Ranking Public Infrastructure Project Success Using Multi-Criteria Analysis
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Collection
3.2. Project Success Indicators
- Cost success indicator (KPIs);
- Time success indicator (KPIt);
- Quality success indicator (KPIq);
- Project management success indicator (KPIm).
a/a | Data Item | a/a | Data Item |
---|---|---|---|
1 | Contract number | 30 | Number of interim work quantity take-offs |
2 | Title of contract | 31 | Number of requests for payment |
3 | Project category | 32 | Final work quantity take off: date of submission |
4 | Contractor | 33 | Final work quantity take-off date of approval |
5 | Tender budget | 34 | Project registry: date of submission |
6 | Tender system | 35 | Project registry: date of approval |
7 | Bidding system | 36 | Number of special orders |
8 | Project procurement system | 37 | Subject matter of special orders |
9 | Tender date | 38 | Special invitation issued (Yes or No) |
10 | Date of signing of the contract | 39 | Termination of contract before completion (Yes or No) |
11 | Duration of contract (days) | 40 | Number of claims |
12 | Initial contractual deadline (date) | 41 | Causes of claims |
13 | Contract completion (date) | 42 | Number of extensions of time |
14 | Total extension of time (days) | 43 | Duration of each time extension (days) |
15 | Source of funding | 44 | Reasons for time extensions |
16 | Initial contractual cost (including CO&P and excluding contingencies and VAT) | 45 | Number of work accidents |
17 | Initial amount for contingency | 46 | Type of accidents |
18 | Final contractual cost (including CO&P) | 47 | Size of the supervision team |
19 | Final design cost | 48 | Provisional acceptance protocol: date of appointment |
20 | Final price revision amount | 49 | Provisional acceptance protocol: date of signing |
21 | Number of change orders | 50 | Provisional acceptance protocol: date of approval |
22 | Total number of new work items | 51 | Provisional acceptance protocol: quantitative observations |
23 | Total cost of new work items | 52 | Provisional acceptance protocol: qualitative observations |
24 | Supplementary contract (Yes or No) | 53 | Mandatory maintenance period |
25 | Final cost of supplementary contract | 54 | Final acceptance protocol: date of appointment |
26 | Final price revision amount for SC | 55 | Final acceptance protocol: date of signing |
27 | Change in contractual scope of work (Yes/No) | 56 | Final acceptance protocol: date of approval |
28 | Design modifications (Yes/No) | 57 | Final acceptance protocol: quality observations |
29 | Existence of land acquisition problem (Yes/No) |
3.2.1. Cost KPI
- 1 = no changes to SoW;
- 2 = additions to the SoW covered by a SC;
- 3 = additions and removals made without a SC;
- 4 = partial removal of the original SoW;
- 5 = major removal from the original SoW.
3.2.2. Time KPI
3.2.3. Quality KPI
3.2.4. Management KPI
3.3. Data Analysis
- Step 1:
- Normalization. This step is required when the selection criteria are evaluated in differing units of measurement (e.g., monetary, time, rating scales). It can be achieved by various methods such as the distributive and ideal normalization [53] as well as the additive method [52]. The ideal normalization method, which involves dividing each value by the ideal value, is not applicable in cases where the ideal value is zero. Similarly, the additive normalization method, which divides each value by the sum of all other values, can result in a negative denominator. This may distort the results by changing the sign of the weighted scores. Therefore, the distributive or otherwise called vector normalization method was applied in this study. This entails dividing each value in the matrix by the square root of the sum of squares of all values in its column.
- Step 2:
- Weighted Normalized Decision Matrix. In this step, the importance of each criterion is integrated by multiplying the normalized values by the criteria weights. Weights reflect the relative importance of each criterion and are set by the decision-maker intuitively or can be calculated using methods such as the AHP [53,54,55], Simos’ Method [53,56], goal programming [53], or Shannon’s entropy [49,51], among others.
- Step 3:
- Finding the ideal and anti-ideal alternative per criterion. The weighted normalized values are evaluated to determine the ideal and anti-ideal alternative for each criterion. When the objective is to maximize a criterion, the ideal value is the highest weighted normalized score in that column, while the anti-ideal value is the lowest. Conversely, if the goal is to minimize the criterion, the ideal value becomes the lowest score and the anti-ideal value the highest [49].
- Step 4:
- Calculating the distance between the ideal and the anti-ideal alternative. This step calculates how far each delay factor is from the ideal (d+) and the anti-ideal solution (d−) per criterion using the Euclidean distance formula (Equations (1) and (2)).
- = the ideal solution for the i criterion;
- = the anti-ideal solution for the i criterion;
- = the value of the a alternative against the i criterion.
- Step 5:
- Calculating the closeness coefficient. The closeness coefficient Ca takes values between 0 and 1 (Equation (3)). An alternative that is close to the ideal solution has a Ca value nearer to 1; otherwise, if it is closer to the non-ideal solution, it approaches 0.
- -
- Excellent: SI ≥ 0.9;
- -
- Good: 0.9 > SI ≥ 0.7;
- -
- Medium: 0.7 > SI ≥ 0.5;
- -
- Poor: SI < 0.5.
3.3.1. Application of the TOPSIS Method
3.3.2. Application of Simple Additive Weighting (SAW) Method
- wc, wt, wq, wm are the respective weights of each KPI;
- The sum of the weights equals 1.
4. Discussion
4.1. Discussion of Results by Index
4.1.1. Cost Index
4.1.2. Time Index
4.1.3. Quality Index
4.1.4. Management Index
4.2. Discussion of Overall Success Index Results [SI]
- Simple technical SoW and short durations;
- Tender budgets below EUR 5 million;
- Minimal cost overruns, with no need for supplementary contracts;
- Smooth project management and contractual execution;
- Absence of quality or quantitative deviations at acceptance stages.
- A 2.5-year duration extended by 1107 days (99% overrun);
- Contract terminated after scope removal and multiple special orders;
- Quality observations at provisional acceptance;
- Five change orders issued.
