Investigation on Shear Lugs Used in Equipment Foundations of Nuclear Engineering
Abstract
1. Introduction
2. Specimen Design
2.1. H-Shaped Steel Shear Lug Specimen
2.2. Angle Steel Shear Lug Specimen
2.3. Steel Plate Shear Lug Specimen
3. Test Programme
4. Failure Modes of Specimens
4.1. Failure Modes of H-Shaped Steel Shear Lug Specimens
4.2. Failure Modes of Angle Steel Shear Lug Specimens
4.3. Failure Modes of Steel Plate Shear Lug Specimens
5. Test Results and Analysis
5.1. Test Group for H-Shaped Steel Shear Lug Specimens
5.1.1. Test Results
5.1.2. Analysis of Influencing Factors
5.2. Test Group for Angle Steel Shear Lug Specimens
5.2.1. Test Results
5.2.2. Analysis of Influencing Factors
5.3. Test Group for Steel Plate Shear Lug Specimens
5.3.1. Test Results
5.3.2. Analysis of Influencing Factors
6. Calculation of Concrete Shear Breakout Capacity of Shear Lugs
6.1. Method Recommended in the ACI 318-19 Code
6.2. Method Proposed in This Paper
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holan, J.; Bílý, P.; Štefan, R.; Vácha, P. Feasibility Study of a Prestressed-Concrete Containment Vessel for a Novel GFR Nuclear Reactor. Eng. Struct. 2023, 286, 116119. [Google Scholar] [CrossRef]
- Li, X.; Gong, J. Probabilistic Evaluation of the Leak-Tightness Function of the Nuclear Containment Structure Subjected to Internal Pressure. Reliab. Eng. Syst. Saf. 2024, 241, 109684. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Gong, J. Failure Behavior and Vulnerability of Containment Structures Subjected to Overpressure Loads Considering Different Failure Criteria. Buildings 2024, 14, 1299. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, C.; Xie, M.; Gong, J. Experimental Study of the Influence of Supplementary Reinforcement on Tensile Breakout Capacity of Headed Anchors in Nuclear Power Plant Equipment Foundations. Buildings 2024, 14, 3027. [Google Scholar] [CrossRef]
- GB 50017-2017; Standard for Design of Steel Structures. The Ministry of Construction of the People’s Republic of China: Beijing, China, 2017.
- Xu, Y.; Gong, J.; Chen, C.; Xie, M. Experimental Investigation on Shear Breakout Capacity of Headed Anchors with Supplementary Reinforcements in Equipment Foundations of Nuclear Power Plants. Structures 2025, 78, 109340. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, J.; Liu, D.; Lan, T.; Xiao, D.; Dong, Z. Numerical Simulation and Experimental Study on Mechanical Behavior of the Gusset for Nuclear Power Plant Containment. Eng. Struct. 2023, 292, 116522. [Google Scholar] [CrossRef]
- Murray, D.W. A Review of Explosive Characteristics of Prestressed Secondary Containment near Ultimate Load. Nucl. Eng. Des. 1979, 52, 157–164. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Chuah, C.L.; Shima, H.; Virach, R. Load-Displacement Relationship of Plate Shape Shear Connector in Steel-Concrete Composite Structures. Doboku Gakkai Ronbunshu 1991, 1991, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, R.T.; Patil, Y.D. Review of Various Shear Connectors in Composite Structures. Adv. Steel Constr. 2021, 17, 394–402. [Google Scholar]
- ACI 349-13; Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2013.
