Quantitative Vulnerability Assessment of Buildings Exposed to Landslides Under Extreme Rainfall Scenarios
Abstract
:1. Introduction
2. Study Area
2.1. General Setting
2.2. Landslide Details
3. Data and Methods
3.1. Modeling Framework
3.2. Extreme Rainfall Scenario
3.3. UAV Remote Sensing
3.4. Landslide Stability Analysis
3.4.1. Landslide Failure Range Analysis Based on ABAQUS
3.4.2. Landslide Stability Analysis Based on GeoStudio
3.5. Landslide Kinematic Process
3.6. Building Vulnerability Assessment
4. Results
4.1. Landslide Failure Analysis
4.1.1. Landslide Failure Range
4.1.2. Stability Assessment
4.2. Landslide Kinematic Process
4.3. Building Vulnerability
4.3.1. Numerical Simulation of Building Damages
4.3.2. Building Vulnerability Mapping
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Yang, X.; Hu, X.; Wan, L.; Ma, E. Mechanisms of rainfall-induced landslides and interception dynamic response: A case study of the Ni changgou landslide in Shimian, China. Sci. Rep. 2024, 14, 1567. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, M.P.; Kulathilaka, S.A.S.; Robert, D.J.; Zhou, A.; Jayathissa, H.A.G. Risk assessment and management of rainfall-induced landslides in tropical regions: A review. Nat. Hazards 2024, 120, 2179–2231. [Google Scholar] [CrossRef]
- Fan, L.; Lehmann, P.; Zheng, C.; Or, D. Rainfall intensity temporal patterns affect shallow landslide triggering and hazard evolution. Geophys. Res. Lett. 2020, 47, 994. [Google Scholar] [CrossRef]
- Hürlimann, M.; Guo, Z.; Puig-Polo, C.; Medina, V. Impacts of future climate and land cover changes on landslide susceptibility: Regional scale modelling in the Val d’Aran region (Pyrenees, Spain). Landslides 2022, 19, 99–118. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, H.; Marelle, L.; Samset, B.H.; Stohl, A. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Huang, F.; Teng, Z.; Guo, Z.; Catani, F.; Huang, J. Uncertainties of landslide susceptibility prediction: Influences of different spatial resolutions, machine learning models and proportions of training and testing dataset. Rock Mech. Bull. 2023, 2, 100028. [Google Scholar] [CrossRef]
- Liu, L.; Gao, C.; Zhu, Z.; Zhang, S.; Tang, X. Spatiotemporal evolution patterns and underlying formation mechanisms of monsoon rainfall across eastern China: A complex network perspective. Atmos. Res. 2024, 304, 107363. [Google Scholar] [CrossRef]
- Long, X.; Hu, Y.; Gan Bin Zhou, J. Numerical simulation of the mass movement process of the 2018 Sedongpu glacial debris flow by using the fluid-solid coupling method. J. Earth Sci. 2024, 35, 583–596. [Google Scholar] [CrossRef]
- EMDAT, CRED/UCLouvain. Brussels, Belgium. Available online: www.emdat.be (accessed on 15 March 2025).