- A 460-day delay after two extensions of time;
- A 44.28% increase in cost;
- Supplementary contract = 35.35% of original contract;
- Major scope removal (Category 5).
- A 460-day delay after two extensions of time;
- A 51.2% cost increase and significant scope addition (Category 2);
- Four change orders and one special order;
- Three contractor objections.
- Originally 3 years and extended by 2055 days (187.5% overrun);
- Archeological issues, expropriations, and utility conflicts;
- A 23.89% cost increase and seven change orders;
- Supplementary contract = 16.34% of contract value;
- Despite no final acceptance issues, the prolonged duration and complexity weighed down overall performance.
4.3. Implications for Theory and Practice
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TOPSIS | Technique for Order Preference by Similarity to Ideal Situation |
SI | Success Index |
SAW | Simple Additive Weighting |
KPI | Key Performance Indicator |
CSF | Critical Success Factor |
CA | Contracting Authority |
EOSA | Egnatia Odos S.A. |
MCDM | Multi-Criteria Decision-Making |
PPP | Public–Private Partnership |
RII | Relative Importance Index |
AHP | Analytic Hierarchy Process |
CO&P | Contractor’s Overhead and Profit |
SoW | Scope of Work |
SC | Supplementary Contract |
KPIs | Cost KPI |
KPIs | Time KPI |
KPIq | Quality KPI |
KPIm | Management KPI |
MAUT | Multi-Attribute Utility Theory |
C | Closeness Coefficient |
References
- Nassar, N.K. An Integrated Framework for Evaluation of Performance of Construction Projects. In Proceedings of the PMI® Global Congress 2009, Orlando, FL, USA, 10 October 2009; Project Management Institute: Newtown Square, PA, USA, 2009; pp. 1–9. [Google Scholar]
- Ingle, P.V.; Mahesh, G. Construction Project Performance Areas for Indian Construction Projects. Int. J. Constr. Manag. 2022, 22, 1443–1454. [Google Scholar] [CrossRef]
- Cooke-Davies, T. The “Real” Success Factors on Projects. Int. J. Proj. Manag. 2002, 20, 185–190. [Google Scholar] [CrossRef]
- Bryde, D.J. Methods for Managing Different Perspectives of Project Success. Br. J. Manag. 2005, 16, 119–131. [Google Scholar] [CrossRef]
- Shenhar, A.J.; Dvir, D.; Levy, O.; Maltz, A.C. Project Success: A Multidimensional Strategic Concept. Long. Range Plann 2001, 34, 699–725. [Google Scholar] [CrossRef]
- Jugdev, K.; Müller, R. A Retrospective Look at Our Evolving Understanding of Project Success. Proj. Manag. J. 2005, 36, 19–31. [Google Scholar] [CrossRef]
- Silvius, A.J.G.; Schipper, R. Exploring the Relationship between Sustainability and Project Success-Conceptual Model and Expected Relationships. Int. J. Inf. Syst. Proj. Manag. 2016, 4, 5–22. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Chan, A.P.L. Key Performance Indicators for Measuring Construction Success. Benchmarking Int. J. 2004, 11, 203–221. [Google Scholar] [CrossRef]
- Bahadori Zare, M.; Mirjalili, A.; Mirabi, M. Ranking and Evaluating the Factors Affecting the Success of Management Team in Construction Projects. J. Fundam. Appl. Sci. 2016, 8, 614–630. [Google Scholar] [CrossRef]
- Youneszadeh, H.; Ardeshir, A.; Sebt, M.H. Predicting Project Success in Residential Building Projects (RBPs) Using Artificial Neural Networks (ANNs). Civ. Eng. J. 2020, 6, 2203–2219. [Google Scholar] [CrossRef]
- Unegbu, H.C.O.; Yawas, D.S.; Dan-asabe, B. An Investigation of the Relationship between Project Performance Measures and Project Management Practices of Construction Projects for the Construction Industry in Nigeria. J. King Saud. Univ.-Eng. Sci. 2022, 34, 240–249. [Google Scholar] [CrossRef]
- Tsiga, Z.; Emes, M.; Smith, A. Critical Success Factors for the Construction Industry. PM World J. 2016, 5, 1–12. [Google Scholar]
- Bakr, G.A. Ranking the Factors That Influence the Construction Project Success: The Jordanian Perspective. Int. J. Eng. Technol. 2018, 7, 97–102. [Google Scholar] [CrossRef]
- Zidane, Y.J.T.; Johansen, A.; Ekambaram, A. Project Evaluation Holistic Framework–Application on Megaproject Case. Procedia Comput. Sci. 2015, 64, 409–416. [Google Scholar] [CrossRef]
