Multi-Objective Optimization of a Folding Photovoltaic-Integrated Light Shelf Using Non-Dominated Sorting Genetic Algorithm III for Enhanced Daylighting and Energy Savings in Office Buildings
Abstract
1. Introduction
Literature Review
2. Materials and Methods
2.1. Research Workflow
2.2. Base Case Model of Proposed System
2.3. Description of Simulation Metrics
2.3.1. Daylight Autonomy (DA)
2.3.2. Useful Daylight Autonomy (UDI)
2.3.3. Daylight Glare Probability (DGP)
2.3.4. Annual Sunlight Exposure (ASE)
2.3.5. Energy Use Intensity (EUI)
2.4. Study Area and Weather Data
2.5. Description of Optimization Algorithm
2.5.1. TOPSIS Method
2.5.2. Pareto Front Method
2.5.3. Design Explorer Method
2.6. Selection of Static System
2.7. Selection of Dynamic System
3. Results
3.1. Correlation Between Objectives
3.2. Comparison of Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PvLsh | Photovoltaic Integrated with Light Shelf |
DPvLsh | Depth of Photovoltaic Integrated with Light Shelf |
DPvLshR | Distance of Photovoltaic Integrated with Light Shelf from Roof |
NS | Number of Slats |
ALshS | Angle of Light Shelf Slats |
APvS | Angle of Photovoltaic Slats |
APvLsh | Angle of Photovoltaic Integrated with Light Shelf |
DLvPvLsh | Distance of Louvers from Light Shelf |
NLv | Number of Louvers |
DLv | Depth of Louvers |
ALv | Angle of Louvers |
DInLsh | Depth of Interior Light Shelf |
AInLsh | Angle of Interior Light Shelf |
EUI | Energy Use Intensity |
GA | Glare Autonomy |
DGP | Daylight Glare Probability |
DA | Daylight Autonomy |
UDI | Useful Daylight Illuminance |
Spatial Glare Autonomy | |
WEI | Weighted Energy Index |
ASE | Annual Sunlight Exposure |
NSGA-III | Non-dominated Sorting Genetic Algorithm III |
Appendix A
DPvLsh | DPvLshR | NS | ALshS | APvS | APvLsh | DLvPvLsh | NLv | DLv | ALv | DInLsh | AInLsh | WEI | DA | PV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 1 | 0 | 1 | 2 | 10 | 0 | 2 | 3 | 26 | 4 | -10 | 52.6 | 44.1 | 0.95 | 551.0 |
3 | 1 | 0 | 1 | 0 | 10 | 0 | 2 | 2 | 45 | 4 | -9 | 53.2 | 43.9 | 0.95 | 564.3 |
3 | 1 | 0 | 1 | 0 | 10 | 0 | 2 | 3 | 26 | 4 | 1 | 52.5 | 45.6 | 0.95 | 564.2 |
3 | 1 | 0 | 1 | 0 | 9 | 0 | 2 | 2 | 45 | 4 | 6 | 53.2 | 44.7 | 0.95 | 557.7 |
3 | 1 | 0 | 1 | 2 | 8 | 0 | 2 | 3 | 26 | 4 | 3 | 52.7 | 45.2 | 0.95 | 540.8 |
DPvLsh | DPvLshR | NS | ALshS | APvS | APvLsh | DLvPvLsh | NLv | DLv | ALv | DInLsh | AInLsh | WEI | DA | PV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 1 | 1 | 24 | 0 | 10 | 1 | 3 | 1 | 26 | 4 | -10 | 52.2 | 47.4 | 0.93 | 310.2 |
3 | 2 | 1 | 17 | 0 | 9 | 0 | 3 | 0 | 25 | 4 | 7 | 53.2 | 51.8 | 0.91 | 391.9 |
3 | 2 | 0 | 0 | 0 | 10 | 0 | 3 | 0 | 12 | 4 | 6 | 53.1 | 51.7 | 0.90 | 575.3 |
3 | 1 | 1 | 24 | 10 | 8 | 0 | 3 | 1 | 7 | 4 | -10 | 50.6 | 47.3 | 0.92 | 332.4 |
3 | 1 | 1 | 22 | 2 | 10 | 0 | 3 | 3 | 44 | 4 | 4 | 53.7 | 43 | 0.96 | 379.9 |
DPvLsh | DPvLshR | NS | ALshS | APvS | APvLsh | DLvPvLsh | NLv | DLv | ALv | DInLsh | AInLsh | WEI | DA | PV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 2 | 1 | 17 | 1 | 10 | 0 | 3 | 0 | 4 | 4 | 7 | 52.7 | 51.9 | 0.90 | 412.8 |
3 | 2 | 0 | 15 | 0 | 9 | 0 | 3 | 0 | 6 | 4 | 8 | 52.8 | 51.5 | 0.90 | 510.8 |
3 | 2 | 0 | 17 | 0 | 9 | 0 | 3 | 0 | 7 | 3 | 4 | 52.8 | 52.3 | 0.91 | 509.2 |
3 | 2 | 0 | 20 | 1 | 8 | 0 | 3 | 0 | 5 | 3 | 5 | 52.7 | 51.4 | 0.90 | 496.3 |