- Deng, W.; Xiong, Y.; Liu, D.; Zhang, J. Static and Fatigue Behavior of Shear Connectors for a Steel-Concrete Composite Girder. J. Constr. Steel Res. 2019, 159, 134–146. [Google Scholar] [CrossRef]
- Mazoz, A.; Benanane, A.; Titoum, M. Push-out Tests on a New Shear Connector of I-Shape. Int. J. Steel Struct. 2013, 13, 519–528. [Google Scholar] [CrossRef]
- Shariati, A.; Shariati, M.; Ramli Sulong, N.H.; Suhatril, M.; Arabnejad Khanouki, M.M.; Mahoutian, M. Experimental Assessment of Angle Shear Connectors under Monotonic and Fully Reversed Cyclic Loading in High Strength Concrete. Constr. Build. Mater. 2014, 52, 276–283. [Google Scholar] [CrossRef]
- Soty, R.; Shima, H. Formulation for Shear Force–Relative Displacement Relationship of L-Shape Shear Connector in Steel–Concrete Composite Structures. Eng. Struct. 2013, 46, 581–592. [Google Scholar] [CrossRef]
- Xiao, N.; Li, S.; Zhao, W. Calculation of Shear Capacity of Shear Connector in Steel Column Base. J. Build. Struct. 2010, 31, 86–93. [Google Scholar] [CrossRef]
- Soty, R.; Shima, H. Formulation for Maximum Shear Force on L-Shape Shear Connector Subjected to Strut Compressive Force at Splitting Crack Occurrence in Steel-Concrete Composite Structures. Procedia Eng. 2011, 14, 2420–2428. [Google Scholar] [CrossRef]
- Jiasen, L. Design Method for an H Type Steel Shear Key for the Steel Column Base. Struct. Eng. 2015, 31, 7–11. [Google Scholar] [CrossRef]
- Jiang, H.; Fang, H.; Liu, J.; Fang, Z.; Zhang, J. Experimental Investigation on Shear Performance of Transverse Angle Shear Connectors. Structures 2021, 33, 2050–2060. [Google Scholar] [CrossRef]
- Shariati, M.; Ramli Sulong, N.H.; Suhatril, M.; Shariati, A.; Arabnejad Khanouki, M.M.; Sinaei, H. Comparison of Behaviour between Channel and Angle Shear Connectors under Monotonic and Fully Reversed Cyclic Loading. Constr. Build. Mater. 2013, 38, 582–593. [Google Scholar] [CrossRef]
- ACI 318-19; Building Code Requirement for Structural Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2019.
- GB 50010-2010; Code for Design of Concrete Structures. The Ministry of Construction of the People’s Republic of China: Beijing, China, 2015.
Test No. | Size (mm) | (mm) | (mm) | (MPa) |
---|---|---|---|---|
H-100-150 | 900 × 700 × 750 | 100 | 150 | 50.73 |
H-100-250 | 900 × 700 × 750 | 100 | 250 | 50.41 |
H-100-375 | 900 × 900 × 750 | 100 | 375 | 50.73 |
H-200-150 | 900 × 700 × 750 | 200 | 150 | 50.73 |
H-200-250 | 900 × 700 × 750 | 200 | 250 | 44.5 |
H-200-375 | 900 × 900 × 750 | 200 | 375 | 47.08 |
Test No. | Size (mm) | (mm) | (mm) | (MPa) |
---|---|---|---|---|
L-100-200 | 900 × 700 × 700 | 100 | 200 | 50.73 |
L-100-300 | 900 × 700 × 700 | 100 | 300 | 45.22 |
L-125-200 | 900 × 700 × 700 | 125 | 200 | 45.22 |