- Yang, J.; Shen, G.Q.; Ho, M.; Drew, D.S.; Chan, A.P.C. Exploring Critical Success Factors for Stakeholder Management in Construction Projects. J. Civ. Eng. Manag. 2009, 15, 337–348. [Google Scholar] [CrossRef]
- Gunduz, M.; Almuajebh, M. Critical Success Factors for Sustainable Construction Project Management. Sustainability 2020, 12, 1990. [Google Scholar] [CrossRef]
- Abdul-Kareem, H.I. Factors That Influence the Megaprojects in Iraq. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012067. [Google Scholar] [CrossRef]
- Mathar, H.; Assaf, S.; Hassanain, M.A.; Abdallah, A.; Sayed, A.M.Z. Critical Success Factors for Large Building Construction Projects: Perception of Consultants and Contractors. Built Environ. Proj. Asset Manag. 2020, 10, 349–367. [Google Scholar] [CrossRef]
- Gunduz, M.; Yahya, A.M.A. Analysis of Project Success Factors in Construction Industry. Technol. Econ. Dev. Econ. 2015, 24, 67–80. [Google Scholar] [CrossRef]
- Alzahrani, J.I.; Emsley, M.W. The Impact of Contractors’ Attributes on Construction Project Success: A Post Construction Evaluation. Int. J. Proj. Manag. 2013, 31, 313–322. [Google Scholar] [CrossRef]
- Ullah, F.; Thaheem, M.J.; Siddiqui, S.Q.; Khurshid, M.B. Influence of Six Sigma on Project Success in Construction Industry of Pakistan. TQM J. 2017, 29, 276–309. [Google Scholar] [CrossRef]
- Asgari, M.; Kheyroddin, A.; Naderpour, H. Evaluation of Project Critical Success Factors for Key Construction Players and Objectives. Int. J. Eng. 2018, 31, 228–240. [Google Scholar] [CrossRef]
- Gudiene, N.; Banaitis, A.; Banaitiene, N. Evaluation of Critical Success Factors for Construction Projects–an Empirical Study in Lithuania. Int. J. Strateg. Prop. Manag. 2013, 17, 21–31. [Google Scholar] [CrossRef]
- Tabish, S.Z.S.; Jha, K.N. Identification and Evaluation of Success Factors for Public Construction Projects. Constr. Manag. Econ. 2011, 29, 809–823. [Google Scholar] [CrossRef]
- Naji, K.; Gunduz, M.; Salat, F. Assessment of Preconstruction Factors in Sustainable Project Management Performance. Eng. Constr. Archit. Manag. 2021, 28, 3060–3077. [Google Scholar] [CrossRef]
- Mohammed, A.J. Evaluating the Management of Critical Success Factors of Residential Complex’s Projects and Their Impact on Cost, Time, and Quality in Erbil Governorate. Open Civ. Eng. J. 2022, 16, 1–13. [Google Scholar] [CrossRef]
- Sohu, S.; Jhatial, A.A.; Ullah, K.; Lakhiar, M.T.; Shahzaib, J. Determining the Critical Success Factors for Highway Construction Projects in Pakistan. Eng. Technol. Appl. Sci. Res. 2018, 8, 2685–2688. [Google Scholar] [CrossRef]
- Shrestha, P.P.; Shrestha, S.; Basnet, P. Budget and Schedule-Related Critical Success Factors for Design-Build Water and Wastewater Projects: Principal Component Analysis. Buildings 2025, 15, 1653. [Google Scholar] [CrossRef]
- Dong, R.R.; Muhammad, A.; Nauman, U. The Influence of Weather Conditions on Time, Cost, and Quality in Successful Construction Project Delivery. Buildings 2025, 15, 474. [Google Scholar] [CrossRef]
- Rasebotsa, A.R.; Agumba, J.N.; Adebowale, O.J.; Edwards, D.J.; Posillico, J. A Critical Success Factors Framework for the Improved Delivery of Social Infrastructure Projects in South Africa. Buildings 2024, 15, 92. [Google Scholar] [CrossRef]
- Fahri, J.; Biesenthal, C.; Pollack, J.; Sankaran, S. Understanding Megaproject Success beyond the Project Close-Out Stage. Constr. Econ. Build. 2015, 15, 48–58. [Google Scholar] [CrossRef]
- Esmaeili, B.; Pellicer, E.; Molenaar, K.R. Critical Success Factors For Construction Projects. In Project Management and Engineering Research, 2014; Ayuso Muñoz, J., Yagüe Blanco, J., Capuz-Rizo, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–14. [Google Scholar] [CrossRef]
- Cleary, J.P.; Lamanna, A.J. Correlation of Construction Performance Indicators and Project Success in a Portfolio of Building Projects. Buildings 2022, 12, 957. [Google Scholar] [CrossRef]
- Baporikar, N. Critical Success Factors for Timely Delivery of Road Construction Projects. Int. J. Appl. Logist. 2022, 12, 24. [Google Scholar] [CrossRef]
