Developing a Blockchain-Based Framework for Digital Archiving of BIM Using Axiomatic Design
Abstract
1. Introduction
2. Literature Review
2.1. Storage and Archiving of BIM Data
2.2. Blockchain in the AEC Industry
3. Methodology
4. Framework Development
- (1)
- A1 Building Information Model (BIM) Module
- Level 1—models
- b.
- Level 2—participants
- c.
- Level 3—lifecycles
- d.
- Level 4—communities
- (2)
- A2 Building Plan Approval (BPA) Module
- Level 1—2D documents
- b.
- Level 2—digital
- (3)
- A3 Building Data Simplification (BDS) Module
- Level 1—stand-alone
- b.
- Level 2—cloud-based
- (4)
- A4 Distributed Data Storage (DDS) Module
- Level 1—centralized
- b.
- Level 2—distributed
- (5)
- A5 Digital Document Verification (DDV) Module
- Level 1—password-based
- b.
- Level 2 Blockchain-Based
5. Illustrative Example
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Abbreviations
AEC | Architecture, engineering, and construction. |
API | Application Programming Interface. |
BDS Module | Building Data Simplification Module. |
BIM Module | Building Information Model Module. |
BIM-DAS | Building information model digital archiving system. |
BPA Module | Building Plan Approval Module. |
DDA | Data decoding algorithm. |
DDS Module | Distributed Data Storage Module. |
DDV Module | Digital Document Verification Module. |
DEA | Data encryption algorithm. |
DP | Design parameter. |
FR | Functional requirement. |
GIS | Geographic Information System. |
GL | Graphic Language. |
KBS | Knowledge-Based System. |
LOD | Level of Detail. |
MVD | Model View Definitions. |
P2P | Peer to Peer. |
SOP | Security of payment. |
References
- Klotz, L.E.; Horman, M.; Bodenschatz, M. A lean modeling protocol for evaluating green project delivery. Lean Constr. J. 2007, 3. [Google Scholar] [CrossRef]
- Egan, J. Rethinking Construction; Department of Environment, Transport and the Region: London, UK, 1998. [Google Scholar]
- Gallaher, M.P.; O’Connor, A.C.; Dettbarn, J.L., Jr.; Gilday, L.T. Cost Analysis of Inadequate Interoperability in the US Capital Facilities Industry; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2004; pp. 223–253. [Google Scholar]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Zhang, S.; Li, Y.; Yang, B.; Yuan, L. A cloud approach to unified lifecycle data management in architecture, engineering, construction and facilities management: Integrating BIMs and SNS. Adv. Eng. Inform. 2013, 27, 173–188. [Google Scholar] [CrossRef]
- Chen, H.-M.; Hou, C.-C. Asynchronous online collaboration in BIM generation using hybrid client-server and P2P network. Autom. Constr. 2014, 45, 72–85. [Google Scholar] [CrossRef]
- Zolin, R.; Fruchter, R.; Levitt, R. Building, Maintaining And Repairing Trust In Global AEC Teams. In Computing in Civil and Building Engineering (2000); ASCE: Reston, VA, USA, 2000; pp. 874–881. [Google Scholar]
- Crosby, M.; Pattanayak, P.; Verma, S.; Kalyanaraman, V. Blockchain technology: Beyond bitcoin. Appl. Innov. 2016, 2, 71. [Google Scholar]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://assets.pubpub.org/d8wct41f/31611263538139.pdf (accessed on 11 April 2024).
- Kim, K.; Lee, G.; Kim, S. A study on the application of blockchain technology in the construction industry. KSCE J. Civ. Eng. 2020, 24, 2561–2571. [Google Scholar] [CrossRef]
- Dounas, T.; Lombardi, D.; Jabi, W. Framework for decentralised architectural design BIM and Blockchain integration. Int. J. Archit. Comput. 2020, 19, 157–173. [Google Scholar] [CrossRef]
- Li, J.; Greenwood, D.; Kassem, M. Blockchain in the built environment and construction industry: A systematic review, conceptual models and practical use cases. Autom. Constr. 2019, 102, 288–307. [Google Scholar] [CrossRef]
- Chong, H.-Y.; Diamantopoulos, A. Integrating advanced technologies to uphold security of payment: Data flow diagram. Autom. Constr. 2020, 114, 103158. [Google Scholar] [CrossRef]
- Mathews, M.; Robles, D.; Bowe, B. BIM+ blockchain: A solution to the trust problem in collaboration? In Proceedings of the CITA BIM Gathering 2017, Dublin, Ireland, 27 November 2017.
