Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Material Selection and Composition
- 62% Portland cement (CEM II/A-P 42.5 N);
- 28–18% sand;
- 10–20% olive husk (by weight).
2.1.2. Pre-Treatment and Fabrication
- Boiling for 4 h in a 0.1 OH-to-water ratio;
- Drying in an air oven for 48 h at 60 °C; as presented in Figure 3 below.
- Pre-soaking the OH in water prior to mixing to ensure accurate cement/water proportions.
- -
- Cylindrical samples (110 × 20 mm): Used for thermal conductivity measurements following ASTM D7984. And an MBV test following the NORDEST project protocol.
- -
- Prismatic samples (160 × 40 × 40 mm): Used for bulk and true density determination (ASTM D4892) and mechanical performance tests (compressive and flexural strength) in accordance with BS EN 196-1. As presented in Figure 4 below.
- BLC0: Control sample without olive husk;
- BLC10: Bio-concrete with 10% olive husk;
- BLC20: Bio-concrete with 20% olive husk.
2.2. Methods
2.2.1. Bulk, True Density and Porosity
2.2.2. Thermal Properties, Thermal Time Lag, and Energy Savings Assessment
2.2.3. Moisture Buffering Capacity
2.2.4. Mechanical Properties: Compressive and Flexural Strength
- Flexural strength was determined using a three-point bending test.
- The fractured halves from the bending test were subsequently used for compressive strength evaluation.
2.2.5. X-Ray Diffraction (XRD) and Microstructural Analysis (SEM)
3. Results and Discussion
3.1. Density and Porosity
3.2. Thermal Properties
3.2.1. Thermal Conductivity, Specific Heat Capacity, Thermal Diffusivity, Thermal Effusivity, and Thermal Resistance
3.2.2. Thermal Time Lag and Energy Savings
3.3. Moisture Buffering Capacity (MBV)
3.4. Mechanical Properties
3.5. X-Ray Diffraction (XRD)
3.6. Microstructural Analysis (SEM)
4. Conclusions
- -
- The inclusion of OH significantly altered the internal structure of the concrete matrix. At 20% substitution, bulk density decreased from 2090 to 1486.8 kg/m3 (–29%), while total porosity increased, reflecting the porous and low-density nature of the bio-aggregate. This density reduction directly contributes to weight savings in structural applications and aligns with the classification of lightweight concrete, while increased porosity facilitates enhanced hygric and thermal interaction with the environment.
- -
- Thermal conductivity exhibited a marked reduction from 1.454 to 0.405 W/(m·K) with 20% OH addition—a 72% decrease. This was accompanied by an increase in specific heat capacity and a significant decrease in thermal diffusivity (from 4.83 × 10−7 to 2.73 × 10−7 m2/s). These results underscore the improved thermal insulation potential of OH-based concretes and demonstrate their capacity to delay and buffer temperature transmission through building components.
- -
- For a standardized wall thickness of 0.15 m, the time lag increased from 1.31 to 2.32 h with 20% OH incorporation, enhancing the thermal inertia of the concrete by 77%. This improvement corresponds to a notable increase in thermal resistance (from 0.103 to 0.370 m2·K/W) and a 72% reduction in the U-value. Such enhancement in thermal delay and resistance supports the suitability of OH-based concrete in passive building strategies, especially in climates with large diurnal thermal variations.
- -
- Moisture Buffer Value (MBV) measurements confirmed a transition from “Limited” (0.21 g/(m2·%RH)) in the control to “Excellent” (2.18 g/(m2·%RH)) classification in BLC20. This dramatic improvement suggests strong potential for regulating indoor humidity, improving occupant comfort, and reducing reliance on active HVAC systems.
- -
- Despite increased porosity, mechanical strength remained within acceptable limits for non-structural applications. The compressive strength of BLC20 reached 11.68 MPa, with a flexural strength of 3.58 MPa. The fibrous structure of OH contributed to improved ductility and crack-bridging effects, partially compensating for strength losses due to increased porosity. These results reflect a favorable balance between thermal/hygric benefits and mechanical integrity.
- -
- SEM images and XRD analysis revealed a denser matrix with improved particle–matrix adhesion in the OH-modified concretes. Thermal treatment of OH not only removed residual oils, enhancing adhesion, but also contributed to a much more maintained C–S–H formation and reduced portlandite content. This suggests an additional chemical benefit from OH incorporation, promoting long-term microstructural stability.