- Nuako, F.; Ghansah, F.A.; Adusei, T. Critical Success Factors for Cost Overrun Minimization in Public Construction Projects in Developing Countries: The Case of Ghana. Constr. Innov. 2024. early access. [Google Scholar] [CrossRef]
- Wibowo, A.; Santoso, S.R. Cost Overruns Arising From Government-Led Risks in Indonesian Toll Roads. Public Work. Manag. Policy 2024, 29, 446–470. [Google Scholar] [CrossRef]
- Damoah, I.S.; Ayakwah, A.; Twum, P. Assessing Public Sector Road Construction Projects’ Critical Success Factors in a Developing Economy: Definitive Stakeholders’ Perspective. J. Proj. Manag. 2022, 7, 23–34. [Google Scholar] [CrossRef]
- Kandawinna, N.; Mallawaarachchi, H.; Vijerathne, D. Successful Delivery of Public-Private Partnership (PPP) in the Construction Projects of Sri Lankan Higher Education Sector. In Proceedings of the 10th World Construction Symposium 2022, Colombo, Sri Lanka, 24–26 June 2022; pp. 782–793. [Google Scholar]
- Chileshe, N.; Njau, C.W.; Kibichii, B.K.; Macharia, L.N.; Kavishe, N. Critical Success Factors for Public-Private Partnership (PPP) Infrastructure and Housing Projects in Kenya. Int. J. Constr. Manag. 2022, 22, 1606–1617. [Google Scholar] [CrossRef]
- Mwelu, N.; Davis, P.R.; Ke, Y.; Watundu, S.; Jefferies, M. Success Factors for Implementing Uganda’s Public Road Construction Projects. Int. J. Constr. Manag. 2021, 21, 598–614. [Google Scholar] [CrossRef]
- Babatunde, S.O.; Perera, S. Barriers to Bond Financing for Public-Private Partnership Infrastructure Projects in Emerging Markets. J. Financ. Manag. Prop. Constr. 2017, 22, 2–19. [Google Scholar] [CrossRef]
- Kalogeraki, M.; Antoniou, F. Improving Risk Assessment for Transporting Dangerous Goods through European Road Tunnels: A Delphi Study. Systems 2021, 9, 80. [Google Scholar] [CrossRef]
- Langston, C. Development of Generic Key Performance Indicators for PMBOK® Using a 3D Project Integration Model. Constr. Econ. Build. 2013, 13, 78–91. [Google Scholar] [CrossRef]
- Heravi, G.; Ilbeigi, M. Development of a Comprehensive Model for Construction Project Success Evaluation by Contractors. Eng. Constr. Archit. Manag. 2012, 19, 526–542. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Vilutienė, T.; Turskis, Z.; Šaparauskas, J. Multi-Criteria Analysis of Projects’ Performance in Construction. Arch. Civ. Mech. Eng. 2014, 14, 114–121. [Google Scholar] [CrossRef]
- Papanikolaou, M.; Xenidis, Y. Risk-Informed Performance Assessment of Construction Projects. Sustainability 2020, 12, 5321. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Methods and Applications. In Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey; Springer: New York, NY, USA, 1981. [Google Scholar]
- Ishizaka, A.; Nemery, P. Multi-Criteria Decision Analysis Methods and Software; John Wiley and Sons: Chichester, UK, 2013. [Google Scholar]
- Antoniou, F. Delay Risk Assessment Models for Road Projects. Systems 2021, 9, 70. [Google Scholar] [CrossRef]
- Antoniou, F.; Marinelli, M.; Petroutsatou, K. Exploring the Mechanisms for Value-for-Money Diffusion in the Design and Procurement of EU Public Infrastructure Projects. In Financial Evaluation and Risk Management of Infrastructure Projects; IGI Global: Hershey, PA, USA, 2023; pp. 1–31. ISBN 9781668477878. [Google Scholar]
- Jozi, S.A.; Shafiee, M.; MoradiMajd, N.; Saffarian, S. An Integrated Shannon’s Entropy–TOPSIS Methodology for Environmental Risk Assessment of Helleh Protected Area in Iran. Env. Monit. Assess. 2012, 184, 6913–6922. [Google Scholar] [CrossRef]
- Srdjevic, B.; Medeiros, Y.D.P.; Faria, A.S. An Objective Multi-Criteria Evaluation of Water Management Scenarios. Water Resour. Manag. 2004, 18, 35–54. [Google Scholar] [CrossRef]
- Antoniou, F.; Aretoulis, G. A Multi-Criteria Decision-Making Support System for Choice of Method of Compensation for Highway Construction Contractors in Greece. Int. J. Constr. Manag. 2019, 19, 492–508. [Google Scholar] [CrossRef]
- Wakchaure, S.S.; Jha, K.N. Determination of Bridge Health Index Using Analytical Hierarchy Process. Constr. Manag. Econ. 2012, 30, 133–149. [Google Scholar] [CrossRef]