3 | 1 | 1 | 21 | 0 | 10 | 0 | 3 | 1 | 9 | 4 | 5 | 52.4 | 51.1 | 0.92 | 389.3 |
Schedule for Adjustment of Reflector Slat Angle | ||||
Hour/Month | Jan–Mar | Apr–Jun | Jul–Sep | Oct–Dec |
8:00 a.m.–11:00 a.m. | 0° | 20° | 20° | 0° |
11:00 p.m.–2:00 p.m. | 0° | 30° | 10° | 0° |
2:00 p.m.–5:00 p.m. | 0° | 20° | 0° | 0° |
5:00 p.m.–00:00 a.m. | 17° | 17° | 17° | 17° |
00:00 a.m.–8:00 a.m. | 17° | 17° | 17° | 17° |
Schedule for Adjustment of Photovoltaic Slat Angle | ||||
8:00 a.m.–11:00 a..m | 0° | 0° | 0° | 0° |
11:00 p.m.–2:00 p.m. | 0° | 0° | 10° | 0° |
5:00 p.m.–5:00 p.m. | 0° | 0° | 0° | 0° |
2:00 p.m.–00:00 a.m. | 0° | 0° | 0° | 0° |
00:00 a.m.–8:00 a.m. | 0° | 0° | 0° | 0° |
Schedule for Adjustment of Louver Angle | ||||
8:00 a.m.–11:00 a.m. | 0° | 0° | 0° | 0° |
11:00 p.m.–2:00 p.m. | 15° | 0° | 0° | 0° |
2:00 p.m.–5:00 p.m. | 0° | 0° | 0° | 0° |
5:00 p.m.–00:00 a.m. | 7° | 7° | 7° | 7° |
00:00 a.m.–8:00 a.m. | 7° | 7° | 7° | 7° |
Schedule for Adjustment of Interior Light Shelf Angle | ||||
8:00 a.m.–11:00 a.m. | 10° | 0° | 10° | 10° |
11:00 p.m.–2:00 p.m. | 10° | 10° | 10° | 10° |
2:00 p.m.–5:00 p.m. | 10° | 10° | 10° | 0° |
5:00 p.m.–00:00 a.m. | 3° | 3° | 3° | 3° |
00:00 a.m.–8:00 a.m. | 3° | 3° | 3° | 3° |
References
- Rahnamayan, S.; Tizhoosh, H.R. Image thresholding using micro opposition-based Differential Evolution (Micro-ODE). In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; IEEE: New York, NY, USA, 2008; pp. 1409–1416. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, Y.; Cai, H.; Chen, Z. Optimization and prediction of office building shading devices for energy, daylight, and view consideration using genetic and BO-LGBM algorithms. Energy Build. 2024, 324, 114939. [Google Scholar] [CrossRef]
- Karimi, A.; Moreno-Rangel, D.; García-Martínez, A. Granular mapping of UHI and heatwave effects: Implications for building performance and urban resilience. Build. Environ. 2025, 273, 112705. [Google Scholar] [CrossRef]
- Alinasab, N.; Mohammadzadeh, N.; Karimi, A.; Mohammadzadeh, R.; Gál, T. A measurement-based framework integrating machine learning and morphological dynamics for outdoor thermal regulation. Int. J. Biometeorol. 2025, 69, 1645–1662. [Google Scholar] [CrossRef] [PubMed]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Li, G.; Sun, C.; Sang, M.; Chen, S.; Li, J.; Han, Y.; Xu, S. The synergistic effect of multiple design factors on building energy consumption of office blocks: A case study of Wuhan, China. J. Build. Eng. 2024, 95, 110200. [Google Scholar] [CrossRef]
- Norouziasl, S.; Jafari, A. Identifying the most influential parameters in predicting lighting energy consumption in office buildings using data-driven method. J. Build. Eng. 2023, 72, 106590. [Google Scholar] [CrossRef]
- Wang, C.; Yan, D.; Ren, X. Modeling Individual’s Light Switching Behavior to Understand Lighting Energy Use of Office Building. Energy Procedia 2016, 88, 781–787. [Google Scholar] [CrossRef]
- Gago, E.J.; Muneer, T.; Knez, M.; Köster, H. Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renew. Sustain. Energy Rev. 2015, 41, 1–13. [Google Scholar] [CrossRef]