- -
- Based on RILEM recommendations, BLC10 and BLC20 both fall under Class II of lightweight concretes for non-loadbearing and insulating applications. This classification confirms the practical viability of these formulations in sustainable building contexts, especially where thermal and hygric regulation is prioritized.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fennell, P.S.; Davis, S.J.; Mohammed, A. Decarbonizing cement production. Joule 2021, 5, 1305–1311. [Google Scholar] [CrossRef]
- Farhadi, F. Carbon Footprint in Construction; Ultimate Guide in 2024. Available online: https://neuroject.com/carbon-footprint-in-construction/ (accessed on 5 January 2024).
- 2021 Global Status Report 2021 Global Status Report. 2021. Available online: https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf (accessed on 3 March 2025).
- Available online: https://www.specifyconcrete.org/blog/what-exactly-is-lightweight-concrete (accessed on 3 March 2025).
- Elango, K.S.; Sanfeer, J.; Gopi, R.; Shalini, A.; Saravanakumar, R.; Prabhu, L. Properties of light weight concrete—A state of the art review Materials Today: Proceedings Properties of light weight concrete—A state of the art review. Mater. Today Proc. 2021, 46, 4059–4062. [Google Scholar] [CrossRef]
- Kubba, S. Green Building Materials and Products. In Handbook of Green Building Design and Construction; LEED, BREEAM, and Green Globes; Butterworth-Heinemann: Oxford, UK, 2017; pp. 257–351. [Google Scholar] [CrossRef]
- Alharthai, M.; Ozkilic, Y.O.; Karalar, M.; Mydin, M.A.O.; Ozdoner, N.; Celik, A.I. Performance of aerated lightweighted concrete using aluminum lathe and pumice under elevated temperature. Steel Compos. Struct. 2024, 51, 271–288. [Google Scholar] [CrossRef]
- Bumanis, G.; Vitola, L.; Pundiene, I.; Sinka, M. Gypsum, Geopolymers, and Starc—Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment. Sustainability 2020, 12, 5666. [Google Scholar] [CrossRef]
- Lelievre, D.; Colinart, T.; Glouannec, P. Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses. Energy Build. 2014, 84, 617–627. [Google Scholar] [CrossRef]
- Associada, P. Moisture Buffering Capacity of Earth Mortar Plasters and Hemp Concrete Effect of Temperature and Thickness. Master’s Thesis, Universidade NOVA de Lisboa, Lisboa, Portugal, 2015. [Google Scholar]
- Kingsley, E.; Calabria-holley, J.; Paine, K. Industrial Crops & Products Physico-mechanical and morphological behavior of hydrothermally treated plant fibers in cementitious composites. Ind. Crops Prod. 2023, 200, 116832. [Google Scholar] [CrossRef]
- Picandet, V. Characterization of Plant-Based Aggregates. In Bio-Aggregate-Based Building Materials; Amziane, S., Arnaud, L., Challamel, N., Eds.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Lagouin, M.; Laborel-Préneron, A.; Magniont, C.; Geoffroy, S.; Aubert, J.E. Effects of organic admixtures on the fresh and mechanical properties of earth-based plasters. J. Build. Eng. 2021, 41, 102379. [Google Scholar] [CrossRef]
- Benmahiddine, F.; Cherif, R.; Bennai, F.; Belarbi, R.; Tahakourt, A.; Abahri, K. Effect of flax shives content and size on the hygrothermal and mechanical properties of flax concrete. Constr. Build. Mater. 2020, 262, 120077. [Google Scholar] [CrossRef]
- Labat, M.; Magniont, C.; Oudhof, N.; Aubert, J.E. From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Build. Environ. 2016, 97, 69–81. [Google Scholar] [CrossRef]
- Palumbo, M.; Lacasta, A.M.; Holcroft, N.; Shea, A.; Walker, P. Determination of hygrothermal parameters of experimental and commercial bio-based insulation materials. Constr. Build. Mater. 2016, 124, 269–275. [Google Scholar] [CrossRef]