- Antoniou, F.; Aretoulis, G.N. Comparative Analysis of Multi-Criteria Decision Making Methods in Choosing Contract Type for Highway Construction in Greece. Int. J. Manag. Decis. Mak. 2018, 17, 1–28. [Google Scholar] [CrossRef]
- Marzouk, M.M.; Gaid, E.F. Assessing Egyptian Construction Projects Performance Using Principal Component Analysis. Int. J. Product. Perform. Manag. 2018, 67, 1727–1744. [Google Scholar] [CrossRef]
- Tzeng, G.; Huang, J. Methods and Applications. In Multiple Attribute Decision Making; Taylor and Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Abderisak, A.; Josephson, P.E.B.; Lindahl, G. Aggregation of Factors Causing Cost Overruns and Time Delays in Large Public Construction Projects: Trends and Implications. Eng. Constr. Archit. Manag. 2017, 24, 393–406. [Google Scholar]
- Williams, T.M. The Need for New Paradigms for Complex Projects. Int. J. Proj. Manag. 1999, 17, 269–273. [Google Scholar] [CrossRef]
- Geraldi, J.; Maylor, H.; Williams, T. Now, Let’s Make It Really Complex (Complicated)A Systematic Review of the Complexities of Projects. Int. J. Oper. Prod. Manag. 2011, 31, 966–990. [Google Scholar] [CrossRef]
- Baccarini, D. The Concept of Project Complexity—A Review. Int. J. Proj. Manag. 1996, 14, 201–204. [Google Scholar] [CrossRef]
- Atkinson, R. Project Management: Cost, Time and Quality, Two Best Guesses and a Phenomenon, Its Time to Accept Other Success Criteria. Int. J. Proj. Manag. 1999, 17, 337–342. [Google Scholar] [CrossRef]
- World Bank. World Bank Benchmarking Public Procurement 2016: Assessing Public Procurement Regulatory Systems in 77 Economies; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- OECD. OECD Reforming Public Procurement: Progress in Implementing the 2015 OECD Recommendation; OECD: Paris, France, 2019; ISBN 9789264891609. [Google Scholar]
Reference | Type | Objectives | Data | SI Calculation Method | KPIs |
---|---|---|---|---|---|
Chan and Chan (2004) [8] | Building | Proposes a set of both objective and subjective KPIs. For both Client and Contractor. It does not provide an overall success index. | 3 projects and questionnaires | Objective (provides formulae for calculation of numerical values): 1. Construction time; 2. Construction speed; 3. Time variation; 4. Unit cost; 5. Net variation over final cost (%); 6. Net present value; 7. Accident rate; 8. Environmental impact assessment scores. Subjective (7-point scale): 9. Quality; 10. Functionality; 11. End-user’s satisfaction; 12. Client’s satisfaction; 13. Design team’s satisfaction; 14. Construction team’s satisfaction. | |
Nassar (2009) [1] | Any | Proposes a set of both objective and subjective KPIs and a method for calculation of overall SI. For contractor. | example | AHP for weight calculation/SWA | Objective (provides formulae for calculation of numerical values): 1. Cost; 2. Schedule; 3. Billing; 4. Profitability; 5. Safety; 6. Quality, Subjective (10-point scale): 7. Team Satisfaction; 8. Client Satisfaction. |
Heravi and Ilbeigi (2012) [44] | Power Transmission line | Proposes a set of both objective and subjective KPIs for project success and objective KPIs for project management success and a method for calculation of overall SI. For contractor. | 1 Case study | SWA | Project Success, Objective (provides formulae for calculation of numerical values): 1. Profit; 2. Quality; 3. Investment. Subjective: 4. Client satisfaction (10-point scale); 5. Contractor profit satisfaction (5-point scale). Management success, Objective: 1. Cost; 2. Billing; 3. Scheduling; 4. Safety; 5. Quality; 6. Environmental. |
Langston (2013) [43] | Buildings | Proposes a set of objective KPIs and a method for calculation of overall SI. For both client and contractor | Example | 1. Value (scope/cost); 2. Efficiency (cost/time); 3. Speed (cost/time); 4. Innovation (risk/cost); 5. Complexity (risk/time); 6. Impact (risk/cost). | |
Zavadskas et al. (2014) [45] | Not Specified | Proposes a set of objective KPIs and proposes a method for calculation of overall SI. For contractor. | 6 projects | Logarithmic normalization of values/AHP for weight calculation/RII | Objective 1. profit/income; 2. Cost/income; 3. Income per team member; 4. Number of accidents; 5. Project delay (months); 6. Process documentation indicator; 7. Project risk management indicator; 8. Project cost management indicator; 9. Project team performance indicator; 10. Project budget compliance indicator. |