- Bahdad, A.A.S.; Fadzil, S.F.S.; Taib, N. Optimization of Daylight Performance Based on Controllable Light-shelf Parameters using Genetic Algorithms in the Tropical Climate of Malaysia. J. Daylighting 2020, 7, 122–136. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O.; Ekici, B.; Fatih Tasgetiren, M. Multi-objective energy and daylight optimization of amorphous shading devices in buildings. Sol. Energy 2019, 185, 100–111. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, S.; Huang, Y.; Pan, H. Multi-Objective Optimization of Daylighting–Thermal Performance in Cold-Region University Library Atriums: A Parametric Design Approach. Energies 2025, 18, 1184. [Google Scholar] [CrossRef]
- Baglivo, C.; Bonomolo, M.; Congedo, P.M. Modeling of Light Pipes for the Optimal Disposition in Buildings. Energies 2019, 12, 4323. [Google Scholar] [CrossRef]
- Obradovic, B.; Matusiak, B.S. Daylight autonomy improvement in buildings at high latitudes using horizontal light pipes and light-deflecting panels. Sol. Energy 2020, 208, 493–514. [Google Scholar] [CrossRef]
- Rafati, N.; Hazbei, M.; Eicker, U. Louver configuration comparison in three Canadian cities utilizing NSGA-II. Build. Environ. 2023, 229, 109939. [Google Scholar] [CrossRef]
- Xu, Y.; Bo, R.; Chang, W.-S.; Guo, H.; Shao, Y. The Use of Horizontal Shading Devices to Alleviate Overheating in Residential Buildings in the Severe Cold Region and Cold Region of China. Buildings 2022, 12, 408. [Google Scholar] [CrossRef]
- Vu, D.T.; Nghiem, V.T.; Tien, T.Q.; Hieu, N.M.; Minh, K.N.; Vu, H.; Shin, S.; Vu, N.H. Optimizing optical fiber daylighting system for indoor agriculture applications. Sol. Energy 2022, 247, 1–12. [Google Scholar] [CrossRef]
- De Luca, F.; Sepúlveda, A.; Varjas, T. Multi-performance optimization of static shading devices for glare, daylight, view and energy consideration. Build. Environ. 2022, 217, 109110. [Google Scholar] [CrossRef]
- Khidmat, R.P.; Fukuda, H.; Kustiani; Paramita, B.; Qingsong, M.; Hariyadi, A. Investigation into the daylight performance of expanded-metal shading through parametric design and multi-objective optimisation in Japan. J. Build. Eng. 2022, 51, 104241. [Google Scholar] [CrossRef]
- Hakimazari, M.; Baghoolizadeh, M.; Sajadi, S.M.; Kheiri, P.; Moghaddam, M.Y.; Rostamzadeh-Renani, M.; Rostamzadeh-Renani, R.; Hamooleh, M.B. Multi-objective optimization of daylight illuminance indicators and energy usage intensity for office space in Tehran by genetic algorithm. Energy Rep. 2024, 11, 3283–3306. [Google Scholar] [CrossRef]
- Lee, H.; Zhao, X.; Seo, J. A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy. Int. J. Environ. Res. Public Health 2021, 18, 2574. [Google Scholar] [CrossRef] [PubMed]
- Zazzini, P.; Romano, A.; Di Lorenzo, A.; Portaluri, V.; Crescenzo, A. Di Experimental Analysis of the Performance of Light Shelves in Different Geometrical Configurations Through the Scale Model Approach. J. Daylighting 2020, 7, 37–56. [Google Scholar] [CrossRef]
- Jung, S.; Lee, H. Case study for deriving appropriate light shelf specifications based on indoor space depth. Energy Build. 2023, 297, 113450. [Google Scholar] [CrossRef]
- Ebrahimi-Moghadam, A.; Ildarabadi, P.; Aliakbari, K.; Fadaee, F. Sensitivity analysis and multi-objective optimization of energy consumption and thermal comfort by using interior light shelves in residential buildings. Renew. Energy 2020, 159, 736–755. [Google Scholar] [CrossRef]
- Zhao, X.; Seo, J.; Lee, H. Performance evaluation of a light shelf with a folding reflector (LSFR) to improve daylighting performance. Build. Environ. 2024, 255, 111457. [Google Scholar] [CrossRef]
