Generative Artificial Intelligence in Architecture, Engineering, Construction, and Operations: A Systematic Review
Abstract
1. Introduction
2. Systematic Literature Review Process
2.1. Search Terms: GenAI, RIBA, and NATSPEC Plans of Work and Government Soft Landing
2.2. Literature Identification
2.3. Literature Screening
2.4. Data Extraction
Classification of Articles | Scope of Existing Studies Related to GenAI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Review/Opinion | Empirical Investigation | Case Specific to Australia | Project Brief | Architectural Design | Structural Design | Building Information Modelling | Construction and Demolition | Operations | Urban Governance | ||
1 | Alahi et al. [21] | ✓ | ✓ | ✓ | |||||||
2 | Chen et al. [22] | ✓ | ✓ | ✓ | |||||||
3 | Cheng et al. [23] | ✓ | ✓ | ||||||||
4 | Cugurullo et al. [24] | ✓ | ✓ | ✓ | |||||||
5 | De Silva et al. [25] | ✓ | ✓ | ✓ | |||||||
6 | Dodampegama et al. [26] | ✓ | ✓ | ||||||||
7 | Drogemuller et al. [27] | ✓ | ✓ | ✓ | |||||||
8 | Du et al. [28] | ✓ | ✓ | ✓ | ✓ | ||||||
9 | Fan et al. [29] | ✓ | ✓ | ✓ | ✓ | ||||||
10 | Gerber [30] | ✓ | ✓ | ✓ | |||||||
11 | Haris et al. [4] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
12 | Le Nguyen et al. [31] | ✓ | ✓ | ||||||||
13 | Matharaarachchi et al. [32] | ✓ | ✓ | ✓ | |||||||
14 | Ohueri et al. [33] | ✓ | ✓ | ||||||||
15 | Oviedo-Trespalacios et al. [34] | ✓ | ✓ | ||||||||
16 | Perin [35] | ✓ | ✓ | ||||||||
17 | Qin et al. [36] | ✓ | ✓ | ||||||||
18 | Rafizadeh et al. [37] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
19 | Regona et al. [38] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
20 | Reja et al., [39] | ✓ | ✓ | ✓ | ✓ | ||||||
21 | Saad et al. [40] | ✓ | ✓ | ✓ | |||||||
22 | Shishehgarkhaneh et al. [41] | ✓ | ✓ | ✓ | |||||||
23 | Spennemann [42] | ✓ | ✓ | ||||||||
24 | Tan and Luhrs [43] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
25 | Wahba et al. [44] | ✓ | ✓ | ||||||||
26 | Wang et al. [45] | ✓ | ✓ | ✓ | |||||||
27 | Wang et al. [46] | ✓ | ✓ | ||||||||
28 | Yazdi et al. [47] | ✓ | ✓ | ✓ | ✓ |
3. Analysis and Discussion
3.1. Project Brief
3.2. Architectural Design
3.3. Structural Design
3.4. Building Information Modelling
3.5. Construction and Demolition
3.6. Operations
3.7. Urban Governance
4. Conclusions and Limitations
5. Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Bankins, S.; Ocampo, A.C.; Marrone, M.; Restubog, S.L.D.; Woo, S.E. A multilevel review of artificial intelligence in organisations: Implications for organisational behaviour research and practice. J. Organ. Behav. 2024, 45, 159–182. [Google Scholar] [CrossRef]
- Memon, S.A.; Sumanarathna, N.; Duodu, B.; Rowlinson, S. Business model innovation and its impact on the diffusion of innovation in construction business organizations. In Research Companion to Innovation in Construction; Elgar Companions to the Built Environment Series; Dulaimi, M., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2025; pp. 115–135. [Google Scholar] [CrossRef]
- Hallo, L.; Nguyen, T. Intuition and Analysis: Past, Present, and Future: And the Impact of Artificial Intelligence. In Developing the Intuitive Executive: Using Analytics and Intuition for Success; Auerbach Publications: Boca Raton, FL, USA, 2023. [Google Scholar] [CrossRef]
- Haris, M.; Saad, S.; Ammad, S.; Rasheed, K. AI in Fabrication and Construction. In AI in Material Science: Revolutionising Construction in the Age of Industry 4.0; CRC Press: Boca Raton, FL, USA, 2024; pp. 169–192. [Google Scholar] [CrossRef]
- Jelodar, M.B. Generative AI, Large Language Models, and ChatGPT in Construction Education, Training, and Practice. Buildings 2025, 15, 933. [Google Scholar] [CrossRef]
- Liao, W.; Lu, X.; Fei, Y.; Gu, Y.; Huang, Y. Generative AI design for building structures. Autom. Constr. 2024, 157, 105187. [Google Scholar] [CrossRef]
- Park, M.; Bong, G.; Kim, J.; Kim, G. Structural analysis and design using generative AI. Struct. Eng. Mech. 2024, 91, 393–401. [Google Scholar]
- Sogut, K. Structural behaviour of concrete deep beams reinforced with aluminium alloy bars. Appl. Sci. 2025, 15, 5453. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Reprint—Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Clark, J.; Glasziou, P.; Del Mar, C.; Bannach-Brown, A.; Stehlik, P.; Scott, A.M. A full systematic review was completed in 2 weeks using automation tools: A case study. J. Clin. Epidemiol. 2020, 121, 81–90. [Google Scholar] [CrossRef]
- NATSPEC. NATSPEC National BIM Guide; Construction Information Systems Limited: Sydney, Australia, 2022; Available online: https://bim.natspec.org/images/NATSPEC_Documents/NATSPEC_National_BIM_Guide_2022-10_Web.pdf (accessed on 24 June 2025).