Papanikolaou and Xenidis (2020) [46] | Any | Proposes a set of both objective and subjective KPIs and proposes a method for the calculation of a risk-informed overall SI. For contractor. | Example | SWA with the incorporation of risk factors for each KPI. | Objective (provides formulae for calculation of numerical values): 1. Cost; 2. Schedule; 3. Billing; 4. Safety; 5. Profitability; 6. Quality. Subjective (10-point scale): 7. Team satisfaction; 8. Client satisfaction |
Project | C1 | C2 | C3 | C4 | T1 | T2 | Q1 | Q2 |
---|---|---|---|---|---|---|---|---|
P1 | 0.14 | 0.06 | 0.00 | 0.20 | 3.12 | 0.02 | 0.00 | 0.00 |
P2 | 0.08 | −0.06 | 0.00 | 0.20 | 4.16 | 0.13 | 0.00 | 0.00 |
P3 | −0.03 | −0.11 | 0.00 | 0.40 | 3.63 | 0.01 | 0.00 | 0.00 |
P4 | 0.17 | 0.17 | 0.00 | 0.20 | 0.99 | 0.15 | 0.00 | 0.00 |
P5 | 0.24 | −0.04 | 0.16 | 0.40 | 1.88 | 0.23 | 1.00 | 0.00 |
P6 | 0.11 | 0.11 | 0.03 | 0.80 | 0.11 | 0.12 | 0.00 | 0.00 |
P7 | −0.01 | −0.07 | 0.00 | 0.40 | 0.57 | 0.19 | 0.00 | 0.00 |
P8 | 0.08 | −0.33 | 0.00 | 0.20 | 0.62 | 0.12 | 1.00 | 0.00 |
P9 | −0.02 | −0.24 | 0.00 | 0.20 | 0.46 | 0.09 | 1.00 | 0.00 |
P10 | 0.15 | 0.07 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 |
P11 | 0.25 | −0.17 | 0.16 | 0.40 | 0.41 | 0.09 | 0.00 | 0.00 |
P12 | 0.14 | 0.06 | 0.00 | 0.20 | 0.00 | 0.07 | 0.00 | 0.00 |
P13 | 0.07 | 0.00 | 0.00 | 0.20 | 0.00 | 0.13 | 0.00 | 0.00 |
P14 | 0.44 | −0.03 | 0.35 | 1.00 | 0.50 | 0.12 | 0.00 | 1.00 |
P15 | 0.51 | 0.00 | 0.42 | 0.40 | 0.50 | 0.10 | 1.00 | 1.00 |
P16 | 0.14 | 0.06 | 0.00 | 0.40 | 0.55 | 0.15 | 0.00 | 0.00 |
P17 | 0.11 | 0.03 | 0.00 | 0.40 | 0.30 | 0.02 | 0.00 | 0.00 |
P18 | 0.15 | 0.09 | 0.00 | 0.20 | 0.00 | 0.09 | 0.00 | 0.00 |
P19 | 0.34 | −0.03 | 0.25 | 0.40 | 0.88 | 0.12 | 1.00 | 0.00 |
P20 | 0.15 | 0.07 | 0.00 | 0.20 | 0.92 | 0.01 | 0.00 | 0.00 |
P21 | 0.06 | −0.27 | 0.00 | 1.00 | 1.10 | 0.15 | 6.00 | 1.00 |
P22 | 0.15 | 0.07 | 0.00 | 0.20 | 1.01 | 0.00 | 0.00 | 0.00 |
P23 | 0.04 | −0.23 | 0.00 | 0.20 | 4.41 | 0.00 | 0.00 | 0.00 |
P24 | 0.15 | 0.07 | 0.00 | 0.20 | 1.01 | 0.00 | 0.00 | 0.00 |
P25 | 0.07 | −0.59 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 |
P26 | 0.09 | −0.27 | 0.03 | 0.40 | 0.62 | 0.09 | 2.00 | 0.00 |
P27 | 0.08 | −0.53 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 |
P28 | 0.11 | −0.51 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 |
P29 | 0.15 | −0.58 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 |
P30 | 0.15 | −0.24 | 0.06 | 0.40 | 2.11 | 0.04 | 1.00 | 0.00 |
Project | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 |
---|---|---|---|---|---|---|---|---|---|---|---|
P1 | 2 | 3 | 100,473.29 | 0.11 | 1 | 1 | 375 | 0 | 252 | 515 | 0 |
P2 | 1 | 2 | 0.00 | 0.17 | 1 | 0 | 1.491 | 0 | 329 | 1.086 | 0 |
P3 | 2 | 4 | 33,149.34 | 0.06 | 2 | 0 | 632 | 0 | 50 | −52 | 0 |
P4 | 2 | 1 | 84,469.91 | 0.07 | 1 | 0 | 17 | 0 | 330 | −14 | 0 |
P5 | 7 | 9 | 1,780,732.59 | 0.13 | 2 | 1 | −20 | 8 | 456 | 122 | 1 |
P6 | 5 | 1 | 282,817.78 | 0.02 | 4 | 0 | 59 | 1 | 216 | −43 | 1 |
P7 | 6 | 3 | 707,512.30 | 0.03 | 2 | 1 | −1 | 0 | 907 | 116 | 0 |
P8 | 5 | 2 | 199,951.77 | 0.07 | 1 | 1 | −100 | 2 | 479 | −41 | 0 |
P9 | 5 | 2 | 234,627.60 | 0.18 | 1 | 1 | 639 | 1 | −24 | −14 | 0 |
P10 | 2 | 0 | 0.00 | 0.02 | 1 | 0 | 1 | 0 | 2.043 | 1.310 | 0 |
P11 | 3 | 2 | 107,621.38 | 0.04 | 2 | 0 | 1 | 0 | 958 | 225 | 1 |
P12 | 1 | 0 | 0.00 | 0.01 | 1 | 0 | −24 | 0 | 703 | 8 | 0 |
P13 | 1 | 0 | 47,979.40 | 0.00 | 1 | 0 | 0 | 0 | 722 | −10 | 0 |
P14 | 5 | 2 | 100,000.00 | 0.13 | 5 | 1 | 1 | 2 | 592 | −28 | 1 |
P15 | 4 | 2 | 125,351.81 | 0.12 | 2 | 1 | 2 | 3 | 591 | −47 | 1 |
P16 | 1 | 1 | 17,574.00 | 0.00 | 2 | 1 | −3 | 0 | 176 | 65 | 0 |
P17 | 1 | 1 | 20,000.00 | 0.00 | 2 | 0 | −4 | 0 | 626 | −35 | 0 |
P18 | 1 | 0 | 10,000.00 | 0.02 | 1 | 0 | 0 | 0 | 106 | −2 | 0 |
P19 | 5 | 4 | 109,972.94 | 0.21 | 2 | 0 | −9 | 1 | 179 | 11 | 1 |
P20 | 2 | 1 | 70,000.00 | 0.12 | 1 | 0 | −12 | 0 | 86 | −22 | 0 |