- Vega, P.; Juan, A.; Ignacio Guerra, M.; Morán, J.M.; Aguado, P.J.; Llamas, B. Mechanical characterisation of traditional adobes from the north of Spain. Constr. Build. Mater. 2011, 25, 3020–3023. [Google Scholar] [CrossRef]
- Braiek, A.; Karkri, M.; Adili, A.; Ibos, L.; Ben Nasrallah, S. Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy Build. 2017, 140, 268–279. [Google Scholar] [CrossRef]
- Bellel, N.; Boufendi, T. Characterization of biosourced materials cement- date palm fibers. J. New Technol. Mater. 2020, 10, 26–30. [Google Scholar] [CrossRef]
- Chikhi, M. Young’s modulus and thermophysical performances of bio-sourced materials based on date palm fibers. Energy Build. 2016, 129, 589–597. [Google Scholar] [CrossRef]
- Rasoul, Z.S.; Juoi, J.M.; Mohamad, M.; Fawzi, N.M. Date palm fiber(DPF) and its composites: A comprehensive survey. Int. J. Adv. Sci. Technol. 2020, 29, 1776–1788. [Google Scholar]
- Ali, A.; Dadi, A.; Ban-Nah, A. Measurement of the Thermal Conductivities of Clay Materials Stabilized by a Mixed Binder. Phys. Sci. Int. J. 2023, 27, 1–8. [Google Scholar] [CrossRef]
- Cintura, E.; Nunes, L.; Faria, P. Characterization of agro-wastes to be used as aggregates for eco-efficient insulation boards. In Proceedings of the International Conference Construction, Energy Environment & Sustainability, Coimbra, Portugal, 12–15 October 2021. [Google Scholar]
- Ali, A.; Benelmir, R.; Tanguier, J.-L.; Saleh, A. Caractéristiques mécaniques de l’argile de Ndjamena stabilisée par la gomme arabique. Afrique Sci. 2017, 13, 330–341. [Google Scholar]
- Wang, S.; Li, H.; Zou, S.; Zhang, G. Experimental research on a feasible rice husk/geopolymer foam building insulation material. Energy Build. 2020, 226, 110358. [Google Scholar] [CrossRef]
- Heniegal, A.M.; Ramadan, M.A.; Naguib, A.; Agwa, I.S. Study on properties of clay brick incorporating sludge of water treatment plant and agriculture waste. Case Stud. Constr. Mater. 2020, 13, e00397. [Google Scholar] [CrossRef]
- RILEM. Functional classification of lightweight concretes. Mater. Struct. 1978, 11, 281–282. [Google Scholar]
- Collet, F.; Pretot, S. Experimental investigation of moisture buffering capacity of sprayed hemp concrete. Constr. Build. Mater. 2012, 36, 58–65. [Google Scholar] [CrossRef]
- McGregor, F.; Heath, A.; Fodde, E.; Shea, A. Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build. Environ. 2014, 75, 11–18. [Google Scholar] [CrossRef]
- Roels, S.; Carmeliet, J. Water vapour permeability and sorption isotherm of coated gypsum board. In Proceedings of the 7th Sumposium on Building Physics in the Nordic Countries, Reykjavik, Iceland, 13–15 June 2014. [Google Scholar]
- Chennouf, N.; Agoudjil, B.; Alioua, T.; Boudenne, A.; Benzarti, K. Experimental investigation on hygrothermal performance of a bio-based wall made of cement mortar filled with date palm fibers. Energy Build. 2019, 202, 109413. [Google Scholar] [CrossRef]
- Bakkour, A.; Ouldboukhitine, S.E.; Biwole, P.; Amziane, S. A review of multi-scale hygrothermal characteristics of plant-based building materials. Constr. Build. Mater. 2024, 412, 134850. [Google Scholar] [CrossRef]
- Medouni-Haroune, L.; Zaidi, F.; Medouni-Adrar, S.; Kecha, M. Olive Pomace: From an Olive Mill Waste to a Resource, an Overview of the New Treatments. J. Crit. Rev. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Edition, E. International Olive Council Newsletter N°187. 2023. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2023/12/NEWSLETTER-187-ENG.pdf (accessed on 5 January 2024).
