New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method
Abstract
1. Introduction
2. Basic Equations
3. Results for Frequency Parameters and Deformation Shapes of Plates
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, F.; Zhang, H.; Li, Z.; Luo, Y.; Xiao, X.; Liu, Y. Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks. Adv. Struct. Eng. 2024, 27, 35–50. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Chen, F.; Zhang, H.; Xiao, X. Numerical simulation on crack–inclusion interaction for rib-to-deck welded joints in orthotropic steel deck. Metals 2023, 13, 1402. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Y.; Zhu, X.; Huang, Z. Stochastic dynamics analysis of the rocket shell coupling system with circular plate fasteners based on spectro-geometric method. Compos. Struct. 2024, 329, 117727. [Google Scholar] [CrossRef]
- Zhang, C. The active rotary inertia driver system for flutter vibration control of bridges and various promising applications. Sci. China Technol. Sci. 2023, 66, 390–405. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, T.; Brennan, M.J.; Liu, Z.; Chen, L.-Q. Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. J. Appl. Mech. 2017, 84, 021001. [Google Scholar] [CrossRef]
- Lu, Z.; Brennan, M.J.; Yang, T.; Li, X.; Liu, Z. An investigation of a two-stage nonlinear vibration isolation system. J. Sound Vib. 2013, 332, 1456–1464. [Google Scholar] [CrossRef]
- Tran, V.-K.; Pham, Q.-H.; Nguyen-Thoi, T. A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Eng. Comput. 2022, 38, 1465–1490. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Lin, G. Implementation of a coupled FEM-SBFEM for soil-structure interaction analysis of large-scale 3D base-isolated nuclear structures. Comput. Geotech. 2023, 162, 105669. [Google Scholar] [CrossRef]
- Deng, E.-F.; Wang, Y.-H.; Zong, L.; Zhang, Z.; Zhang, J.-F. Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies. Thin-Walled Struct. 2024, 197, 111563. [Google Scholar] [CrossRef]
- Sarrami-Foroushani, S.; Azhari, M. On the use of bubble complex finite strip method in the nonlocal buckling and vibration analysis of single-layered graphene sheets. Int. J. Mech. Sci. 2014, 85, 168–178. [Google Scholar] [CrossRef]
- Civalek, Ö.; Avcar, M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng. Comput. 2022, 38, 489–521. [Google Scholar] [CrossRef]
- Lai, S.K.; Xiang, Y. DSC analysis for buckling and vibration of rectangular plates with elastically restrained edges and linearly varying in-plane loading. Int. J. Struct. Stab. Dyn. 2009, 9, 511–531. [Google Scholar] [CrossRef]
- Wu, W.X.; Shu, C.; Wang, C.M.; Xiang, Y. Free vibration and buckling analysis of highly skewed plates by least squares-based finite difference method. Int. J. Struct. Stab. Dyn. 2010, 10, 225–252. [Google Scholar] [CrossRef]
- Albuquerque, E.L.; Sollero, P.; Fedelinski, P. Free vibration analysis of anisotropic material structures using the boundary element method. Eng. Anal. Bound. Elem. 2003, 27, 977–985. [Google Scholar] [CrossRef]
- Fan, J.; Huang, J.; Ding, J.; Zhang, J. Free vibration of functionally graded carbon nanotube-reinforced conical panels integrated with piezoelectric layers subjected to elastically restrained boundary conditions. Adv. Mech. Eng. 2017, 9, 168781401771181. [Google Scholar] [CrossRef]
- Motezaker, M.; Jamali, M.; Kolahchi, R. Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory. J. Comput. Appl. Math. 2020, 369, 112625. [Google Scholar] [CrossRef]