- Celik, Y.; Petri, I.; Barati, M. Blockchain supported BIM data provenance for construction projects. Comput. Ind. 2023, 144, 103768. [Google Scholar] [CrossRef]
- Tao, X.; Das, M.; Liu, Y.; Cheng, J.C.P. Distributed common data environment using blockchain and Interplanetary File System for secure BIM-based collaborative design. Autom. Constr. 2021, 130, 103851. [Google Scholar] [CrossRef]
- Tao, X.; Liu, Y.; Wong, P.K.-Y.; Chen, K.; Das, M.; Cheng, J.C.P. Confidentiality-minded framework for blockchain-based BIM design collaboration. Autom. Constr. 2022, 136, 104172. [Google Scholar] [CrossRef]
- Hayward, G.; Tilley, R. The principles of design, Horticulture. Manuf. Eng. 1990, 70, 10. [Google Scholar]
- Waissi, G.R.; Demir, M.; Humble, J.E.; Lev, B. Automation of strategy using IDEF0—A proof of concept. Oper. Res. Perspect. 2015, 2, 106–113. [Google Scholar] [CrossRef]
- Eastman, C.M.; Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chen, K.; Chen, W.; Cheng, J.C.; Wang, Q. Developing Efficient Mechanisms for BIM-to-AR/VR Data Transfer. J. Comput. Civ. Eng. 2020, 34, 04020037. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Hu, Z.-Z.; Wang, H.-W.; Kassem, M. An Industry Foundation Classes (IFC) web-based approach and Platform for Bi-Drectional conversion of structural analysis models. In Computing in Civil and Building Engineering (2014); ASCE: Reston, VA, USA, 2014; pp. 390–397. [Google Scholar]
- Antwi-Afari, M.; Li, H.; Pärn, E.; Edwards, D. Critical success factors for implementing building information modelling (BIM): A longitudinal review. Autom. Constr. 2018, 91, 100–110. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, Y.; Li, Z.; Shi, W.; Wang, J.; Sun, Y.; Xu, L.; Wang, X. A review of integrated applications of BIM and related technologies in whole building life cycle. Eng. Constr. Archit. Manag. 2020, 27, 1647–1677. [Google Scholar] [CrossRef]
- Cheng, J.C.; Chen, K.; Wong, P.K.-Y.; Chen, W.; Li, C.T. Graph-based network generation and CCTV processing techniques for fire evacuation. Build. Res. Inf. 2020, 49, 179–196. [Google Scholar] [CrossRef]
- Chen, K.; Chen, W.; Li, C.T.; Cheng, J.C. A BIM-based location aware AR collaborative framework for facility maintenance management. ITcon 2019, 24, 360–380. [Google Scholar]
- CabinetOffice, Government Construction Strategy. 2011. Available online: https://www.gov.uk/government/publications/government-construction-strategy (accessed on 14 February 2024).