P21 | 5 | 5 | 350,000.00 | 0.01 | 5 | 1 | 358 | 22 | −118 | 1.639 | 0 |
P22 | 3 | 2 | 0.00 | 0.01 | 1 | 0 | −8 | 0 | −59 | −27 | 0 |
P23 | 4 | 6 | 120,117.21 | 0.03 | 1 | 0 | −35 | 0 | 6 | −29 | 0 |
P24 | 3 | 1 | 0.00 | 0.00 | 1 | 0 | 0 | 0 | 94 | 91 | 0 |
P25 | 3 | 0 | 147,810.80 | 0.10 | 1 | 0 | −4 | 0 | −54 | 36 | 0 |
P26 | 4 | 3 | 344,391.77 | 0.08 | 2 | 0 | −3 | 1 | 44 | 29 | 1 |
P27 | 2 | 0 | 23,965.97 | 0.06 | 1 | 0 | 0 | 0 | −63 | 401 | 0 |
P28 | 1 | 0 | 39,349.94 | 0.02 | 1 | 0 | 1 | 0 | −135 | −14 | 0 |
P29 | 1 | 0 | 49,243.87 | 0.00 | 1 | 0 | 0 | 0 | −75 | −43 | 0 |
P30 | 9 | 5 | 609.556.15 | 0.03 | 2 | 0 | −1 | 4 | 123 | −16 | 2 |
KPIc | KPIt | KPIq | KPIm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
d+ | d− | C | d+ | d− | C | d+ | d− | C | d+ | d− | C | |
P1 | 0.1289 | 0.2087 | 0.6183 | 0.1802 | 0.1996 | 0.5255 | 0.0000 | 0.5282 | 1.0000 | 0.0531 | 0.1620 | 0.7532 |
P2 | 0.1018 | 0.2199 | 0.6835 | 0.2682 | 0.0857 | 0.2422 | 0.0000 | 0.5282 | 1.0000 | 0.0972 | 0.1534 | 0.6122 |
P3 | 0.0920 | 0.2277 | 0.7123 | 0.2085 | 0.2061 | 0.4971 | 0.0000 | 0.5282 | 1.0000 | 0.0458 | 0.1697 | 0.7876 |
P4 | 0.1518 | 0.2041 | 0.5735 | 0.1522 | 0.2069 | 0.5761 | 0.0000 | 0.5282 | 1.0000 | 0.0219 | 0.1803 | 0.8915 |
P5 | 0.1388 | 0.1444 | 0.5099 | 0.2329 | 0.1456 | 0.3847 | 0.0737 | 0.4682 | 0.8640 | 0.1126 | 0.1246 | 0.5252 |
P6 | 0.1525 | 0.1813 | 0.5431 | 0.1137 | 0.2637 | 0.6987 | 0.0000 | 0.5282 | 1.0000 | 0.0453 | 0.1662 | 0.7859 |
P7 | 0.1006 | 0.2229 | 0.6890 | 0.1777 | 0.2229 | 0.5564 | 0.0000 | 0.5282 | 1.0000 | 0.0612 | 0.1579 | 0.7206 |
P8 | 0.0555 | 0.2346 | 0.8086 | 0.1189 | 0.2367 | 0.6656 | 0.0737 | 0.4682 | 0.8640 | 0.0450 | 0.1708 | 0.7914 |
P9 | 0.0656 | 0.2414 | 0.7863 | 0.0854 | 0.2591 | 0.7522 | 0.0737 | 0.4682 | 0.8640 | 0.0639 | 0.1611 | 0.7160 |
P10 | 0.1305 | 0.2080 | 0.6145 | 0.0007 | 0.3263 | 0.9977 | 0.0000 | 0.5282 | 1.0000 | 0.0833 | 0.1677 | 0.6680 |
P11 | 0.1233 | 0.1525 | 0.5531 | 0.0894 | 0.2592 | 0.7436 | 0.0000 | 0.5282 | 1.0000 | 0.0483 | 0.1636 | 0.7719 |
P12 | 0.1287 | 0.2088 | 0.6188 | 0.0607 | 0.2922 | 0.8279 | 0.0000 | 0.5282 | 1.0000 | 0.0259 | 0.1840 | 0.8767 |
P13 | 0.1124 | 0.2186 | 0.6605 | 0.1179 | 0.2682 | 0.6946 | 0.0000 | 0.5282 | 1.0000 | 0.0267 | 0.1829 | 0.8728 |
P14 | 0.2262 | 0.0500 | 0.1810 | 0.1103 | 0.2456 | 0.6901 | 0.2887 | 0.4423 | 0.6051 | 0.0667 | 0.1575 | 0.7026 |
P15 | 0.2393 | 0.0748 | 0.2382 | 0.0928 | 0.2536 | 0.7320 | 0.2979 | 0.3686 | 0.5530 | 0.0568 | 0.1583 | 0.7359 |
P16 | 0.1304 | 0.2005 | 0.6061 | 0.1389 | 0.2326 | 0.6261 | 0.0000 | 0.5282 | 1.0000 | 0.0339 | 0.1816 | 0.8426 |
P17 | 0.1234 | 0.2045 | 0.6236 | 0.0242 | 0.3026 | 0.9259 | 0.0000 | 0.5282 | 1.0000 | 0.0257 | 0.1817 | 0.8763 |
P18 | 0.1353 | 0.2073 | 0.6050 | 0.0849 | 0.2809 | 0.7679 | 0.0000 | 0.5282 | 1.0000 | 0.0100 | 0.1877 | 0.9496 |
P19 | 0.1687 | 0.1123 | 0.3997 | 0.1249 | 0.2225 | 0.6405 | 0.0737 | 0.4682 | 0.8640 | 0.0581 | 0.1645 | 0.7388 |
P20 | 0.1312 | 0.2076 | 0.6127 | 0.0536 | 0.2818 | 0.8401 | 0.0000 | 0.5282 | 1.0000 | 0.0265 | 0.1823 | 0.8730 |
P21 | 0.1105 | 0.2143 | 0.6597 | 0.1513 | 0.2021 | 0.5718 | 0.5282 | 0.0000 | 0.0000 | 0.1206 | 0.1286 | 0.5160 |
P22 | 0.1303 | 0.2081 | 0.6149 | 0.0577 | 0.2844 | 0.8314 | 0.0000 | 0.5282 | 1.0000 | 0.0154 | 0.1861 | 0.9234 |
P23 | 0.0691 | 0.2326 | 0.7709 | 0.2532 | 0.2066 | 0.4493 | 0.0000 | 0.5282 | 1.0000 | 0.0374 | 0.1795 | 0.8277 |
P24 | 0.1312 | 0.2076 | 0.6127 | 0.0578 | 0.2843 | 0.8310 | 0.0000 | 0.5282 | 1.0000 | 0.0145 | 0.1848 | 0.9274 |
P25 | 0.0234 | 0.2595 | 0.9174 | 0.0000 | 0.3267 | 1.0000 | 0.0000 | 0.5282 | 1.0000 | 0.0236 | 0.1828 | 0.8857 |
P26 | 0.0710 | 0.2123 | 0.7494 | 0.0864 | 0.2524 | 0.7450 | 0.1474 | 0.4127 | 0.7368 | 0.0422 | 0.1651 | 0.7964 |
P27 | 0.0284 | 0.2520 | 0.8987 | 0.0000 | 0.3267 | 1.0000 | 0.0000 | 0.5282 | 1.0000 | 0.0211 | 0.1830 | 0.8966 |
P28 | 0.0368 | 0.2470 | 0.8704 | 0.0000 | 0.3267 | 1.0000 | 0.0000 | 0.5282 | 1.0000 | 0.0071 | 0.1897 | 0.9640 |
P29 | 0.0437 | 0.2500 | 0.8513 | 0.0000 | 0.3267 | 1.0000 | 0.0000 | 0.5282 | 1.0000 | 0.0057 | 0.1901 | 0.9708 |