- Civalek, Ö. Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos. Part B Eng. 2013, 50, 171–179. [Google Scholar] [CrossRef]
- Sharma, A. Free vibration of moderately thick antisymmetric laminated annular sector plates with elastic edge constraints. Int. J. Mech. Sci. 2014, 83, 124–132. [Google Scholar] [CrossRef]
- Song, Z.; Li, W.; He, X.; Xie, D. Comparisons of matched interface and boundary (MIB) method and its interpolation formulation for free vibration analysis of stepped beams and plates. Appl. Math. Comput. 2021, 394, 125817. [Google Scholar] [CrossRef]
- Papkov, S.O.; Banerjee, J.R. Dynamic stiffness formulation and free vibration analysis of specially orthotropic Mindlin plates with arbitrary boundary conditions. J. Sound Vib. 2019, 458, 522–543. [Google Scholar] [CrossRef]
- Eftekhari, S.A.; Jafari, A.A. High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions. Appl. Math. Comput. 2012, 219, 1312–1344. [Google Scholar] [CrossRef]
- Xu, J.; Chang, L.; Chen, T.; Ren, T.; Zhang, Y.; Cai, Z. Study of the bending properties of variable stiffness chain mail fabrics. Compos. Struct. 2023, 322, 117369. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Huang, Y.; Chang, L.; Chen, T.; Ren, T.; Cai, Z. Dynamic response of chain mail fabrics with variable stiffness. Int. J. Mech. Sci. 2024, 264, 108840. [Google Scholar] [CrossRef]
- Zhang, W.; Kang, S.; Liu, X.; Lin, B.; Huang, Y. Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate. J. Build. Eng. 2023, 71, 106522. [Google Scholar] [CrossRef]
- Arefi, M.; Taghavian, S.H. Dynamic characteristics of composite micro lattice plates comprises of graphene nanoplatelets based on MCST theory. Thin-Walled Struct. 2022, 175, 109200. [Google Scholar] [CrossRef]
- Arefi, M.; Firouzeh, S.; Mohammad-Rezaei Bidgoli, E.; Civalek, Ö. Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Compos. Struct. 2020, 247, 112391. [Google Scholar] [CrossRef]
- Ruocco, E.; Reddy, J.N. A closed-form solution for buckling analysis of orthotropic Reddy plates and prismatic plate structures. Compos. Part B Eng. 2019, 169, 258–273. [Google Scholar] [CrossRef]
- Zenkour, A.M.; El-Shahrany, H.D. Hygrothermal forced vibration of a viscoelastic laminated plate with magnetostrictive actuators resting on viscoelastic foundations. Int. J. Mech. Mater. Des. 2021, 17, 301–320. [Google Scholar] [CrossRef]
- Hosseini-Hashemi, S.; Fadaee, M.; Rokni Damavandi Taher, H. Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory. Appl. Math. Model. 2011, 35, 708–727. [Google Scholar] [CrossRef]
- Rezaei, A.S.; Saidi, A.R. Exact solution for free vibration of thick rectangular plates made of porous materials. Compos. Struct. 2015, 134, 1051–1060. [Google Scholar] [CrossRef]
- Ray, M.C. Zeroth-Order Shear Deformation Theory for Laminated Composite Plates. J. Appl. Mech. 2003, 70, 374–380. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sonoda, K. Vibration and buckling of tapered rectangular plates with two opposite edges simply supported and the other two edges elastically restrained against rotation. J. Sound Vib. 1991, 146, 323–337. [Google Scholar] [CrossRef]
- Cui, W.; Zhao, L.; Ge, Y.; Xu, K. A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability. Nonlinear Dyn. 2024, 112, 259–272. [Google Scholar] [CrossRef]
- Cui, W.; Caracoglia, L.; Zhao, L.; Ge, Y. Examination of occurrence probability of vortex-induced vibration of long-span bridge decks by Fokker–Planck–Kolmogorov equation. Struct. Saf. 2023, 105, 102369. [Google Scholar] [CrossRef]