L-125-300 | 900 × 700 × 700 | 125 | 300 | 50.41 |
L-160-250 | 900 × 700 × 700 | 160 | 250 | 45.15 |
L-160-350 | 900 × 700 × 700 | 160 | 350 | 45.15 |
Test No. | Size (mm) | (mm) | (mm) | (mm) | (MPa) |
---|---|---|---|---|---|
S-2-250 | 900 × 700 × 750 | 2 | 50 | 250 | 45.15 |
S-2-350 | 900 × 700 × 750 | 2 | 50 | 350 | 45.15 |
S-4-250 | 900 × 700 × 750 | 4 | 100 | 250 | 44.5 |
S-4-350 | 900 × 700 × 750 | 4 | 100 | 350 | 47.08 |
S-6-250 | 900 × 700 × 750 | 6 | 150 | 250 | 44.94 |
S-6-350 | 900 × 700 × 750 | 6 | 150 | 350 | 44.94 |
S-8-250 | 900 × 700 × 750 | 8 | 200 | 250 | 42.87 |
S-8-350 | 900 × 700 × 750 | 8 | 200 | 350 | 42.87 |
Test No. | Cracking Load (kN) | Peak Load (kN) | Peak Displacement (mm) | Cone Failure Angle (°) |
---|---|---|---|---|
H-100-150 | 170 | 212.43 | 5.73 | 45 |
H-100-250 | 255 | 299.41 | 7.52 | 45 |
H-100-375 | 272 | 335.07 | 3.78 | — |
H-200-150 | 230 | 275.61 | 5.54 | 45 |
H-200-250 | 342 | 366.77 | 7.07 | 55 |
H-200-375 | 270 | 480.00 | 3.75 | 40 |
(mm) | (mm) | Peak Load (kN) | Relative Difference | Peak Displacement (mm) | Relative Difference |
---|---|---|---|---|---|
150 | 100 | 212.43 | — | 5.73 | — |
200 | 275.61 | 29.74% | 5.54 | −3.33% | |
250 | 100 | 299.41 | — | 7.52 | — |
200 | 366.77 | 22.5% | 7.07 | −5.98% | |
375 | 100 | 335.07 | — | 3.78 | — |
200 | 480.00 | 43.25% | 3.75 | −0.08% |
(mm) | (mm) | Peak Load (kN) | Relative Difference | Peak Displacement (mm) | Relative Difference |
---|---|---|---|---|---|
100 | 150 | 212.43 | — | 5.73 | — |
250 | 299.41 | 40.95% | 7.52 | 31.24% | |
375 | 335.07 | 57.73% | 3.78 | −34.03% | |
200 | 150 | 275.61 | — | 5.54 | — |
250 | 366.77 | 33.08% | 7.07 | 27.62% | |
375 | 480.00 | 74.16% | 3.75 | −32.31% |
Test No. | Cracking Load (kN) | Peak Load (kN) | Peak Displacement (mm) | Cone Failure Angle (°) |
---|---|---|---|---|
L-100-200 | 103 | 141.98 | 10.22 | 40 |
L-100-300 | 160 | 240.46 | 6.63 | 46 |
L-125-200 | 127 | 195.13 | 10.24 | 25 |
L-125-300 | 208 | 250.53 | 2.82 | 33 |
L-160-250 | 177 | 206.12 | 8.89 | 30 |
L-160-350 | 304 | 352.37 | 5.48 | 43 |
(mm) | (mm) | Peak Load (kN) | Relative Difference | Peak Displacement (mm) | Relative Difference |
---|---|---|---|---|---|
200 | 100 | 141.98 | — | 10.22 | — |
125 | 195.13 | 37.43% | 10.24 | 0% | |
160 | 206.12 | 45.18% | 8.89 | −13.01% | |
300 | 100 | 240.46 | — | 6.63 | — |
125 | 250.53 | 4.19% | 2.82 | −57.47% | |
160 | 352.37 | 46.54% | 5.48 | −17.35% |
(mm) | (mm) | Peak Load (kN) | Relative Difference | Peak Displacement (mm) | Relative Difference |
---|---|---|---|---|---|
100 | 200 | 141.98 | — | 10.22 | — |
300 | 240.46 | 69.36% | 6.63 | −35.13% | |
125 | 200 | 195.12 | — | 10.24 | — |
300 | 250.53 | 28.4% | 2.82 | −72.46% | |
160 | 200 | 206.12 | — | 8.89 | — |
300 | 352.37 | 70.95% | 5.48 | −38.36% |