- Lee, H. Performance evaluation of a light shelf with a solar module based on the solar module attachment area. Build. Environ. 2019, 159, 106161. [Google Scholar] [CrossRef]
- Bakmohammadi, P.; Noorzai, E. Investigating the optimization potential of daylight, energy and occupant satisfaction performance in classrooms using innovative photovoltaic integrated light shelf systems Investigating the optimization potential of daylight, energy and occupant satis. Sci. Technol. Built Environ. 2022, 28, 467–482. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Seo, J. Light Shelf Development Using Folding Technology and Photovoltaic Modules to Increase Energy Efficiency in Building. Buildings 2022, 12, 81. [Google Scholar] [CrossRef]
- Singh, R.; Lazarus, I.J.; Kishore, V.V.N. Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate. Appl. Energy 2016, 184, 155–170. [Google Scholar] [CrossRef]
- González, J.; Fiorito, F. Daylight Design of Office Buildings: Optimisation of External Solar Shadings by Using Combined Simulation Methods. Buildings 2015, 5, 560–580. [Google Scholar] [CrossRef]
- Nazari, S.; MirzaMohammadi, P.K.; Sajadi, B.; Pilehchi Ha, P.; Talatahari, S.; Sareh, P. Designing energy-efficient and visually-thermally comfortable shading systems for office buildings in a cooling-dominant climate. Energy Rep. 2023, 10, 3863–3881. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H. Study on the application of PV modules to curved light shelves. Build. Environ. 2022, 207, 108481. [Google Scholar] [CrossRef]
- Ibrahim, A.; Alsukkar, M.; Dong, Y.; Hu, P. Improvements in energy savings and daylighting using trapezoid profile louver shading devices. Energy Build. 2024, 321, 114649. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Li, Z.; Song, J.; Fang, Z.; Pang, D.; Chen, Y. Daylighting Performance and Thermal Comfort Performance Analysis of West-Facing External Shading for School Office Buildings in Cold and Severe Cold Regions of China. Sustainability 2023, 15, 14458. [Google Scholar] [CrossRef]
- Yuan, Z.; Pan, J.; Chen, X.; Peng, Y. Research on the Optimization Design of High-Rise Office Building Performance Based on a Multi-Objective Genetic Algorithm. Buildings 2025, 15, 1636. [Google Scholar] [CrossRef]
- Fang, Y.; Cho, S. Design optimization of building geometry and fenestration for daylighting and energy performance. Sol. Energy 2019, 191, 7–18. [Google Scholar] [CrossRef]
- Lakhdari, K.; Sriti, L.; Painter, B. Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions. Build. Environ. 2021, 204, 108173. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, M.; Tang, S. A multi-objective optimization design method for gymnasium facade shading ratio integrating energy load and daylight comfort. Build. Environ. 2022, 207, 108527. [Google Scholar] [CrossRef]
- Talaei, M.; Sangin, H. Multi-objective optimization of energy and daylight performance for school envelopes in desert, semi-arid, and mediterranean climates of Iran. Build. Environ. 2024, 255, 111424. [Google Scholar] [CrossRef]
- Oteiza, P.; Neila, J.; Pérez, M.; Oteiza, P.; Neila, J. Sun Protection System and Daylighting Optimization. 2012. Available online: https://www.researchgate.net/publication/285597746 (accessed on 9 June 2025).