- Cui, W.; Zhao, L.; Ge, Y. Wind-Induced Buffeting Vibration of Long-Span Bridge Considering Geometric and Aerodynamic Nonlinearity Based on Reduced-Order Modeling. J. Struct. Eng. 2023, 149, 04023160. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Ullah, S.; Zhong, Y.; Li, R. Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates. Appl. Math. Lett. 2019, 92, 8–14. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Wang, K.; Zhang, C.; Jing, C.; Qi, W. On the finite integral transform approach for analytic thermal buckling solutions of orthotropic plates. Acta Mech. 2023, 234, 1901–1922. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.; Wang, X.; Ullah, S.; Zhao, D.; Civalek, Ö.; Xue, C.; Qi, W. New exact analytical thermal buckling solutions of composite thin plates with all edges rotationally-restrained. Mech. Adv. Mater. Struct. 2023, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Ullah, S.; Zhong, Y. New analytical free vibration solutions of orthotropic rectangular thin plates using generalized integral transformation. J. Comput. Appl. Math. 2020, 367, 112439. [Google Scholar] [CrossRef]
- Ullah, S.; Zhong, Y.; Zhang, J. Analytical buckling solutions of rectangular thin plates by straightforward generalized integral transform method. Int. J. Mech. Sci. 2019, 152, 535–544. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.; Ullah, S.; Zhao, D.; Qi, W.; Civalek, Ö. An Accurate Computational Method for Buckling of Orthotropic Composite Plate with Non-Classical Boundary Restraints. Int. J. Struct. Stab. Dyn. 2023, 23, 2350080. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.; Ullah, S.; Geng, L.; Civalek, Ö. A new analytical solution of vibration response of orthotropic composite plates with two adjacent edges rotationally-restrained and the others free. Compos. Struct. 2021, 266, 113882. [Google Scholar] [CrossRef]
- Rahbar Ranji, A.; Rostami Hoseynabadi, H. A semi-analytical solution for forced vibrations response of rectangular orthotropic plates with various boundary conditions. J. Mech. Sci. Technol. 2010, 24, 357–364. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, Y.; Zhou, C.; Zheng, X.; Li, R. On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates. J. Sound Vib. 2020, 489, 115695. [Google Scholar] [CrossRef]
- Li, R.; Zhou, C.; Zheng, X. On New Analytic Free Vibration Solutions of Doubly Curved Shallow Shells by the Symplectic Superposition Method Within the Hamiltonian-System Framework. J. Vib. Acoust. 2021, 143, 011002. [Google Scholar] [CrossRef]
- Hu, Z.; Zheng, X.; An, D.; Zhou, C.; Yang, Y.; Li, R. New analytic buckling solutions of side-cracked rectangular thin plates by the symplectic superposition method. Int. J. Mech. Sci. 2021, 191, 106051. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, J.; Yang, D. Benchmark solutions of stationary random vibration for rectangular thin plate based on discrete analytical method. Probabilistic Eng. Mech. 2017, 50, 17–24. [Google Scholar] [CrossRef]
- Xing, Y.F.; Liu, B. New exact solutions for free vibrations of thin orthotropic rectangular plates. Compos. Struct. 2009, 89, 567–574. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, X.; Arefi, M. Dynamic formulation of a sandwich microshell considering modified couple stress and thickness-stretching. Eur. Phys. J. Plus 2023, 138, 227. [Google Scholar] [CrossRef]
- Yazdanpanah Moghadam, P.; Tahani, M.; Naserian-Nik, A.M. Analytical solution of piezolaminated rectangular plates with arbitrary clamped/simply-supported boundary conditions under thermo-electro-mechanical loadings. Appl. Math. Model. 2013, 37, 3228–3241. [Google Scholar] [CrossRef]