Test No. | Cracking Load (kN) | Peak Load (kN) | Peak Displacement (mm) | Cone Failure Angle (°) |
---|---|---|---|---|
S-2-250 | 97 | 123.41 | 3.5 | 32 |
S-2-350 | 144 | 190.3 | 3.68 | 45 |
S-4-250 | 175 | 227.79 | 5 | 32 |
S-4-350 | 200 | 292.75 | 5.8 | 35 |
S-6-250 | 175 | 255.46 | 5.94 | 35 |
S-6-350 | 279 | 327.49 | 8.26 | 44 |
S-8-250 | 180 | 284.46 | 11.28 | 45 |
S-8-350 | 218 | 359.75 | 5.18 | 35 |
(mm) | Peak Load (kN) | Relative Difference | Peak Displacement (mm) | Relative Difference | |
---|---|---|---|---|---|
250 | 2 | 123.41 | — | 3.50 | — |
4 | 227.79 | 84.58% | 5.00 | 42.86% | |
6 | 255.46 | 107% | 5.94 | 69.71% | |
8 | 284.46 | 130.5% | 11.28 | 222.29% | |
350 | 2 | 190.30 | — | 3.68 | — |
4 | 292.75 | 53.84% | 5.80 | 57.61% | |
6 | 327.49 | 72.09% | 8.26 | 124.46% | |
8 | 359.75 | 89.04% | 5.18 | 40.76% |
(mm) | Peak Load (kN) | Relative Difference | Peak Displacement (mm) | Relative Difference | |
---|---|---|---|---|---|
2 | 250 | 123.41 | — | 3.50 | — |
350 | 190.30 | 54.2% | 3.68 | 5.14% | |
4 | 250 | 227.79 | — | 5.00 | — |
350 | 292.75 | 28.52% | 5.80 | 16.00% | |
6 | 250 | 255.46 | — | 5.94 | — |
350 | 327.49 | 28.2% | 8.26 | 39.06% | |
8 | 250 | 284.46 | — | 11.28 | — |
350 | 359.75 | 26.47% | 5.18 | −54.08% |
Test No. | Size (mm) | (mm) | (mm) | (MPa) | (MPa) | (kN) | (kN) | |
---|---|---|---|---|---|---|---|---|
H-100-150 | 900 × 700 × 750 | 100 | 150 | 50.73 | 40.58 | 212.43 | 44.15 | 0.21 |
H-100-250 | 900 × 700 × 750 | 100 | 250 | 50.41 | 40.33 | 299.41 | 94.69 | 0.32 |
H-100-375 | 900 × 900 × 750 | 100 | 375 | 50.73 | 40.58 | 335.07 | 174.51 | 0.52 |
H-200-150 | 900 × 700 × 750 | 200 | 150 | 50.73 | 40.58 | 275.61 | 44.15 | 0.16 |
H-200-250 | 900 × 700 × 750 | 200 | 250 | 44.50 | 35.60 | 366.77 | 88.97 | 0.24 |
H-200-375 | 900 × 900 × 750 | 200 | 375 | 47.08 | 37.66 | 480.00 | 168.11 | 0.35 |
L-100-200 | 900 × 700 × 700 | 100 | 200 | 50.73 | 40.58 | 141.98 | 67.97 | 0.48 |
L-100-300 | 900 × 700 × 700 | 100 | 300 | 45.22 | 36.18 | 240.46 | 117.89 | 0.49 |
L-125-200 | 900 × 700 × 700 | 125 | 200 | 45.22 | 36.18 | 195.13 | 64.17 | 0.33 |
L-125-300 | 900 × 700 × 700 | 125 | 300 | 50.41 | 40.33 | 250.53 | 124.47 | 0.50 |
L-160-250 | 900 × 700 × 700 | 160 | 250 | 45.15 | 36.12 | 206.12 | 89.61 | 0.43 |
L-160-350 | 900 × 700 × 700 | 160 | 350 | 45.15 | 36.12 | 352.37 | 148.45 | 0.42 |
S-2-250 | 900 × 700 × 750 | 50 | 250 | 45.15 | 36.12 | 123.41 | 89.61 | 0.73 |
S-2-350 | 900 × 700 × 750 | 50 | 350 | 45.15 | 36.12 | 190.30 | 148.45 | 0.78 |
S-4-250 | 900 × 700 × 750 | 100 | 250 | 44.50 | 35.60 | 227.79 | 88.97 | 0.39 |
S-4-350 | 900 × 700 × 750 | 100 | 350 | 47.08 | 37.66 | 292.75 | 151.59 | 0.52 |
S-6-250 | 900 × 700 × 750 | 150 | 250 | 44.94 | 35.95 | 255.46 | 89.41 | 0.35 |