- Agha-Hossein, M. Soft Landings Framework 2018: Six Phases for Better Buildings; BSRIA: Bracknell, UK, 2018; Volume 54. [Google Scholar]
- Hatami, M.; Franz, B.; Paneru, S.; Flood, I. Using Deep Learning Artificial Intelligence to Improve Foresight Method in the Optimisation of Planning and Scheduling of Construction Processes. Comput. Civ. Eng. 2022, 2021, 1171–1178. [Google Scholar]
- Liao, W.; Lu, X.; Huang, Y.; Zheng, Z.; Lin, Y. Automated structural design of shear wall residential buildings using generative adversarial network. Autom. Constr. 2021, 132, 103931. [Google Scholar] [CrossRef]
- Ghimire, P.; Pokharel, S.; Kim, K.; Barutha, P. Machine learning-based prediction models for budget forecast in capital construction. In Proceedings of the the 2nd International Conference on Construction, Energy, Environment & Sustainability, Funchal, Portugal, 27–30 June 2023. [Google Scholar]
- Philp, D.; Churcher, D.; Davidson, S. Government Soft Landings. 2019. Available online: https://ukbimframework.org/wp-content/uploads/2019/11/GSL_Report_PrintVersion.pdf (accessed on 24 June 2025).
- RIBA. RIBA Plan of Work 2020 Overview; RIBA: London, UK, 2020. [Google Scholar]
- OpenAI. Improving Language Understanding with Unsupervised Learning. 11 June 2018. Available online: https://openai.com/index/language-unsupervised/ (accessed on 24 June 2025).
- Forbes, C.; Greenwood, H.; Carter, M.; Clark, J. Automation of duplicate record detection for systematic reviews: Deduplicator. Syst. Rev. 2024, 13, 206. [Google Scholar] [CrossRef]
- Clarke, V.; Braun, V. Thematic analysis. J. Posit. Psychol. 2017, 12, 297–298. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hou, L.; Wu, S.; Zhang, G.; Zou, Y.; Moon, S.; Bhuiyan, M. Augmented reality, deep learning, and vision-language query system for construction worker safety. Autom. Constr. 2024, 157, 105158. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, X.; Zhao, H.; Gu, J.; Wang, X.; Zhao, J. Large Language Model for Low-Carbon Energy Transition: Roles and Challenges. In Proceedings of the 2024 4th Power System and Green Energy Conference, PSGEC, Shanghai, China, 22–24 August 2024. [Google Scholar]
- Cugurullo, F.; Caprotti, F.; Cook, M.; Karvonen, A.; M Guirk, P.; Marvin, S. The rise of AI urbanism in post-smart cities: A critical commentary on urban artificial intelligence. Urban Stud. 2024, 61, 1168–1182. [Google Scholar] [CrossRef]
- De Silva, R.; Zaslavsky, A.; Loke, S.W.; Huang, G.L.; Jayaraman, P.P.; Debnath, A. Fusing Images and Ontologies for Situation Representation in Knowledge Graphs. In Proceedings of the IEEE International Conference on Mobile Data Management, Brussels, Belgium, 24–27 June 2024. [Google Scholar]
- Dodampegama, S.; Hou, L.; Asadi, E.; Zhang, G.; Setunge, S. Revolutionizing construction and demolition waste sorting: Insights from artificial intelligence and robotic applications. Resour. Conserv. Recycl. 2024, 202, 107375. [Google Scholar] [CrossRef]
- Drogemuller, A.; Sakhaei, H.; Cunningham, A.; Yu, R.; Gu, N.; Thomas, B.H. Envisioning Paramersive Design: An Immersive Approach to Architectural Design and Review. In Proceedings of the 2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct, ISMAR-Adjunct 2023, Sydney, Australia, 16–20 October 2023. [Google Scholar]
- Du, S.; Hou, L.; Zhang, G.; Tan, Y.; Mao, P. BIM and IFC Data Readiness for AI Integration in the Construction Industry: A Review Approach. Buildings 2024, 14, 3305. [Google Scholar] [CrossRef]
- Fan, Z.; Yan, Z.; Wen, S. Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health. Sustainability 2023, 15, 13493. [Google Scholar] [CrossRef]
- Gerber, P. Is there a role for AI in the determination of construction disputes? In Construction Law in the 21st Century; Taylor & Francis: Abingdon, UK, 2024. [Google Scholar] [CrossRef]