- Stones, O.; Francisco, J.; Cuevas, M.; Feng, C.; Mateos, P.Á.; Torres, M. Energetic Valorisation of Olive Biomass: Olive-Tree pruning, olive stones and pomaces. Processes 2020, 8, 511. [Google Scholar] [CrossRef]
- Cintura, E.; Nunes, L.; Esteves, B.; Faria, P. Agro-industrial wastes as building insulation materials: A review and challenges for Euro-Mediterranean countries. Ind. Crops Prod. 2021, 171, 113833. [Google Scholar] [CrossRef]
- Enaime, G.; Dababat, S.; Wichern, M.; Lübken, M. Olive mill wastes: From wastes to resources. Environ. Sci. Pollut. Res. 2024, 31, 20853–20880. [Google Scholar] [CrossRef]
- Moreno-maroto, M.; Uceda-rodríguez, M.; Cobo-ceacero, C.J.; Hoces, D.; Angeles, M.; Martínez, C.; Ana, B.L. Recycling of ‘alperujo’ (olive pomace) as a key component in the sintering of lightweight aggregates. J. Clean. Prod. 2019, 239, 118041. [Google Scholar] [CrossRef]
- Sansoucy, R. Problèmes généraux de l’utilisation des sous-produits agro-industriels en alimentation animale dans la région méditerranéenne. Option Méditerranéenne Séries Séminaires 1991, 16, 75–79. [Google Scholar]
- Kuruc, M.; Štefunková, Z. Properties of Olive Stones with a View to Their use as Lightweight Aggregate in Construction Mortars. Slovak J. Civ. Eng. 2024, 32, 52–57. [Google Scholar] [CrossRef]
- Ferreiro-Cabello, J.; Fraile-Garcia, E.; Pernia-Espinoza, A.; Martinez-de-Pison, F.J. Strength Performance of Different Mortars Doped Using Olive Stones as Lightweight Aggregate. Buildings 2022, 12, 1668. [Google Scholar] [CrossRef]
- Vicente-Navarro, A.S.; Ferreiro-Cabello, J.; Santos-Ortega, J.L.; Fraile-Garc, E. Methodology for Sustainability Assessment for the Use of Ground Olive Stones in Mortar Bricks for Facades. Appl. Sci. 2024, 14, 3388. [Google Scholar] [CrossRef]
- La Rubia-García, M.D.; Yebra-Rodríguez, Á.; Eliche-Quesada, D.; Corpas-Iglesias, F.A.; López-Galindo, A. Assessment of olive mill solid residue (pomace) as an additive in lightweight brick production. Constr. Build. Mater. 2012, 36, 495–500. [Google Scholar] [CrossRef]
- Christoforou, E.A.; Fokaides, P.A. Thermochemical Properties of Pellets Derived from Agro-residues and the Wood Industry. Waste Biomass Valorization 2017, 8, 1325–1330. [Google Scholar] [CrossRef]
- De La Casa, J.A.; Castro, E. Recycling of washed olive pomace ash for fired clay brick manufacturing. Constr. Build. Mater. 2014, 61, 320–326. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Felipe-Sesé, M.A.; Infantes-Molina, A. Olive Stone Ash as Secondary Raw Material for Fired Clay Bricks. Adv. Mater. Sci. Eng. 2016, 2016, 8219437. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Nyarko, M.H.; Zeyad, A.M.; Harazin, S.Z. Al Properties and durability of concrete with olive waste ash as a partial cement replacement Properties and durability of concrete with olive waste ash as a partial cement replacement. Adv. Concr. Constr. 2021, 11, 59–71. [Google Scholar] [CrossRef]
- El, M.; Merroun, O.; Maalouf, C.; Bogard, F. Enhancing mechanical and thermal properties of sustainable cement mortar through incorporation of olive solid waste aggregates Materials Today: Proceedings Enhancing mechanical and thermal properties of sustainable cement mortar through incorporation of olive solid waste aggregates. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Merino, R.; Rodríguez, G.; Martínez, F.; Astorqui, C.; Santa, J.; Rodríguez, J.G.; Martínez, F.F. Viability of using olive stones as lightweight aggregate in construction mortars Viabilidad del uso de huesos de aceituna como agregado ligero en morteros para la construcción. Rev. Construcción 2017, 16, 431–438. [Google Scholar] [CrossRef]