- Ma, Z.; Zhang, D.; Li, J. A dedicated collaboration platform for Integrated Project Delivery. Autom. Constr. 2018, 86, 199–209. [Google Scholar] [CrossRef]
- Elghaish, F.; Abrishami, S. A centralised cost management system: Exploiting EVM and ABC within IPD. Eng. Constr. Archit. Manag. 2020, 28, 549–569. [Google Scholar] [CrossRef]
- Ali, B.; Zahoor, H.; Nasir, A.R.; Maqsoom, A.; Khan, R.W.A.; Mazher, K.M. BIM-based claims management system: A centralized information repository for extension of time claims. Autom. Constr. 2020, 110, 102937. [Google Scholar] [CrossRef]
- Hawlitschek, F.; Notheisen, B.; Teubner, T. The limits of trust-free systems: A literature review on blockchain technology and trust in the sharing economy. Electron. Commer. Res. Appl. 2018, 29, 50–63. [Google Scholar] [CrossRef]
- Notheisen, B.; Cholewa, J.B.; Shanmugam, A.P. Trading real-world assets on blockchain. Bus. Inf. Syst. Eng. 2017, 59, 425–440. [Google Scholar] [CrossRef]
- Beck, R.; Stenum Czepluch, J.; Lollike, N.; Malone, S. Blockchain–the gateway to trust-free cryptographic transactions. In Proceedings of the 2016 European Conference on Information SYSTEMS (ECIS), Rome, Italy, 18 April 2016. [Google Scholar]
- Liu, S.; Lu, Y.; Li, J.; Shen, X.; Sun, X.; Bao, J. A blockchain-based interactive approach between digital twin-based manufacturing systems. Comput. Ind. Eng. 2023, 175, 108827. [Google Scholar] [CrossRef]
- Banaeian Far, S.; Rajabzadeh Asaar, M. A blockchain-based anonymous reporting system with no central authority: Architecture and protocol. Cyber Secur. Appl. 2024, 2, 100032. [Google Scholar] [CrossRef]
- Murimi, R.; Bell, G.; Rasheed, A.A.; Beldona, S. Blockchains: A review and research agenda for international business. Res. Int. Bus. Financ. 2023, 66, 102018. [Google Scholar] [CrossRef]
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015. [Google Scholar]
- Böhme, R.; Christin, N.; Edelman, B.; Moore, T. Bitcoin: Economics, technology, and governance. J. Econ. Perspect. 2015, 29, 213–238. [Google Scholar] [CrossRef]
- Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32. [Google Scholar]
- Maesa, D.D.F.; Mori, P. Blockchain 3.0 applications survey. J. Parallel Distrib. Comput. 2020, 138, 99–114. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Jia, D.; Zhang, Q.; Zhao, X.; Rong, H. Toward secure distributed data storage with error locating in blockchain enabled edge computing. Comput. Stand. Interfaces 2022, 79, 103560. [Google Scholar] [CrossRef]
- Wang, J.; Wu, P.; Wang, X.; Shou, W. The outlook of blockchain technology for construction engineering management. Front. Eng. Manag. 2017, 4, 67–75. [Google Scholar] [CrossRef]
- Turk, Ž.; Klinc, R. Potentials of blockchain technology for construction management. Procedia Eng. 2017, 196, 638–645. [Google Scholar] [CrossRef]
- Iqbal, M.; Kormiltsyn, A.; Dwivedi, V.; Matulevičius, R. Blockchain-based ontology driven reference framework for security risk management. Data Knowl. Eng. 2024, 149, 102257. [Google Scholar] [CrossRef]
- Mason, J. Intelligent contracts and the construction industry. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2017, 9, 04517012. [Google Scholar] [CrossRef]
- Ahmadisheykhsarmast, S.; Sonmez, R. A smart contract system for security of payment of construction contracts. Autom. Constr. 2020, 120, 103401. [Google Scholar] [CrossRef]
- Qian, X.A.; Papadonikolaki, E. Shifting trust in construction supply chains through blockchain technology. Eng. Constr. Archit. Manag. 2020, 28, 584–602. [Google Scholar] [CrossRef]
- Rodrigo, M.; Perera, S.; Senaratne, S.; Jin, X. Systematic development of a data model for the blockchain-based embodied carbon (BEC) Estimator for construction. Eng. Constr. Archit. Manag. 2021, 29, 3311–3330. [Google Scholar] [CrossRef]