S-6-350 | 900 × 700 × 750 | 150 | 350 | 44.94 | 35.95 | 327.49 | 148.02 | 0.45 |
S-8-250 | 900 × 700 × 750 | 200 | 250 | 42.87 | 34.30 | 284.46 | 87.29 | 0.31 |
S-8-350 | 900 × 700 × 750 | 200 | 350 | 42.87 | 34.30 | 359.75 | 144.59 | 0.40 |
Test No. | (mm) | (mm) | (mm) | (MPa) | (kN) | (kN) | (kN) | ||
---|---|---|---|---|---|---|---|---|---|
H-100-150 | 100 | 150 | 46.976 | 40.58 | 212.43 | 133.53 | 0.63 | 78.63 | 0.37 |
H-100-250 | 100 | 250 | 46.976 | 40.33 | 299.41 | 251.46 | 0.84 | 148.06 | 0.49 |
H-100-375 | 100 | 375 | 46.976 | 40.58 | 335.07 | 429.65 | 1.28 | 252.98 | 0.76 |
H-200-150 | 200 | 150 | 46.976 | 40.58 | 275.61 | 153.39 | 0.56 | 90.32 | 0.73 |
H-200-250 | 200 | 250 | 46.976 | 35.60 | 366.77 | 274.07 | 0.75 | 161.38 | 0.33 |
H-200-375 | 200 | 375 | 46.976 | 37.66 | 480.00 | 478.38 | 1.00 | 281.68 | 0.44 |
L-100-200 | 100 | 200 | 10.00 | 40.58 | 141.98 | 119.43 | 0.84 | 70.32 | 0.59 |
L-100-300 | 100 | 300 | 10.00 | 36.18 | 240.46 | 191.38 | 0.80 | 112.69 | 0.70 |
L-125-200 | 125 | 200 | 12.00 | 36.18 | 195.13 | 125.68 | 0.64 | 74.00 | 0.50 |
L-125-300 | 125 | 300 | 12.00 | 40.33 | 250.53 | 221.27 | 0.88 | 130.28 | 0.47 |
L-160-250 | 160 | 250 | 16.00 | 36.12 | 206.12 | 190.90 | 0.93 | 112.41 | 0.38 |
L-160-350 | 160 | 350 | 16.00 | 36.12 | 352.37 | 296.67 | 0.84 | 174.68 | 0.52 |
S-2-250 | 50 | 250 | 25.00 | 36.12 | 123.41 | 172.95 | 1.40 | 101.84 | 0.55 |
S-2-350 | 50 | 350 | 25.00 | 36.12 | 190.30 | 268.77 | 1.41 | 158.26 | 0.50 |
S-4-250 | 100 | 250 | 25.00 | 35.60 | 227.79 | 197.46 | 0.87 | 116.27 | 0.83 |
S-4-350 | 100 | 350 | 25.00 | 37.66 | 292.75 | 314.27 | 1.07 | 185.05 | 0.83 |
S-6-250 | 150 | 250 | 25.00 | 35.95 | 255.46 | 215.04 | 0.84 | 126.62 | 0.51 |
S-6-350 | 150 | 350 | 25.00 | 35.95 | 327.49 | 334.17 | 1.02 | 196.76 | 0.63 |
S-8-250 | 200 | 250 | 25.00 | 34.30 | 284.46 | 223.22 | 0.78 | 131.44 | 0.50 |
S-8-350 | 200 | 350 | 25.00 | 34.30 | 359.75 | 346.89 | 0.96 | 204.25 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Li, X.; Zhao, C.; Zhao, Y. Investigation on Shear Lugs Used in Equipment Foundations of Nuclear Engineering. Buildings 2025, 15, 2435. https://doi.org/10.3390/buildings15142435
Gong Y, Li X, Zhao C, Zhao Y. Investigation on Shear Lugs Used in Equipment Foundations of Nuclear Engineering. Buildings. 2025; 15(14):2435. https://doi.org/10.3390/buildings15142435
Chicago/Turabian StyleGong, Yuan, Xinbo Li, Chen Zhao, and Yanhua Zhao. 2025. "Investigation on Shear Lugs Used in Equipment Foundations of Nuclear Engineering" Buildings 15, no. 14: 2435. https://doi.org/10.3390/buildings15142435
APA StyleGong, Y., Li, X., Zhao, C., & Zhao, Y. (2025). Investigation on Shear Lugs Used in Equipment Foundations of Nuclear Engineering. Buildings, 15(14), 2435. https://doi.org/10.3390/buildings15142435