- Gorman, D.J. Free vibration and buckling of in-plane loaded plates with rotational elastic edge support. J. Sound Vib. 2000, 229, 755–773. [Google Scholar] [CrossRef]
- Kiani, Y.; Bagherizadeh, E.; Eslami, M.R. Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions). Z. Angew. Math. Mech. 2011, 91, 581–593. [Google Scholar] [CrossRef]
- Liew, K.M.; Hung, K.C.; Lim, M.K. Vibration of mindlin plates using boundary characteristic orthogonal polynomials. J. Sound Vib. 1995, 182, 77–90. [Google Scholar] [CrossRef]
- Zhou, K.; Su, J.; Hua, H. Free and forced vibration analysis of moderately thick orthotropic plates in thermal environment and resting on elastic supports. Arch. Appl. Mech. 2018, 88, 855–873. [Google Scholar] [CrossRef]
- Peng, X.; Zhong, Y.; Shi, J.; Shi, Z. Free flexural vibration analysis of composite sandwich plate with reentrant honeycomb cores using homogenized plate model. J. Sound Vib. 2022, 529, 116955. [Google Scholar] [CrossRef]
- Rostami, H.; Rahbar Ranji, A.; Bakhtiari-Nejad, F. Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates. Int. J. Mech. Sci. 2016, 115–116, 438–456. [Google Scholar] [CrossRef]
- Tang, X.; Guo, C.; Li, F.; Zhang, R.; Song, D.; Fu, P.; Liu, H. Thermal buckling analysis of rotationally-restrained orthotropic thin plates utilizing a two-dimensional improved Fourier series approach. Meccanica 2023, 58, 1443–1464. [Google Scholar] [CrossRef]
- Tang, X.; Guo, C.; Wang, K.; Song, D.; Zhang, J.; Qi, W. New Fourier expansion for thermal buckling analysis of rectangular thin plates with various edge restraints. Arch. Appl. Mech. 2023, 93, 3411–3426. [Google Scholar] [CrossRef]
- Green, A.E. Double Fourier series and boundary value problems. Math. Proc. Camb. Philos. Soc. 1944, 40, 222–228. [Google Scholar] [CrossRef]
- Latifi, M.; Farhatnia, F.; Kadkhodaei, M. Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion. Eur. J. Mech.-A/Solids 2013, 41, 16–27. [Google Scholar] [CrossRef]
b/a | Method | Mode | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | ||
0.5 | Present | 90.573 | 104.12 | 135.07 | 186.88 | 247.59 | 260.38 | 263.77 | 296.88 | 348.49 | 355.27 |
FEM | 90.528 | 104.07 | 135.01 | 187.03 | 247.49 | 260.31 | 263.66 | 296.75 | 348.33 | 355.16 | |
1 | Present | 23.930 | 40.012 | 63.248 | 76.725 | 80.602 | 116.69 | 122.29 | 134.47 | 140.30 | 172.90 |
FEM | 23.918 | 39.991 | 63.216 | 76.704 | 80.562 | 116.64 | 122.23 | 134.43 | 140.23 | 172.83 | |
1.5 | Present | 11.838 | 29.283 | 29.305 | 47.419 | 55.498 | 67.735 | 74.141 | 84.933 | 90.430 | 109.37 |
FEM | 11.832 | 29.269 | 29.292 | 47.395 | 55.470 | 67.721 | 74.104 | 84.907 | 90.385 | 109.32 | |
2 | Present | 7.7778 | 17.544 | 25.860 | 32.231 | 36.036 | 51.210 | 51.835 | 64.926 | 71.104 | 74.341 |
FEM | 7.7748 | 17.536 | 26.232 | 32.215 | 36.018 | 51.184 | 51.809 | 64.915 | 71.069 | 74.322 | |
2.5 | Present | 6.0112 | 12.179 | 21.526 | 24.386 | 30.850 | 34.042 | 40.666 | 49.708 | 53.519 | 63.697 |
FEM | 6.0094 | 12.173 | 21.516 | 24.375 | 30.835 | 34.025 | 40.646 | 49.682 | 53.493 | 63.688 | |
3 | Present | 5.1190 | 9.3197 | 15.766 | 23.620 | 24.416 | 28.080 | 34.928 | 35.292 | 43.970 | 48.319 |
FEM | 5.1179 | 9.3158 | 15.759 | 23.609 | 24.404 | 28.066 | 34.911 | 35.275 | 43.949 | 48.294 | |
3.5 | Present | 4.6193 | 7.6354 | 12.329 | 18.653 | 23.175 | 26.425 | 26.597 | 31.506 | 36.158 | 38.206 |
FEM | 4.6185 | 7.6326 | 12.324 | 18.643 | 23.165 | 26.413 | 26.584 | 31.491 | 36.140 | 38.188 | |