- Lila, K.; Belaadi, S.; Solimando, R.; Ralida, F. Valorisation of organic waste: Use of olive kernels and pomace for cement manufacture. J. Clean. Prod. 2020, 277, 123703. [Google Scholar] [CrossRef]
- Cheboub, T.; Senhadji, Y.; Khelafi, H.; Escadeillas, G. Investigation of the engineering properties of environmentally-friendly self-compacting lightweight mortar containing olive kernel shells as aggregate. J. Clean. Prod. 2019, 249, 119406. [Google Scholar] [CrossRef]
- Barclay, M.; Holcroft, N.; Shea, A.D. Methods to determine whole building hygrothermal performance of hemp-lime buildings. Build. Environ. 2014, 80, 204–212. [Google Scholar] [CrossRef]
- Almabrok, M.H.; Mclaughlan, R.G.; Vessalas, K.; Thomas, P. Effect of oil contaminated aggregates on cement hydration American Journal of Engineering Research (AJER) Effect of oil contaminated aggregates on cement hydration. Am. J. Eng. Res. 2019, 8, 81–89. [Google Scholar]
- Kazemi, F.; Shafighfard, T.; Yoo, D. Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review. Arch. Comput. Methods Eng. 2024, 31, 2049–2078. [Google Scholar] [CrossRef]
- Soudani, L.; Fabbri, A.; Mcgregor, F. Laboratory investigation of hygrothermal monitoring of hemp- concrete walls. RILEM Tech. Lett. 2017, 2, 20–26. [Google Scholar] [CrossRef]
- EL Boukhari, M.; Merroun, O.; Maalouf, C.; Bogard, F.; Kissi, B. Mechanical performance of cement mortar with olive pomace aggregates and olive mill wastewater: An experimental investigation. Cogent Eng. 2023, 10, 2212522. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P.; Martellotta, F. Performance characterization of broad band sustainable sound absorbers made of almond skins. Materials 2020, 13, 5474. [Google Scholar] [CrossRef]
- ASTM D4892-14; Standard Test Method for Density of Solid Pitch (Helium Pycnometer Method). ASTM International: West Conshohocken, PA, USA, 2014.
- ISO 9869-1:2014; Thermal Insulation—Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance—Part 1: Heat Flow Meter Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- Rode, C.; Peuhkuri, R.H.; Hansen, K.K.; Time, B.; Svennberg, K.; Arfvidsson, J.; Ojanen, T. NORDTEST Project on Moisture Buffer Value of Materials. In AIVC 26th Conference: Ventilation in Relation to the Energy Performance of Buildings; Air Infiltration and Ventilation; INIVE eeig: Amsterdam, The Netherlands, 2005; pp. 47–52. [Google Scholar]
- BS EN 196-1; Methods of Testing Cement. Determination of Strength. British Standards Institution (BSI): London, UK, 2016.
- Alkheder, S.; Obaidat, Y.T.; Taamneh, M. Effect of olive waste (Husk) on behavior of cement paste. Case Stud. Constr. Mater. 2016, 5, 19–25. [Google Scholar] [CrossRef]
- El, M.; Merroun, O.; Maalouf, C.; Bogard, F. Exploring the impact of partial sand replacement with olive waste on mechanical and thermal properties of sustainable concrete. Clean. Mater. 2023, 9, 100202. [Google Scholar] [CrossRef]
- El, M.; Merroun, O.; Maalouf, C.; Bogard, F.; Kissi, B. Experimental investigation on the mechanical strength and thermal conductivity of concrete lightened by olive mill solid waste Materials Today: Proceedings Experimental investigation on the mechanical strength and thermal conductivity of concrete lighten. Mater. Today Proc. 2023, in press. [CrossRef]
- Benaniba, S.; Driss, Z.; Djendel, M.; Raouache, E.; Boubaaya, R. Thermo-mechanical characterization of a bio-composite mortar reinforced with date palm fiber. J. Eng. Fibers Fabr. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Latapie, S.R.; Sabathier, V. Bio-based building materials: A prediction of insulating properties for a wide range of agricultural by-products Bio-based building materials: A prediction of insulating properties for a wide range of agricultural by-products. J. Build. Eng. 2024, 86, 108867. [Google Scholar] [CrossRef]