- Le Nguyen, K.; Uddin, M.; Pham, T.M. Generative artificial intelligence and optimisation framework for concrete mixture design with low cost and embodied carbon dioxide. Constr. Build. Mater. 2024, 451, 138836. [Google Scholar] [CrossRef]
- Matharaarachchi, A.; Mendis, W.; Randunu, K.; De Silva, D.; Gamage, G.; Moraliyage, H.; Mills, N.; Jennings, A. Optimizing Generative AI Chatbots for Net-Zero Emissions Energy Internet-of-Things Infrastructure. Energies 2024, 17, 1935. [Google Scholar] [CrossRef]
- Ohueri, C.C.; Masrom, M.A.N.; Noguchi, M. Human-robot collaboration for building deconstruction in the context of construction 5.0. Autom. Constr. 2024, 167, 105723. [Google Scholar] [CrossRef]
- Oviedo-Trespalacios, O.; Peden, A.E.; Cole-Hunter, T.; Costantini, A.; Haghani, M.; Rod, J.E.; Kelly, S.; Torkamaan, H.; Tariq, A.; David Albert Newton, J.; et al. The risks of using ChatGPT to obtain common safety-related information and advice. Saf. Sci. 2023, 167, 106244. [Google Scholar] [CrossRef]
- Perin, G. Subscription Design. In Perspectives on Design and Digital Communication IV; Springer Series in Design and Innovation; Springer Nature: Berlin/Heidelberg, Germany, 2024; Volume 33, pp. 313–331. [Google Scholar] [CrossRef]
- Qin, S.Z.; Guan, H.; Liao, W.J.; Gu, Y.; Zheng, Z.; Xue, H.J.; Lu, X.Z. Intelligent design and optimization system for shear wall structures based on large language models and generative artificial intelligence. J. Build. Eng. 2024, 95, 109996. [Google Scholar] [CrossRef]
- Rafizadeh, H.; Teixeira, M.B.F.; Donovan, J.; Schork, T. Evolving Architectural Paradigms: A Study of Levels of Automation in Architecture. In Proceedings of the International Conference on Computer-Aided Architectural Design Research in Asia, Singapore, 20–26 April 2024. [Google Scholar]
- Regona, M.; Yigitcanlar, T.; Hon, C.; Teo, M. Artificial intelligence and sustainable development goals: Systematic literature review of the construction industry. Sustain. Cities Soc. 2024, 108, 105499. [Google Scholar] [CrossRef]
- Reja, V.K.; Sindhu Pradeep, M.; Varghese, K. Digital Twins for Construction Project Management (DT-CPM): Applications and Future Research Directions. J. Inst. Eng. Ser. A 2024, 105, 793–807. [Google Scholar] [CrossRef]
- Saad, S.; Rasheed, K.; Ammad, S.; Khan, M.W.; Zaland, A. Is AI the Architect of Tomorrow’s Materials in the Age of Industry 4.0? In AI in Material Science: Revolutionising Construction in the Age of Industry 4.0; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar] [CrossRef]
- Shishehgarkhaneh, M.B.; Moehler, R.C.; Fang, Y.; Hijazi, A.A.; Aboutorab, H. Transformer-Based Named Entity Recognition in Construction Supply Chain Risk Management in Australia. IEEE Access 2024, 12, 41829–41851. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. ChatGPT and the Generation of Digitally Born “Knowledge”: How Does a Generative AI Language Model Interpret Cultural Heritage Values? Knowledge 2023, 3, 480–512. [Google Scholar] [CrossRef]
- Tan, L.; Luhrs, M. Using Generative AI Midjourney to enhance divergent and convergent thinking in an architect’s creative design process. Des. J. 2024, 27, 677–699. [Google Scholar] [CrossRef]
- Wahba, N.; Rismanchi, B.; Pu, Y.; Aye, L. Nonlinearity in thermal comfort-based control systems: A systematic review [Review]. Energy Build. 2025, 327, 115060. [Google Scholar] [CrossRef]
- Wang, R.; Li, C.; Li, X.; Deng, R.; Dong, Z. GenAI4Sustainability: GPT and Its Potentials for Achieving UN’s Sustainable Development Goals. IEEE/CAA J. Autom. Sin. 2023, 10, 2179–2182. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Wang, X.; Li, S.; Zhao, H.; Huang, B.; Cao, Y.; Saafi, M. Multi-objective optimization of engineered cementitious composite based on machine learning and generative adversarial network. J. Build. Eng. 2024, 96, 110471. [Google Scholar] [CrossRef]
