparative Performance of Different Bacteria Immobilized in Natural Fibers for Self-Healing in Concrete. Constr. Build. Mater. 2020, 258, 119578. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, M.; Zhao, D.; Feng, Y. A Review of Novel Self-Healing Concrete Technologies. J. Build. Eng. 2024, 89, 109331. [Google Scholar] [CrossRef]
- Tumwiine, H.; Chala, T.; Ssenyonjo, H.; Kirigoola, D.; Al-Fakih, A. On the Use of Self-Healing Materials in Concrete Technology: A Comprehensive Review of Materials, Mechanisms, and Field Applications. Mater. Today Chem. 2025, 48, 103001. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.; Wang, X.; Wang, Z.; Yao, W. Application of Ureolysis-Based Microbial CaCO3 Precipitation in Self-Healing of Concrete and Inhibition of Reinforcement Corrosion. Constr. Build. Mater. 2020, 265, 120364. [Google Scholar] [CrossRef]
- Liu, C.; Xing, L.; Liu, H.; Huang, W.; Nong, X.; Xu, X. Experimental on Repair Performance and Complete Stress-Strain Curve of Self-Healing Recycled Concrete under Uniaxial Loading. Constr. Build. Mater. 2021, 285, 122900. [Google Scholar] [CrossRef]
- Guo, Y.; Xiang, K.; Wang, H.; Liu, X.; Ye, Q.; Wang, X. Experimental Study on Self-Healing and Mechanical Properties of Sisal Fiber-Loaded Microbial Concrete. Mater. Res. Express 2023, 10, 045701. [Google Scholar] [CrossRef]
- Xiao, X.; Tan, A.C.Y.; Unluer, C.; Yang, E.-H. Development of a Functionally Graded Bacteria Capsule for Self-Healing Concrete. Cem. Concr. Compos. 2023, 136, 104863. [Google Scholar] [CrossRef]
- Feng, J.; Chen, B.; Sun, W.; Wang, Y. Microbial Induced Calcium Carbonate Precipitation Study Using Bacillus Subtilis with Application to Self-Healing Concrete Preparation and Characterization. Constr. Build. Mater. 2021, 280, 122460. [Google Scholar] [CrossRef]
- Baradaran, M.; Sadeghpour, M. Effect of Bacteria on the Self-Healing Ability of Concrete Containing Zeolite. Innov. Infrastruct. Solut. 2023, 8, 256. [Google Scholar] [CrossRef]
- Amiri, Y.; Hassaninasab, S.; Chehri, K.; Zahedi, M. Investigating the Effect of Adding Bacillus Bacteria and Nano-Clay on Cement Mortar Properties. Case Stud. Constr. Mater. 2022, 17, e01167. [Google Scholar] [CrossRef]
- Zhan, Q.; Zhou, J.; Wang, S.; Su, Y.; Liu, B.; Yu, X.; Pan, Z.; Qian, C. Crack Self-Healing of Cement-Based Materials by Microorganisms Immobilized in Expanded Vermiculite. Constr. Build. Mater. 2021, 272, 121610. [Google Scholar] [CrossRef]
Component | Content (%) |
---|---|
Cao | 66.3 |
SiO2 | 21.1 |
Cao/SiO2 | 3.1 |
Al2O3 | 4.9 |
Fe2O3 | 2.7 |
MgO | 1 |
SO3 | 2.6 |
Loss on Ignition | 5.5 |
Insoluble Residue | 2.3 |
Coarse Aggregate | Fine Aggregate | |
---|---|---|
Specific Gravity | 2.54 | 2.62 |
Water Absorption (%) | 1.7 | 2.65 |
Fineness Modulus | - | 2.59 |
Fibre Type | Glass | Carbon |
---|---|---|
Specific Gravity (g/cm3) | 2.68 | 1.75–1.8 |