- Meresi, A. Evaluating daylight performance of light shelves combined with external blinds in south-facing classrooms in Athens, Greece. Energy Build. 2016, 116, 190–205. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Jakubiec, J.A.; Ibarra, D. Definition of a Reference Office for Standardized Evaluations of Dynamic Façade and Lighting Technologies. In Proceedings of the Building Simulation 2013: 13th Conference of IBPSA, Chambery, France, 25–28 August 2013. [Google Scholar]
- Reinhart, C.F.; Mardaljevic, J.; Rogers, Z. Dynamic Daylight Performance Metrics for Sustainable Building Design. LEUKOS 2006, 3, 7–31. [Google Scholar] [CrossRef]
- Department of Housing and Urban Development. National Building Regulations of Iran, 4th ed.; Nationoal Building Code No. 19; Department of Housing and Urban Development: Tehran, Iran, 2020.
- Nabil, A.; Mardaljevic, J. Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Light. Res. Technol. 2005, 37, 41–57. [Google Scholar] [CrossRef]
- Carlucci, S.; Causone, F.; De Rosa, F.; Pagliano, L. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renew. Sustain. Energy Rev. 2015, 47, 1016–1033. [Google Scholar] [CrossRef]
- Karlsen, L.; Heiselberg, P.; Bryn, I.; Johra, H. Verification of simple illuminance based measures for indication of discomfort glare from windows. Build. Environ. 2015, 92, 615–626. [Google Scholar] [CrossRef]
- Giovannini, L.; Favoino, F.; Lo Verso, V.R.M.; Serra, V.; Pellegrino, A. GLANCE (GLare ANnual Classes Evaluation): An approach for a simplified spatial glare evaluation. Build. Environ. 2020, 186, 107375. [Google Scholar] [CrossRef]
- Jones, N.L. Fast Climate-Based Glare Analysis and Spatial Mapping. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; pp. 982–989. Available online: https://publications.ibpsa.org/conference/paper/?id=bs2019_210267 (accessed on 9 June 2025). [CrossRef]
- Lu, S.; Tzempelikos, A. Comparison of Simulation Methods for Glare Risk Assessment with Roller Shades. Buildings 2024, 14, 1773. [Google Scholar] [CrossRef]
- Fattahi Tabasi, S.; Luo, D.; Rafizadeh, H.R.; Le Nguyen, K.; Banihashemi, S. Generative optimization of building blocks for density, solar and structural performance. J. Build. Eng. 2025, 111, 113307. [Google Scholar] [CrossRef]
- Hamed Banirazi Motlagh, S.; Hosseini, S.M.A.; Pons-Valladares, O. Integrated value model for sustainability assessment of residential solar energy systems towards minimizing urban air pollution in Tehran. Sol. Energy 2023, 249, 40–66. [Google Scholar] [CrossRef]
- Ghaffarpasand, O.; Nadi, S.; Shalamzari, Z.D. Short-term effects of anthropogenic/natural activities on the Tehran criteria air pollutants: Source apportionment and spatiotemporal variation. Build. Environ. 2020, 186, 107298. [Google Scholar] [CrossRef]
- Elhami, M.; Goodarzi, S.S.; Maleki, S.; Sajadi, B. Three-objective optimization of the HVAC system control strategy in an educational building to reduce energy consumption and enhance indoor environmental quality (IEQ) using machine learning techniques. J. Build. Eng. 2025, 105, 112444. [Google Scholar] [CrossRef]
- Sedaghat, A.; Sharif, M. Mitigation of the impacts of heat islands on energy consumption in buildings: A case study of the city of Tehran, Iran. Sustain. Cities Soc. 2022, 76, 103435. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, S.; Dubey, K.K. Improving the Performance of NSGA III using Latin Hypercube Sampling. Research Square, 2022. Available online: https://europepmc.org/article/ppr/ppr558169 (accessed on 9 June 2025). [CrossRef]
- Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Shavazipour, B.; López-Ibáñez, M.; Miettinen, K. Visualizations for decision support in scenario-based multiobjective optimization. Inf. Sci. 2021, 578, 1–21. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Tamošaitiene, J. Risk assessment of construction projects. J. Civ. Eng. Manag. 2010, 16, 33–46. [Google Scholar] [CrossRef]
- Vishwanath, L.; Kannamma, D. Analyzing Passive Design Retrofits using Pareto Front Optimization to Reduce Operational Carbon in Commercial Laboratory Spaces. J. Daylighting 2024, 11, 290–311. [Google Scholar] [CrossRef]
- Fazeli, N.; Mahdavinejad, M.; Reza, M. Dynamic Envelope and Control Shading Pattern for Office Buildings Visual Comfort in Tehran. Space Ontol. Int. J. 2019, 8, 303–311. Available online: https://www.noormags.ir/view/en/articlepage/1757213/dynamic-envelope-and-control-shading-pattern-for-office-buildings-visual-comfort-in-tehran (accessed on 9 June 2025).