- Nasr, Y.; El Zakhem, H.; Hamami, A.E.A.; El Bachawati, M.; Belarbi, R. Comprehensive Review of Innovative Materials for Sustainable Buildings’ Energy Performance. Energies 2025, 16, 7440. [Google Scholar] [CrossRef]
- Brouard, Y.; Belayachi, N.; Hoxha, D.; Ranganathan, N.; Méo, S. Mechanical and hygrothermal behavior of clay—Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation. Constr. Build. Mater. 2018, 161, 196–207. [Google Scholar] [CrossRef]
- Vicente-navarro, A.S.; Mend, M.; Santos-ortega, J.L. Alternative Use of the Waste from Ground Olive Stones in Doping Mortar Bricks for Sustainable Façades. Buildings 2023, 13, 2992. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P.; Petrella, A.; Boghetich, A.; Casavola, C.; Pappalettera, G. Hygrothermal properties of clayey plasters with olive fibers. Constr. Build. Mater. 2018, 158, 24–32. [Google Scholar] [CrossRef]
- Barreca, F.; Fichera, C.R. Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy Build. 2013, 62, 507–513. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B.; Yousefi Oderji, S.; Mohsan, M. Development of a new bio-composite for building insulation and structural purpose using corn stalk and magnesium phosphate cement. Energy Build. 2018, 173, 719–733. [Google Scholar] [CrossRef]
- Ratiarisoa, R.V.; Magniont, C.; Ginestet, S.; Oms, C.; Escadeillas, G. Assessment of distilled lavender stalks as bioaggregate for building materials: Hygrothermal properties, mechanical performance and chemical interactions with mineral pozzolanic binder. Constr. Build. Mater. 2016, 124, 801–815. [Google Scholar] [CrossRef]
- Lamrani, M.; Laaroussi, N.; Khabbazi, A.; Khalfaoui, M.; Garoum, M.; Feiz, A. Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Stud. Constr. Mater. 2017, 7, 294–304. [Google Scholar] [CrossRef]
- Cagnon, H.; Aubert, J.E.; Coutand, M.; Magniont, C. Hygrothermal properties of earth bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- ASTM C90-22a; ASTM International Standard Specification for Loadbearing Concrete Masonry Units. ASTM: West Conshohocken, PA, USA, 2022.
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Langlet, T. Effect of moisture and temperature on thermal properties of three bio-based materials. Constr. Build. Mater. 2016, 111, 119–127. [Google Scholar] [CrossRef]
- Swiety, D. Comprehensive Evaluation of Thermal Performance and Time-Lag in Residential Apartments: A Numerical Simulation Study on Phase Change Material with Mycelium Integration in Amman. In Proceedings of the EnSci Paris 2024–International Conference on Engineering & Sciences, Paris, France, 12–13 January 2024; Proceedings of Scientific and Technical Research Association (STRA). pp. 2–3. [Google Scholar]
- Necib, H.; Belatrache, D.; Goutar, H.; Sahraoui, N. Experimental study of thermal conductivity of concrete with biosourced material for saved energy. Ann. West Univ. Timisoara. Phys. Ser. 2022, 64, 158–171. [Google Scholar] [CrossRef]
- Lee, Y.H.; Chua, N.; Amran, M.; Lee, Y.Y.; Kueh, A.H.; Fediuk, R.; Vatin, N.; Vasilev, Y. Thermal Performance of Structural Lightweight Concrete Composites for Potential Energy Saving. Crystals 2021, 11, 461. [Google Scholar] [CrossRef]
- Rode, C.; Peuhkuri, R.; Svennberg, K.; Time, B.; Svennberg, K.; Ojanen, T. Moisture Buffer Value of Building Materials. J. ASTM Int. 2006, 4, 1–15. [Google Scholar] [CrossRef]
- Maaroufi, M.; Belarbi, R.; Abahri, K.; Benmahiddine, F. Full characterization of hygrothermal, mechanical and morphological properties of a recycled expanded polystyrene-based mortar. Constr. Build. Mater. 2021, 301, 124310. [Google Scholar] [CrossRef]