Fibre Length (mm) | 12 | 12 |
Fibre Diameter (µm) | 19 | 7 |
Modulus of Elasticity (GPa) | 72 | 230 |
Tensile Strength (MPa) | 1700 | 4100 |
Softening Point (°C) | 860 | - |
Mix ID | Cement (Kg/m3) | Fine Aggregate (Kg/m3) | Coarse Aggregate (Kg/m3) | Water | Fibre Amount (Kg/m3) | |
---|---|---|---|---|---|---|
Control | 440 | 752 | 1158 | 0.4 | 176 | 0 |
G-1 | 440 | 752 | 1158 | 0.4 | 176 | 3.3 |
G-2 | 440 | 752 | 1158 | 0.4 | 176 | 5.808 |
G-3 | 440 | 752 | 1158 | 0.4 | 176 | 11.572 |
C-1 | 440 | 752 | 1158 | 0.4 | 176 | 3.3 |
C-2 | 440 | 752 | 1158 | 0.4 | 176 | 5.808 |
C-3 | 440 | 752 | 1158 | 0.4 | 176 | 11.572 |
Component/Material | ECF (kg CO2e/kg) | EEF (MJ/kg) |
---|---|---|
Portland Cement (CEM I) | 0.840 | 5.5 |
Fine Aggregate (Sand) | 0.0048 | 0.081 |
Coarse Aggregate (Gravel) | 0.0048 | 0.083 |
Water | 0.001 | 0.01 |
Glass Fibre | 8.1 | 100 |
Carbon Fibre | 10 | 315 |
Mix ID | Crack No. | Initial Crack Width (mm) | Final Crack Width (mm) |
---|---|---|---|
Control (#1) | 1 | 0.48 | 0.4 |
Control (#2) | 2 | 1.1 | 0.92 |
G-2 (#1) | 3 | 1 | 0.77 |
G-2 (#2) | 4 | 0.35 | 0.25 |
C-2 (#1) | 5 | 0.34 | 0.245 |
C-2 (#2) | 6 | 1.5 | 1.05 |
Materials | Crack Healing Width (mm) | Reference |
---|---|---|
CA enzymatic solution/Carbon fibre (Present study) | 0.45 | – |
Bacillus pasteurii/Ceramic granule | 0.51 | [76] |
Bacillus pasteurii/Recycled aggregate | 0.27 | [77] |
Bacillus pasteurii/Sisal fibre | 0.8 | [78] |
Bacillus cohnii/Magnesium oxide cementitious capsules | 0.25 | [79] |
Bacillus subtilis/Sisal fibre | 0.48 | [25] |
Bacillus subtilis/Polyvinyl alcohol fibres | 0.3 | [80] |
Bacillus megaterium/Zeolites | 0.1 | [81] |
Bacillus/Nanoclay | 0.46 | [82] |
Bacillus mucus/Expanded vermiculite | 0.4 | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabie, M.; Bahadori-Jahromi, A.; Shaaban, I.G. Optimisation of Glass and Carbon Fibre-Reinforced Concrete with External Enzymatic Self-Healing: An Experimental and Environmental Impact Study. Buildings 2025, 15, 3455. https://doi.org/10.3390/buildings15193455
Rabie M, Bahadori-Jahromi A, Shaaban IG. Optimisation of Glass and Carbon Fibre-Reinforced Concrete with External Enzymatic Self-Healing: An Experimental and Environmental Impact Study. Buildings. 2025; 15(19):3455. https://doi.org/10.3390/buildings15193455
Chicago/Turabian StyleRabie, Mohamed, Ali Bahadori-Jahromi, and Ibrahim G. Shaaban. 2025. "Optimisation of Glass and Carbon Fibre-Reinforced Concrete with External Enzymatic Self-Healing: An Experimental and Environmental Impact Study" Buildings 15, no. 19: 3455. https://doi.org/10.3390/buildings15193455
APA StyleRabie, M., Bahadori-Jahromi, A., & Shaaban, I. G. (2025). Optimisation of Glass and Carbon Fibre-Reinforced Concrete with External Enzymatic Self-Healing: An Experimental and Environmental Impact Study. Buildings, 15(19), 3455. https://doi.org/10.3390/buildings15193455