Reference | Year | Climate | Building Type | Shading Type | Simulation Tool | Performance Aspect |
---|---|---|---|---|---|---|
[29] | 2016 | hot and dry | Office | External Venetian blind | EnergyPlus | Useful Daylight Illuminance, Lighting Energy, HVAC, Energy Consumption |
[11] | 2019 | Mediterranean | Office | Amorphous external shading | EnergyPlus | Total Energy Consumption, Useful Daylight Illuminance |
[18] | 2022 | humid continental | Classroom | Exterior static Shadings | Rhinoceros and Grasshopper | Visual Comfort, Glare, Daylight, View Out, Energy Saving |
[19] | 2022 | warm and temperate | Mock-up room | Exterior expanded-metal shading | Rhinoceros and Grasshopper | Annual Sunlight Exposure, Spatial Daylight Autonomy, Useful Daylight Illuminance, View |
[30] | 2015 | humid subtropical | Office | Exterior louver | Rhinoceros and Grasshopper | Visual Comfort, Energy Efficiency |
[31] | 2023 | hot semi-arid | Office | Exterior louver | Rhinoceros and Grasshopper | Building Energy Consumption, Thermal Comfort |
[20] | 2024 | dry and cold semi-desert | Office | Exterior static Shadings | Rhinoceros and Grasshopper | Energy Use Intensity, Spatial Daylight Autonomy, Glare, Thermal Comfort |
[14] | 2020 | humid subtropical | Mock-up office room | Internal–external light shelf | Experimental | Improving Depth of Daylight Penetration, Uniformity Ratio |
[24] | 2020 | cold semi-arid | Residential tower | Internal light shelf | Rhinoceros and Grasshopper | Energy Consumption, Thermal Comfort |
[25] | 2024 | hot summer, humid continental climates | Full-scale testbed | Light shelf with folding reflector | Experimental | Daylighting Performance, Lighting Energy Consumption |
[26] | 2019 | humid continental | Full-scale test bed | Light shelf with photovoltaic | Experimental | Lighting Energy, Power Generation, Uniformity Ratio |
[27] | 2021 | dry and cold semi-desert | Classroom | Light shelf with photovoltaic | Rhinoceros and Grasshopper | Daylight, Energy, Occupant Satisfaction |
[28] | 2022 | humid continental | Full-scale testbed | Light shelves with photovoltaic | Experimental | Daylighting Energy, Indoor Uniformity Ratio, Glare |
[15] | 2022 | humid continental | Full-scale testbed | Light shelves with photovoltaic | Experimental | Building Energy, Uniformity Ratio |
[32] | 2022 | humid continental | Full-scale testbed | Light shelves with photovoltaic | Experimental | Improve Daylighting and Concentration Efficiency |
[33] | 2024 | very hot | Office conference room | Trapezoidal profile louver shading | Rhinoceros and Grasshopper | Energy Saving, Daylighting Improvement |
This Study | 2025 | hot and arid | Office | Light shelves with photovoltaic and louver | Rhinoceros and Grasshopper 1.0.0007 + Python Programming 3.13.5 | Daylighting Performance, Glare, Energy Consumption, and Power Generation |
Parameter | Value |
---|---|
Population | 100 |
Generation count | 150 |
Crossover probability | 0.5 |
Mutation probability | 0.35 |
Crossover distribution index | 5 |
Mutation distribution index | 10 |
Random state | 42 |
Number of partitions | 15 |
Exterior Light Shelf Variable | |||
Design Parameters | Unit | Increments | Range |