- Yazdi, M.; Zarei, E.; Adumene, S.; Beheshti, A. Navigating the Power of Artificial Intelligence in Risk Management: A Comparative Analysis. Safety 2024, 10, 42. [Google Scholar] [CrossRef]
- Tatiya, A.; Zhao, D.; Syal, M.; Berghorn, G.H.; LaMore, R. Cost prediction model for building deconstruction in urban areas. J. Clean. Prod. 2018, 195, 1572–1580. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Yu, P.; Yang, L. A review of artificial intelligence in enhancing architectural design efficiency. Appl. Sci. 2025, 15, 1476. [Google Scholar] [CrossRef]
- Wang, B.; Lu, W.; Zhang, Y. A graph-enabled parametric modelling approach for façade layout generative design. J. Build. Eng. 2025, 105, 112481. [Google Scholar] [CrossRef]
- Marrone, R.; Cropley, D.; Medeiros, K. How Does Narrow AI Impact Human Creativity? Creat. Res. J. 2024, 1–11. [Google Scholar] [CrossRef]
- Mohamed, M.A.H.; Al-Mhdawi, M.K.S.; Ojiako, U.; Dacre, N.; Qazi, A.; Rahimian, F. Generative AI in construction risk management: A bibliometric analysis of the associated benefits and risks. Urban. Sustain. Soc. 2025, 2, 196–228. [Google Scholar] [CrossRef]
- West, J.; Siddhpura, M.; Evangelista, A.; Haddad, A. Improving Equipment Maintenance—Switching from Corrective to Preventative Maintenance Strategies. Buildings 2024, 14, 3581. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Will Artificial Intelligence Affect How Cultural Heritage Will Be Managed in the Future? Responses Generated by Four GenAI Models. Heritage 2024, 7, 1453–1471. [Google Scholar] [CrossRef]
- Zhang, R.; Du, H.; Liu, Y.; Niyato, D.; Kang, J.; Xiong, Z.; Jamalipour, A.; Kim, D.I. Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission. IEEE J. Sel. Areas Commun. 2024, 42, 3581–3596. [Google Scholar] [CrossRef]
- Wu, A.N.; Stouffs, R.; Biljecki, F. Generative Adversarial Networks in the built environment: A comprehensive review of the application of GANs across data types and scales. Build. Environ. 2022, 223, 109477. [Google Scholar] [CrossRef]
- Yang, K.; Sunindijo, R.Y.; Wang, C.C. Identifying leadership competencies for Construction 4.0. Buildings 2022, 12, 1434. [Google Scholar] [CrossRef]
Pre-Design | Design | Construction | Handover | In Use | End of Life | |||||
---|---|---|---|---|---|---|---|---|---|---|
AECO | Architecture and Engineering | Construction | NA | |||||||
Operations | ||||||||||
RIBA (UK) | 0 Strategic Definition | 1 Preparation and Brief | 2 Concept Design | NA | 3 Developed Design | 4 Technical Design | 5 Construction | 6 Handover and Closeout | 7 In Use | NA |
NATSPEC (Australia) | NA | Establishment | Concept Design | Schematic Design | Design Development | Contract Documentation | Construction | NA | Facility Management | NA |
Government Soft Landing (UK) | Initial Business Case | Final Business Case | NA | NA | NA | Design | Construction | Pre-Handover | Operational Stage | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memon, S.A.; Shehata, W.; Rowlinson, S.; Sunindijo, R.Y. Generative Artificial Intelligence in Architecture, Engineering, Construction, and Operations: A Systematic Review. Buildings 2025, 15, 2270. https://doi.org/10.3390/buildings15132270
Memon SA, Shehata W, Rowlinson S, Sunindijo RY. Generative Artificial Intelligence in Architecture, Engineering, Construction, and Operations: A Systematic Review. Buildings. 2025; 15(13):2270. https://doi.org/10.3390/buildings15132270
Chicago/Turabian StyleMemon, Shoeb Ahmed, Waled Shehata, Steve Rowlinson, and Riza Yosia Sunindijo. 2025. "Generative Artificial Intelligence in Architecture, Engineering, Construction, and Operations: A Systematic Review" Buildings 15, no. 13: 2270. https://doi.org/10.3390/buildings15132270
APA StyleMemon, S. A., Shehata, W., Rowlinson, S., & Sunindijo, R. Y. (2025). Generative Artificial Intelligence in Architecture, Engineering, Construction, and Operations: A Systematic Review. Buildings, 15(13), 2270. https://doi.org/10.3390/buildings15132270