- Guo, Z.; Chen, L.; Yin, K.; Shrestha, D.P.; Zhang, L. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol. 2020, 273, 105667. [Google Scholar] [CrossRef]
- Komolvilas, V.; Tanapalungkorn, W.; Latcharote, P.; Likitlersuang, S. Failure analysis on a heavy rainfall-induced landslide in Huay Khab Mountain in Northern Thailand. J. Mt. Sci. 2021, 18, 2580–2596. [Google Scholar] [CrossRef]
- Long, Y.; Li, W.; Huang, R.; Xu, Q.; Yu, B.; Liu, G. A Comparative study of supervised classification methods for investigating landslide evolution in the Mianyuan River basin, China. J. Earth Sci. 2023, 34, 316–329. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, H.; He, J.; Huang, D.; Song, Y.; Wang, T.; Liu, Y.; Ferrer, J.V. PSLSA v2.0: An automatic Python package integrating machine learning models for regional landslide susceptibility assessment. Environ. Model. Softw. 2025, 186, 106367. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, F.; Wei, X.; Yang, H.; Fu, S.; Huang, J.; Gao, L. Polynomial chaos surrogate and bayesian learning for coupled hydro-mechanical behavior of soil slope. Rock Mech. Bull. 2023, 2, 100023. [Google Scholar] [CrossRef]
- Li, K.; Sun, P.; Wang, H.; Ren, J. Insight into failure mechanisms of rainfall induced mudstone landslide controlled by structural planes: From laboratory experiments. Eng. Geol. 2024, 343, 107774. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Zhang, T.; Dai, Z.; Wang, L. Influence of intrusive granite dyke on rainfall-induced soil slope failure. Bull. Eng. Geol. Environ. 2020, 79, 5259–5276. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Li, D.Q. Numerical simulation of the 1995 rainfall-induced Fei Tsui Road landslide in Hong Kong: New insights from hydro-mechanically coupled material point method. Landslides 2020, 17, 2755–2775. [Google Scholar] [CrossRef]
- Li, W.; Huang, Y. Model tests on the effect of dip angles on flow behavior of liquefied sand. J. Earth Sci. 2023, 34, 381–385. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Zhang, Y.; Guo, Z.; Liu, Y.; Zhou, X.; Guo, Z.; Guo, W.; Wan, L.; Duan, L.; et al. Landslide hazard prediction based on UAV remote sensing and discrete element model simulation—Case from the Zhuangguoyu landslide in Northern China. Remote Sens. 2024, 16, 3887. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, X.; Huang, D.; Zhai, S.; Tian, B. Dynamic simulation insights into friction weakening effect on rapid long-runout landslides: A case study of the Yigong landslide in the Tibetan Plateau, China. China Geol. 2024, 7, 222–236. [Google Scholar] [CrossRef]
- Guo, L.; Chen, G.; Ding, L.; Zheng, L.; Gao, J. Numerical simulation of full desiccation process of clayey soils using an extended DDA model with soil suction consideration. Comput. Geotech. 2023, 153, 105107. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Shi, W.; Yang, C.; Yan, L. Numerical investigation of failure characteristics debris movement in the Madaling landslide using coupled, FDM–DEM. Geotech. Geol. Eng. 2024, 42, 2745–2765. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y. Probabilistic simulation of entire process of rainfall-induced landslides using random finite element and material point methods with hydro-mechanical coupling. Comput. Geotech. 2021, 132, 103989. [Google Scholar] [CrossRef]
- Singh, A.; Kanungo, D.P.; Pal, S. A modified approach for semi-quantitative estimation of physical vulnerability of buildings exposed to different landslide intensity scenarios. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2019, 13, 66–81. [Google Scholar] [CrossRef]
- Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. Catena 2021, 201, 105213. [Google Scholar] [CrossRef]
- Luo, H.Y.; Zhang, L.M.; Zhang, L.L.; He, J.; Yin, K.S. Vulnerability of buildings to landslides: The state of the art and future needs. Earth Sci. Rev. 2023, 238, 104329. [Google Scholar] [CrossRef]
- Luo, H.Y.; Fan, R.L.; Wang, H.J.; Zhang, L.M. Physics of building vulnerability to debris flows, floods and earth flows. Eng. Geol. 2020, 271, 105611. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, L.; Gui, L.; Yin, K.; Shrestha, D.P.; Du, J.; Cao, X. Assessment of the physical vulnerability of buildings affected by slow-moving landslides. Nat. Hazards Earth Syst. Sci. 2020, 20, 2547–2565. [Google Scholar] [CrossRef]
- Yin, D.B.; Zheng, Q.; Zhou, A.; Shen, S.L. Enhancing landslide hazard prevention: Mapping vulnerability via considering the effects of human factors. Int. J. Disaster Risk Reduct. 2024, 108, 104509. [Google Scholar] [CrossRef]
- Wang, T.; Yin, K.; Li, Y.; Chen, L.; Xiao, C.; Zhu, H.; Westen, C.V. Physical vulnerability curve construction and quantitative risk assessment of a typhoon-triggered debris flow via numerical simulation: A case study of Zhejiang Province, SE China. Landslides 2024, 21, 1333–1352. [Google Scholar] [CrossRef]
- Bakalis, K.; Vamvatsikos, D. Seismic fragility functions via nonlinear response history analysis. J. Struct. Eng. 2018, 144, 04018181. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, F.; Wang, T.; Dou, X. Numerical estimation of landslide runout flow–structure interactions: A case study of Zhengjiamo landslide. Bull. Eng. Geol. Environ. 2024, 83, 212. [Google Scholar] [CrossRef]
- Xing, L.; Wang, G.; Gong, W.; Xu, M.; Jaboyedoff, M.; Wang, F. Model tests of the failure behaviors of buildings under the impact of granular flow. Landslides 2025, 22, 373–392. [Google Scholar] [CrossRef]
- Wang, X.; Yin, J.; Luo, M.; Ren, H.; Li, J.; Wang, L.; Li, D.; Li, G. Active High-Locality Landslides in Mao County: Early Identification and Deformational Rules. J. Earth Sci. 2023, 34, 1596–1615. [Google Scholar] [CrossRef]
- Montes-Pajuelo, R.; Rodríguez-Pérez, Á.M.; López, R.; Rodríguez, C.A. Analysis of probability distributions for modelling extreme rainfall events and detecting climate change: Insights from mathematical and statistical methods. Mathematics 2024, 12, 1093. [Google Scholar] [CrossRef]
- Back, Á.J.; Bonfante, F.M. Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall. Rev. Bras. Cienc. Ambient. 2021, 56, 654–664. [Google Scholar] [CrossRef]
- Gnyawali, K.; Dahal, K.; Talchabhadel, R.; Nirandjan, S. Framework for rainfall-triggered landslide-prone critical infrastructure zonation. Sci. Total Environ. 2023, 872, 162242. [Google Scholar] [CrossRef]
- Dassault Systèmes. ABAQUS Analysis User’s Manual, Version 2022; Dassault Systèmes: Providence, RI, USA, 2022; pp. 800–950. [Google Scholar]
- Ortiz-Giraldo, L.; Botero, B.A.; Vega, J. An integral assessment of landslide dams generated by the occurrence of rainfall-induced landslide and debris flow hazard chain. Front. Earth Sci. 2023, 11, 1157881. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, J.; Zhu, Y.; Zhang, J. Quantitative risk analysis of a rainfall-induced complex landslide in Wanzhou county, three gorges reservoir, China. Int. J. Disaster Risk Sci. 2020, 11, 347–363. [Google Scholar] [CrossRef]
- Świtała, B.M. Numerical simulations of triaxial tests on soil-root composites and extension to practical problem: Rainfall-induced landslide. Int. J. Geomech. 2020, 20, 04020206. [Google Scholar] [CrossRef]