- Thomas, N.L.; Birchall, J.D. The retarding action of sugars on cement hydration. Cem. Concr. Res. 1983, 13, 830–842. [Google Scholar] [CrossRef]
- Swathi, V.; Asadi, S.S. Structural performance of hybrid fibres based concrete: Mechanical, durability and microstructural properties. Sustain. Futur. 2022, 4, 100094. [Google Scholar] [CrossRef]
- Doumongue, B.; Limam, K.; Dany, A.Y.; Mastouri, H.; Bahi, H.; El Bouazouli, A. Analysis of rice husk concrete samples observed by scanning electron microscopy. Mater. Today Proc. 2023, 72 Pt 7, 3850–3856. [Google Scholar] [CrossRef]
- Faso, B. Experimental Investigations on the Physical and Mechanical Properties of a Lightweight Concrete Using Oil Palm Shell as Coarse Aggregate. J. Mater. Sci. Eng. A 2017, 7, 157–168. [Google Scholar] [CrossRef]
- Vo, L.T.T.; Navard, P. Treatments of plant biomass for cementitious building materials—A review. Constr. Build. Mater. 2016, 121, 161–176. [Google Scholar] [CrossRef]
Bulk Density ρbulk (kg/m3) | 598.04 |
True density ρtrue(kg/m3) | 1301.7 |
Total porosity (%) | 54.1 |
Thermal conductivity λ W/(m K) | 0.0812 |
Fiber content (%) | 42.26% |
Water absorption WꚘ (%) | 54.46 |
Oil residues (%) | 1–1.6 |
Ash (%) | 0.4 |
Elements | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | MnO |
---|---|---|---|---|---|---|---|
wt. % | 66.7 | 23.1 | 5.6 | 0.3 | 3.2 | 0.8 | 0.3 |
Samples | Cement (g) | Sand (g) | Olive Husk (OH) (g) | W/B |
---|---|---|---|---|
BLC0 | 620 | 380 | - | 0.45 |
BLC10 | 620 | 280 | 100 | 0.45 |
BLC20 | 620 | 180 | 200 | 0.45 |
Samples ID | Bulk Density (kg/m3) | True Density (kg/m3) | Total Porosity (%) | Reference |
---|---|---|---|---|
BCL0 | 2090 | 2634.600 | 20.7 | This work |
BCL10 | 1653.24 | 2421.840 | 31.7 | This work |
BCL20 | 1486.8 | 2368.350 | 37.2 | This work |
Olive pomace 10–15% | 1500–1380 | - | 38–41 | [53] |
Olive bone-based concrete OP-C10/15% | 2013.53/1933.61 | - | - | [60] |
Vegetable concrete | 1060 | - | - | [32] |
C12/C25 | 2200 | - | - | [32] |
Samples | Bulk Density (kg/m3) | Thermal Conductivity λ (W/m·K) | Thermal Resistivity R-0.15 m | Specific Heat Capacity Cp (J/kg·K) | Thermal Diffusivity α (m2/s) | Thermal Effusivity E (J/m2·s0.5·K) |
---|---|---|---|---|---|---|
BLC0 | 2090 | 1.454 ± 0.025 | 0.103 | 1439.44 | 4.83 × 10−7 | 2091.47 |
BLC10 | 1653.24 | 0.669 ± 0.009 | 0.224 | 1198.55 | 3.38 × 10−7 | 1151.35 |
BLC20 | 1486.8 | 0.405 ± 0.013 | 0.370 | 997.11 | 2.73 × 10−7 | 774.86 |
Samples ID | Total Porosity n (-) | MBV After 10 Cycles of 24 h (g/m2 %RH) | NORDTEST Classification [57] |
---|---|---|---|
BLC0 | 0.207 | 0.21 | Limited |
BLC10 | 0.317 | 1.22 | Good |
BLC20 | 0.372 | 2.18 | Excellent |
Types of Concrete | ||||
---|---|---|---|---|
*LWC (Rilem [80]) | BLC10 | BLC20 | ||
classification | *Class II | *Class III | Class II | Class II |
Compressive strength (Mpa) | >3.5 | >0.5 | 15.21 ± 3.07 | 11.68 ± 1.63 |
λ (W/m·K) | <0.75 | <0.3 | 0.669 ± 0.015 | 0.405 ± 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhadad, H.; Bellel, N.; Bras, A. Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties. Buildings 2025, 15, 1950. https://doi.org/10.3390/buildings15111950
Belhadad H, Bellel N, Bras A. Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties. Buildings. 2025; 15(11):1950. https://doi.org/10.3390/buildings15111950
Chicago/Turabian StyleBelhadad, Halima, Nadir Bellel, and Ana Bras. 2025. "Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties" Buildings 15, no. 11: 1950. https://doi.org/10.3390/buildings15111950
APA StyleBelhadad, H., Bellel, N., & Bras, A. (2025). Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties. Buildings, 15(11), 1950. https://doi.org/10.3390/buildings15111950