- Dakhli, Z.; Lafhaj, Z.; Mossman, A. The potential of blockchain in building construction. Buildings 2019, 9, 77. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Wang, Z.; Li, M.; Zhong, R.Y.; Huang, G.Q. Blockchain-enabled digital twin collaboration platform for fit-out operations in modular integrated construction. Autom. Constr. 2023, 148, 104747. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Hu, H.; Gong, J.; Ren, X.; Xiao, Q. Blockchain-based framework for improving supply chain traceability and information sharing in precast construction. Autom. Constr. 2020, 111, 103063. [Google Scholar] [CrossRef]
- Sheng, D.; Ding, L.; Zhong, B.; Love, P.E.; Luo, H.; Chen, J. Construction quality information management with blockchains. Autom. Constr. 2020, 120, 103373. [Google Scholar] [CrossRef]
- Nawari, N.O.; Ravindran, S. Blockchain technology and BIM process: Review and potential applications. J. Inf. Technol. Constr. (ITcon) 2019, 24, 209–238. [Google Scholar]
- Elghaish, F.; Abrishami, S.; Hosseini, M.R. Integrated project delivery with blockchain: An automated financial system. Autom. Constr. 2020, 114, 103182. [Google Scholar] [CrossRef]
- Suh, N.P. The Principles of Design; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Schuh, G.; Rudolf, S.; Breunig, S. Modular Platform Design for Mechatronic Systems using Axiomatic Design and Mechatronic Function Modules. Procedia CIRP 2016, 50, 701–706. [Google Scholar] [CrossRef]
- Avin, C.; Borokhovich, M.; Lotker, Z.; Peleg, D. Distributed computing on core–periphery networks: Axiom-based design. J. Parallel Distrib. Comput. 2017, 99, 51–67. [Google Scholar] [CrossRef]
- Leonard, J. System Engineering Fundamentals. In System Engineering Fundamentals; The Defense Acquisition University Press: Fort Belvoir, VA, USA, 1999; Volume 2060–5565, pp. 35–40. [Google Scholar]
Factors | Contents | Divisions |
---|---|---|
FR0 | To archive digital construction documents | FR1: To establish BIM models based on design documents |
FR2: To approve building plans before pursuing the construction business | ||
FR3: To simplify building metadata and visualize via web interface | ||
FR4: To store digital construction documents in a distributed manner | ||
FR5: To verify the genuineness of digital construction documents obtained from the P2P network | ||
DP0 | BIM-DAS | DP1: A1 BIM Module |
DP2: A2 BPA Module | ||
DP3: A3 BDS Module | ||
DP4: A4 DDS Module | ||
DP5: A5 DDV Module | ||
Cs | Interoperability | C1: MVD |
C2: Standards | ||
C3: LOD | ||
C4: Data Scale | ||
C5: Consensus Mechanisms |
FRs | DPs | ||||
---|---|---|---|---|---|
DP1 | DP2 | DP3 | DP4 | DP5 | |
FR1 | Self-Interaction | Independent Operation | Independent Operation | Independent Operation | Independent Operation |
FR2 | BIM Models | Self-Interaction | Independent Operation | Independent Operation | Independent Operation |
FR3 | BIM Models | Approved Documents | Self-Interaction | Independent Operation | Independent Operation |
FR4 | Independent Operation | Independent Operation | Simplified Files | Self-Interaction | Independent Operation |
FR5 | Independent Operation | Independent Operation | Independent Operation | Hash Value | Self-Interaction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Chen, K.; Tao, Y.; Xue, H. Developing a Blockchain-Based Framework for Digital Archiving of BIM Using Axiomatic Design. Buildings 2024, 14, 1098. https://doi.org/10.3390/buildings14041098
Zhang T, Chen K, Tao Y, Xue H. Developing a Blockchain-Based Framework for Digital Archiving of BIM Using Axiomatic Design. Buildings. 2024; 14(4):1098. https://doi.org/10.3390/buildings14041098
Chicago/Turabian StyleZhang, Tongrui, Keyu Chen, Yulian Tao, and Hong Xue. 2024. "Developing a Blockchain-Based Framework for Digital Archiving of BIM Using Axiomatic Design" Buildings 14, no. 4: 1098. https://doi.org/10.3390/buildings14041098
APA StyleZhang, T., Chen, K., Tao, Y., & Xue, H. (2024). Developing a Blockchain-Based Framework for Digital Archiving of BIM Using Axiomatic Design. Buildings, 14(4), 1098. https://doi.org/10.3390/buildings14041098