- Liang, C.; Wu, Z.; Liu, X.; Xiong, Z.; Li, T. Analysis of shallow landslide mechanism of expansive soil slope under rainfall: A case study. Arab. J. Geosci. 2021, 14, 584. [Google Scholar] [CrossRef]
- Paswan, A.P.; Shrivastava, A.K. Modelling of rainfall-induced landslide: A threshold-based approach. Arab. J. Geosci. 2022, 15, 795. [Google Scholar] [CrossRef]
- Shoaib, M.; Yang, W.; Liang, Y.; Rehman, G. Stability and deformation analysis of landslide under coupling effect of rainfall and reservoir drawdown. Civ. Eng. J. 2021, 7, 1098–1111. [Google Scholar] [CrossRef]
- Wei, L.; Cheng, H.; Dai, Z. Propagation modeling of rainfall-induced landslides: A case study of the Shaziba Landslide in Enshi, China. Water 2023, 15, 424. [Google Scholar] [CrossRef]
- Mao, W.; Li, W.; Rouzbeh, R.; Naveed, A.; Zheng, H.; Huang, Y. Numerical Simulation of Liquefaction-Induced Settlement of Existing Structures. J. Earth Sci. 2023, 34, 339–346. [Google Scholar] [CrossRef]
- Távara, L.; Moreno, L.; Paloma, E.; Mantič, V. Accurate modelling of instabilities caused by multi-site interface-crack onset and propagation in composites using the sequentially linear analysis and Abaqus. Compos. Struct. 2019, 225, 110993. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L.; Hu, K.; Cui, L.; Wang, L.; Xia, Z.; Huang, Q. Modelling the evolution of propagation and runout from a gravel–silty clay landslide to a debris flow in Shaziba, southwestern Hubei Province, China. Landslides 2022, 19, 2199–2212. [Google Scholar] [CrossRef]
- Xie, Q.; Cao, Z.; Sun, W.; Fumagalli, A.; Fu, X.; Wu, Z.; Wu, K. Numerical simulation of the fluid-solid coupling mechanism of water and mud inrush in a water-rich fault tunnel. Tunn. Undergr. Space Technol. 2023, 131, 104796. [Google Scholar] [CrossRef]
- Li, S.; Qiu, C.; Huang, J.; Guo, X.; Hu, Y.; Mugahed, A.S.Q.; Tan, J. Stability analysis of a high-steep dump slope under different rainfall conditions. Sustainability 2022, 14, 11148. [Google Scholar] [CrossRef]
- Minh, H.L.; Khatir, S.; Wahab, M.A.; Cuong-Le, T. A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads. J. Build. Eng. 2021, 44, 103239. [Google Scholar] [CrossRef]
- Luan, T.M.; Khatir, S.; Cuong-Le, T. Concrete Damage Plastic Model for High Strength-Concrete: Applications in Reinforced Concrete Slab and CFT Columns. Iran J. Sci. Technol. Trans. Civ. Eng. 2024, 1–20. [Google Scholar] [CrossRef]
- Lee, S.H.; Abolmaali, A.; Shin, K.J.; Lee, H.D. ABAQUS modeling for post-tensioned reinforced concrete beams. J. Build. Eng. 2020, 30, 101273. [Google Scholar] [CrossRef]
- Nagy, N.; Mohamed, M.; Boot, J.C. Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures. Geomech. Eng. 2010, 2, 1–18. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, Z.B.; Yu, Q. Finite element modelling of concrete-filled steel stub columns under axial compression. J. Constr. Steel Res. 2013, 89, 121–131. [Google Scholar] [CrossRef]
- Du, B.; Wang, Y.; Fang, Z.; Liu, G.; Tian, Z. Spatiotemporal modeling and projection framework of rainfall-induced landslide risk under climate change. J. Environ. Manag. 2025, 373, 123474. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J.; Wang, Y.; Du, B.; Liu, G. Improved landslide prediction by considering continuous and discrete spatial dependency. Landslides 2025, 22, 1107–1122. [Google Scholar] [CrossRef]
- Emkani, M.; Yazdi, M.; Zarei, E.; Klockner, K.; Alimohammadlou, M.; Kamalinia, M. Advancing understanding of vulnerability assessment in process industries: A systematic review of methods and approaches. Int. J. Disaster Risk Reduc. 2024, 107, 104479. [Google Scholar] [CrossRef]