4 | Present | 4.3164 | 6.5702 | 10.126 | 14.938 | 20.995 | 22.896 | 25.364 | 28.296 | 29.269 | 34.447 |
FEM | 4.3159 | 6.5681 | 10.121 | 14.931 | 20.985 | 22.886 | 25.352 | 28.282 | 29.255 | 34.431 | |
4.5 | Present | 4.1210 | 5.8595 | 8.6357 | 12.412 | 17.176 | 22.708 | 22.923 | 24.646 | 27.735 | 29.656 |
FEM | 4.1207 | 5.8579 | 8.6323 | 12.406 | 17.167 | 22.698 | 22.911 | 24.635 | 27.722 | 29.641 | |
5 | Present | 3.9884 | 5.3648 | 7.5855 | 10.621 | 14.460 | 19.098 | 22.575 | 24.135 | 24.533 | 26.643 |
FEM | 3.9881 | 5.3636 | 7.5827 | 10.616 | 14.453 | 19.089 | 22.565 | 24.124 | 24.521 | 26.630 |
b/a | Method | Mode | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | ||
0.5 | Present | 62.676 | 73.674 | 103.00 | 155.50 | 171.30 | 184.77 | 211.18 | 230.47 | 257.00 | 324.66 |
FEM | 62.642 | 73.634 | 102.96 | 155.43 | 171.22 | 184.68 | 211.08 | 230.40 | 256.86 | 324.50 | |
1 | Present | 16.330 | 31.326 | 43.269 | 57.299 | 68.858 | 84.012 | 91.278 | 98.204 | 127.30 | 129.56 |
FEM | 16.322 | 31.310 | 43.246 | 57.269 | 68.843 | 83.968 | 91.244 | 98.152 | 127.26 | 129.50 | |
1.5 | Present | 8.1418 | 19.810 | 25.375 | 35.630 | 37.770 | 52.846 | 61.836 | 64.447 | 73.038 | 76.747 |
FEM | 8.1384 | 19.800 | 25.363 | 35.612 | 37.749 | 52.819 | 61.803 | 64.434 | 73.018 | 76.707 | |
2 | Present | 5.5800 | 11.783 | 21.728 | 23.704 | 28.900 | 35.171 | 37.919 | 50.794 | 52.058 | 63.138 |
FEM | 5.5784 | 11.777 | 21.717 | 23.693 | 28.886 | 35.153 | 37.900 | 50.767 | 52.031 | 63.126 | |
2.5 | Present | 4.5790 | 8.2190 | 14.411 | 22.919 | 23.031 | 26.110 | 31.503 | 33.661 | 39.336 | 46.611 |
FEM | 4.5783 | 8.2156 | 14.403 | 22.907 | 23.020 | 26.098 | 31.487 | 33.644 | 39.315 | 46.586 | |
3 | Present | 4.1296 | 6.4037 | 10.527 | 16.335 | 22.697 | 23.730 | 24.720 | 28.258 | 32.674 | 33.433 |
FEM | 4.1292 | 6.4015 | 10.522 | 16.327 | 22.686 | 23.718 | 24.709 | 28.244 | 32.657 | 33.416 | |
3.5 | Present | 3.9037 | 5.3969 | 8.2637 | 12.426 | 17.793 | 22.508 | 23.935 | 24.318 | 26.419 | 30.054 |
FEM | 3.9035 | 5.3956 | 8.2603 | 12.421 | 17.784 | 22.497 | 23.924 | 24.305 | 26.407 | 30.039 | |
4 | Present | 3.7789 | 4.8034 | 6.8588 | 9.9434 | 13.984 | 18.932 | 22.390 | 23.451 | 24.763 | 25.286 |
FEM | 3.7789 | 4.8025 | 6.8563 | 9.9390 | 13.977 | 18.922 | 22.380 | 23.440 | 24.750 | 25.274 | |
4.5 | Present | 3.7043 | 4.4355 | 5.9467 | 8.2879 | 11.412 | 15.273 | 19.845 | 22.312 | 23.131 | 24.540 |
FEM | 3.7043 | 4.4349 | 5.9449 | 8.2846 | 11.407 | 15.266 | 19.835 | 22.302 | 23.121 | 24.529 | |
5 | Present | 3.6569 | 4.1972 | 5.3335 | 7.1437 | 9.6074 | 12.686 | 16.354 | 20.592 | 22.258 | 22.909 |
FEM | 3.6569 | 4.1968 | 5.3322 | 7.1411 | 9.6031 | 12.680 | 16.345 | 20.582 | 22.248 | 22.899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Li, A.; Wu, Y.; Yin, Z.; Ullah, S. New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method. Buildings 2024, 14, 687. https://doi.org/10.3390/buildings14030687
Wu Z, Li A, Wu Y, Yin Z, Ullah S. New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method. Buildings. 2024; 14(3):687. https://doi.org/10.3390/buildings14030687
Chicago/Turabian StyleWu, Zhaoying, An Li, Yu Wu, Zhiming Yin, and Salamat Ullah. 2024. "New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method" Buildings 14, no. 3: 687. https://doi.org/10.3390/buildings14030687
APA StyleWu, Z., Li, A., Wu, Y., Yin, Z., & Ullah, S. (2024). New Natural Frequency Studies of Orthotropic Plates by Adopting a Two-Dimensional Modified Fourier Series Method. Buildings, 14(3), 687. https://doi.org/10.3390/buildings14030687