Depth | Meter | 0.15 | [0.45–0.90] |
Distance from roof | Meter | 0.15 | [−0.60–−0.30] |
Number of slats (Set I = if condition for each depth) | Number | 1 | If Depth == 0.45 → [2,3,4] If Depth == 0.60 or 0.75 → [3,4,5] If Depth == 0.90 → [4,5,6] |
Angle of light shelf | Degree | 1 | [0–30] |
Angle of photovoltaic | Degree | 1 | [0–40] |
Angle of light shelf (Clockwise (+) and anticlockwise (–) tilt angles) | Degree | 1 | [−10–10] |
Interior Light Shelf Variable | |||
Depth | Meter | 0.05 | [0.10–0.30] |
Angle of light shelf (Clockwise (+) and anticlockwise (–) tilt angles) | Degree | 1 | [−10–10] |
Louver Variable | |||
Distance from light shelf | Meter | 0.1 | [−0.5–−0.3] |
Number | Number | 1 | [3,4,5,6,7,8] |
Depth | Meter | 0.05 | [0.10–0.30] |
Angle | Degree | 1 | [0–45] |
DPvLsh | DPvLshR | NS | ALshS | APvS | APvLsh | DLvPvLsh | NLv | DLv | ALv | DInLsh | AInLsh | WEI | DA | PV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 2 | 0 | 17 | 0 | 9 | 0 | 3 | 0 | 7 | 3 | 4 | 52.8 | 52.3 | 0.91 | 335.5 |
Exterior Light Shelf Variable | |||
Design Parameters | Unit | Increments | Range |
Angle of reflector slats | Degree | 10 | [0–30] |
Angle of photovoltaic slats | Degree | 10 | [0–40] |
Interior Light Shelf Variable | |||
Angle of light shelf (Clockwise (+) and anticlockwise (−) tilt angles) | Degree | 10 | [−10–10] |
Louver Variable | |||
Angle | Degree | 15 | [0–45] |
DA | UDI | UDI-Low | UDI-High | ||
---|---|---|---|---|---|
No Shading | |||||
54.0% | 57.2% | 30.5% | 12.3% | 74.5 | |
Interior Shading (curtain) | |||||
38.0% | 45.4% | 49.2% | 5.4% | 92.0 | |
Suggested Static System | |||||
52.3% | 61.6% | 31.2% | 7.2% | 78.8 |
DA | UDI | UDI-Low | UDI-High | |
---|---|---|---|---|
Suggested Dynamic System | ||||
61.2% | 65.9% | 23.2% | 8.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheraghzad, T.; Zamani, Z.; Hakimazari, M.; Norouzi, M.; Karimi, A. Multi-Objective Optimization of a Folding Photovoltaic-Integrated Light Shelf Using Non-Dominated Sorting Genetic Algorithm III for Enhanced Daylighting and Energy Savings in Office Buildings. Buildings 2025, 15, 2958. https://doi.org/10.3390/buildings15162958
Cheraghzad T, Zamani Z, Hakimazari M, Norouzi M, Karimi A. Multi-Objective Optimization of a Folding Photovoltaic-Integrated Light Shelf Using Non-Dominated Sorting Genetic Algorithm III for Enhanced Daylighting and Energy Savings in Office Buildings. Buildings. 2025; 15(16):2958. https://doi.org/10.3390/buildings15162958
Chicago/Turabian StyleCheraghzad, Tanin, Zahra Zamani, Mohammad Hakimazari, Masoud Norouzi, and Alireza Karimi. 2025. "Multi-Objective Optimization of a Folding Photovoltaic-Integrated Light Shelf Using Non-Dominated Sorting Genetic Algorithm III for Enhanced Daylighting and Energy Savings in Office Buildings" Buildings 15, no. 16: 2958. https://doi.org/10.3390/buildings15162958
APA StyleCheraghzad, T., Zamani, Z., Hakimazari, M., Norouzi, M., & Karimi, A. (2025). Multi-Objective Optimization of a Folding Photovoltaic-Integrated Light Shelf Using Non-Dominated Sorting Genetic Algorithm III for Enhanced Daylighting and Energy Savings in Office Buildings. Buildings, 15(16), 2958. https://doi.org/10.3390/buildings15162958