- Diaz-Sarachaga, J.M.; Jato-Espino, D. Analysis of vulnerability assessment frameworks and methodologies in urban areas. Nat. Hazards 2020, 100, 437–457. [Google Scholar] [CrossRef]
- Tao, H.; Zhang, M.; Gong, L.; Shi, X.; Wang, Y.; Yang, G.; Lei, S. The mechanism of slope instability due to rainfall-induced structural decay of earthquake-damaged loess. Earthq. Res. Adv. 2022, 2, 100137. [Google Scholar] [CrossRef]
- Liang, C.; Wu, S. Centrifuge modeling of intact clayey loess slope by rainfall. Environ. Earth Sci. 2024, 83, 352. [Google Scholar] [CrossRef]
- Xiang, X.; Zi-Hang, D. Numerical implementation of a modified Mohr–Coulomb model and its application in slope stability analysis. J. Mod. Transp. 2017, 25, 40–51. [Google Scholar] [CrossRef]
- Calhoun, N.C.; Clague, J.J. Distinguishing between debris flows and hyperconcentrated flows: An example from the eastern Swiss Alps. Earth Surf. Process. Landf. 2018, 43, 1280–1294. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Guo, Z.; Ferrer, J.V.; Hürlimann, M.; Medina, V.; Puig-Polo, C.; Yin, K.; Huang, D. Shallow landslide susceptibility assessment under future climate and land cover changes: A case study from southwest China. Geosci. Front. 2023, 14, 101542. [Google Scholar] [CrossRef]
Slope Soil Parameters | Unit | Parameter Value |
---|---|---|
Dry density (ρd) | Kg/m3 | 1600 |
Effective cohesion (c) | kPa | 12 |
Effective internal friction angle (φ) | ° | 27 |
Deformation modulus (E) | Pa | 8 × 106 |
Poisson’s ratio (v) | / | 0.3 |
Saturated permeability (kw-sat) | m/h | 0.035 |
Initial porosity (e) | / | 1 |
Section | Unit Weight (KN/m3) | Cohesion (KPa) | Friction Angle (°) | Elastic Modulus (KPa) | Poisson’s Ratio | Volumetric Moisture Content |
---|---|---|---|---|---|---|
Sliding body | 20 | 24 | 13 | 1000 | 0.3 | 20 |
Bedrock | 21 | 30 | 25 | 3,000,000 | 0.334 | 15 |
Section | Density (kg/m3) | Cohesion (KPa) | Friction Angle (°) | Bulk Modulus (MPa) | Shear Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|---|---|---|
Sliding body | 21 | 30 | 22 | 60 | 50 | 0.35 |
Bedrock | 23 | 50 | 30 | 300 | 100 | 0.35 |
Scenario | 20-Year Return Period | 50-Year Return Period | 100-Year Return Period |
---|---|---|---|
Rainfall | 151.5 mm | 184.6 mm | 209.3 mm |
Scenario | Stability Coefficient | Probability of Damage |
---|---|---|
Natural | 1.208 | 12.7% |
50-year rainfall | 0.955 | 82.1% |
100-year rainfall | 0.836 | 95.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Liu, D.; Ruan, M.; Zhang, Y.; He, J.; Guo, Z.; Wang, H.; Cheng, M. Quantitative Vulnerability Assessment of Buildings Exposed to Landslides Under Extreme Rainfall Scenarios. Buildings 2025, 15, 1838. https://doi.org/10.3390/buildings15111838
Li G, Liu D, Ruan M, Zhang Y, He J, Guo Z, Wang H, Cheng M. Quantitative Vulnerability Assessment of Buildings Exposed to Landslides Under Extreme Rainfall Scenarios. Buildings. 2025; 15(11):1838. https://doi.org/10.3390/buildings15111838
Chicago/Turabian StyleLi, Guangming, Dong Liu, Mengjiao Ruan, Yuhua Zhang, Jun He, Zizheng Guo, Haojie Wang, and Mengchen Cheng. 2025. "Quantitative Vulnerability Assessment of Buildings Exposed to Landslides Under Extreme Rainfall Scenarios" Buildings 15, no. 11: 1838. https://doi.org/10.3390/buildings15111838
APA StyleLi, G., Liu, D., Ruan, M., Zhang, Y., He, J., Guo, Z., Wang, H., & Cheng, M. (2025). Quantitative Vulnerability Assessment of Buildings Exposed to Landslides Under Extreme Rainfall Scenarios. Buildings, 15(11), 1838. https://doi.org/10.3390/buildings15111838