P30 | 0.0841 | 0.1973 | 0.7011 | 0.1254 | 0.2183 | 0.6353 | 0.0737 | 0.4682 | 0.8640 | 0.0782 | 0.1511 | 0.6589 |
KPIc | KPIt | KPIq | KPIm | SI | RANK | |
---|---|---|---|---|---|---|
wj | 0.250 | 0.250 | 0.250 | 0.250 | ||
P1 | 0.618 | 0.525 | 1.000 | 0.753 | 0.724 | 23 |
P2 | 0.684 | 0.242 | 1.000 | 0.612 | 0.634 | 26 |
P3 | 0.712 | 0.497 | 1.000 | 0.788 | 0.749 | 21 |
P4 | 0.574 | 0.576 | 1.000 | 0.892 | 0.760 | 18 |
P5 | 0.510 | 0.385 | 0.864 | 0.525 | 0.571 | 27 |
P6 | 0.543 | 0.699 | 1.000 | 0.786 | 0.757 | 19 |
P7 | 0.689 | 0.556 | 1.000 | 0.721 | 0.742 | 22 |
P8 | 0.809 | 0.666 | 0.864 | 0.791 | 0.782 | 13 |
P9 | 0.786 | 0.752 | 0.864 | 0.716 | 0.780 | 14 |
P10 | 0.615 | 0.998 | 1.000 | 0.668 | 0.820 | 11 |
P11 | 0.553 | 0.744 | 1.000 | 0.772 | 0.767 | 16 |
P12 | 0.619 | 0.828 | 1.000 | 0.877 | 0.831 | 9 |
P13 | 0.661 | 0.695 | 1.000 | 0.873 | 0.807 | 12 |
P14 | 0.181 | 0.690 | 0.605 | 0.703 | 0.545 | 29 |
P15 | 0.238 | 0.732 | 0.553 | 0.736 | 0.565 | 28 |
P16 | 0.606 | 0.626 | 1.000 | 0.843 | 0.769 | 15 |
P17 | 0.624 | 0.926 | 1.000 | 0.876 | 0.856 | 5 |
P18 | 0.605 | 0.768 | 1.000 | 0.950 | 0.831 | 10 |
P19 | 0.400 | 0.640 | 0.864 | 0.739 | 0.661 | 25 |
P20 | 0.613 | 0.840 | 1.000 | 0.873 | 0.831 | 8 |
P21 | 0.660 | 0.572 | 0.000 | 0.516 | 0.437 | 30 |
P22 | 0.615 | 0.831 | 1.000 | 0.923 | 0.842 | 7 |
P23 | 0.771 | 0.449 | 1.000 | 0.828 | 0.762 | 17 |
P24 | 0.613 | 0.831 | 1.000 | 0.927 | 0.843 | 6 |
P25 | 0.917 | 1.000 | 1.000 | 0.886 | 0.951 | 3 |
P26 | 0.749 | 0.745 | 0.737 | 0.796 | 0.757 | 20 |
P27 | 0.899 | 1.000 | 1.000 | 0.897 | 0.949 | 4 |
P28 | 0.870 | 1.000 | 1.000 | 0.964 | 0.959 | 1 |
P29 | 0.851 | 1.000 | 1.000 | 0.971 | 0.956 | 2 |
P30 | 0.701 | 0.635 | 0.864 | 0.659 | 0.715 | 24 |
KPIc | KPIt | KPIq | KPIm | SI | RANK | |
---|---|---|---|---|---|---|
wj | 30% | 30% | 15% | 25% | ||
P1 | 0.618 | 0.525 | 1.000 | 0.753 | 0.681 | 24 |
P2 | 0.684 | 0.242 | 1.000 | 0.612 | 0.581 | 26 |
P3 | 0.712 | 0.497 | 1.000 | 0.788 | 0.710 | 21 |
P4 | 0.574 | 0.576 | 1.000 | 0.892 | 0.718 | 20 |
P5 | 0.510 | 0.385 | 0.864 | 0.525 | 0.529 | 28 |
P6 | 0.543 | 0.699 | 1.000 | 0.786 | 0.719 | 19 |
P7 | 0.689 | 0.556 | 1.000 | 0.721 | 0.704 | 22 |
P8 | 0.809 | 0.666 | 0.864 | 0.791 | 0.770 | 14 |
P9 | 0.786 | 0.752 | 0.864 | 0.716 | 0.770 | 13 |
P10 | 0.615 | 0.998 | 1.000 | 0.668 | 0.801 | 10 |
P11 | 0.553 | 0.744 | 1.000 | 0.772 | 0.732 | 16 |
P12 | 0.619 | 0.828 | 1.000 | 0.877 | 0.803 | 9 |
P13 | 0.661 | 0.695 | 1.000 | 0.873 | 0.775 | 12 |
P14 | 0.181 | 0.690 | 0.605 | 0.703 | 0.528 | 29 |
P15 | 0.238 | 0.732 | 0.553 | 0.736 | 0.558 | 27 |
P16 | 0.606 | 0.626 | 1.000 | 0.843 | 0.730 | 17 |
P17 | 0.624 | 0.926 | 1.000 | 0.876 | 0.834 | 5 |
P18 | 0.605 | 0.768 | 1.000 | 0.950 | 0.799 | 11 |
P19 | 0.400 | 0.640 | 0.864 | 0.739 | 0.626 | 25 |
P20 | 0.613 | 0.840 | 1.000 | 0.873 | 0.804 | 8 |
P21 | 0.660 | 0.572 | 0.000 | 0.516 | 0.498 | 30 |
P22 | 0.615 | 0.831 | 1.000 | 0.923 | 0.815 | 7 |
P23 | 0.771 | 0.449 | 1.000 | 0.828 | 0.723 | 18 |
P24 | 0.613 | 0.831 | 1.000 | 0.927 | 0.815 | 6 |
P25 | 0.917 | 1.000 | 1.000 | 0.886 | 0.947 | 3 |
P26 | 0.749 | 0.745 | 0.737 | 0.796 | 0.758 | 15 |
P27 | 0.899 | 1.000 | 1.000 | 0.897 | 0.944 | 4 |
P28 | 0.870 | 1.000 | 1.000 | 0.964 | 0.952 | 1 |
P29 | 0.851 | 1.000 | 1.000 | 0.971 | 0.948 | 2 |
P30 | 0.701 | 0.635 | 0.864 | 0.659 | 0.695 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniou, F.; Tsavlidou, E. Ranking Public Infrastructure Project Success Using Multi-Criteria Analysis. Buildings 2025, 15, 2807. https://doi.org/10.3390/buildings15162807
Antoniou F, Tsavlidou E. Ranking Public Infrastructure Project Success Using Multi-Criteria Analysis. Buildings. 2025; 15(16):2807. https://doi.org/10.3390/buildings15162807
Chicago/Turabian StyleAntoniou, Fani, and Elissavet Tsavlidou. 2025. "Ranking Public Infrastructure Project Success Using Multi-Criteria Analysis" Buildings 15, no. 16: 2807. https://doi.org/10.3390/buildings15162807
APA StyleAntoniou, F., & Tsavlidou, E. (2025). Ranking Public Infrastructure Project Success Using Multi-Criteria Analysis. Buildings, 15(16), 2807. https://doi.org/10.3390/buildings15162807