Interaction Mechanism of Cementitious Composites Containing Different Twisted PVA Fiber Bundles
Abstract
:1. Introduction
2. Testing Design
2.1. Materials of TLTP-FRCC
2.2. Microstructure of the PVA Fiber Bundle
2.3. Specimen Design and Preparation
3. Flexural Behavior Testing
4. Results
4.1. Macroscopic Phenomena of Bending Damage
4.2. Flexural Toughness and Load–Deflection Curve
4.2.1. Toughness Evaluation
4.2.2. Bundle Number
4.2.3. Twist Factor
4.3. Microscopic Phenomena of Bending Damage
5. Discussion
6. Conclusions
- (1)
- During the initial stage of the bending test, where the deflection was relatively small, the flexural properties and energy consumption capacities of the specimen increased with an increase in the fiber bundles. However, as the vertical deflection became larger, fiber bundles with an insufficient twist factor had a greater negative impact due to insufficient bonding with the matrix, leading to poorer flexural behavior of the specimen. Conversely, specimens with sufficient twisting can overcome this effect and fully utilize the reinforcing effect of the fiber bundles.
- (2)
- By increasing the contact area and roughness of the contact surface between the PVA fibers and the cementitious composite matrix, twisting the fibers can improve the flexural properties and bending toughness of FRCC. However, excessively high twist factors can lead to relatively thick fiber bundles, which can be more sensitive to defects in the height direction of specimens with small height-to-width ratios, resulting in a deterioration of flexural behavior. This problem can be addressed through the overall cross-sectional effect of multiple fiber bundles.
- (3)
- To better compare the effect of the fiber twist factor on the interaction mechanism of specimens, this study only considered conditions with a low number of fiber bundles, resulting in a lower fiber volume dosage. Nevertheless, the flexural performance and energy consumption capacity of the specimens were significantly enhanced with the appropriate matching of the twist factor and bundle number. This enhancement included a 36% increase in deflection, 68% higher equivalent bending stress, and a 119% rise in energy consumption compared to the untwisted PVA fiber specimens.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sonat, C.; Kumar, D.; Koh, W.C.; Li, J.X.; Unluer, C.; Yang, E.H. Strain hardening magnesium-silicate-hydrate composites with extremely low fiber dosage of 0.5% by volume. Cem. Concr. Compos. 2023, 142, 105200. [Google Scholar] [CrossRef]
- Zhang, P.; Han, X.; Zheng, Y.X.; Wan, J.Y.; Hui, D. Effect of PVA fiber on mechanical properties of fly ash-based geopolymer concrete. Rev. Adv. Mater. Sci. 2021, 60, 418–437. [Google Scholar] [CrossRef]
- Li, L.; Wei, Y.J.; Feng, Q.; Liu, F.; Liu, B.; Pu, B.C. A review: Progress in molecular dynamics simulation of portland cement (geopolymer)-based composites and the interface between these matrices and reinforced material. Buildings 2023, 13, 1875. [Google Scholar] [CrossRef]
- Zhou, A.; Yu, Z.C.; Wei, H.N.; Tam, L.H.; Liu, T.J.; Zou, D.J. Understanding the toughening mechanism of silane coupling agents in the interfacial bonding in steel fiber-reinforced cementitious composites. ACS Appl. Mater. Interfaces 2020, 12, 44163–44171. [Google Scholar] [CrossRef]
- Zhang, H.M.; Hu, F.; Duan, Y.F.; Shi, D.W.; Hu, G.M. Metaheuristic optimization algorithm for rapid parameter identification of the Bouc-Wen model for self-centering shear walls. Int. J. Struct. Stab. Dyn. 2022, 22, 2350041. [Google Scholar] [CrossRef]
- Zeybek, O.; Ozkilic, Y.O.; Celik, A.I.; Deifalla, A.F.; Ahmad, M.; Sabri, M.M.S. Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire. Front. Mater. 2022, 9, 1057128. [Google Scholar] [CrossRef]
- Ozkilic, Y.O.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Chernil’nik, A.; Ananova, O.; Aksoylu, C.; Madenci, E. Lightweight expanded-clay fiber concrete with improved characteristics reinforced with short natural fibers. Case Stud. Constr. Mater. 2023, 19, e02367. [Google Scholar]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’nik, A.; Ozkilic, Y.O.; Aksoylu, C. Normal-weight concrete with improved stress-strain characteristics reinforced with dispersed coconut fibers. Appl. Sci. 2022, 12, 11734. [Google Scholar] [CrossRef]
- Tran, T.K.; Kim, D.J.; Choi, E. Behavior of double-edge-notched specimens made of high performance fiber reinforced cementitious composites subject to direct tensile loading with high strain rates. Cem. Concr. Res. 2014, 63, 54–66. [Google Scholar] [CrossRef]
- Yao, X.L.; Pei, Z.Y.; Zheng, H.Y.; Guan, Q.Z.; Wang, F.P.; Wang, S.; Ji, Y.C. Review of mechanical and temperature properties of fiber reinforced recycled aggregate concrete. Buildings 2022, 12, 1224. [Google Scholar] [CrossRef]
- Zhang, K.; Ni, T.; Zhang, J.; Wang, W.; Chen, X.; Zaccariotto, M.; Yin, W.; Zhu, S.X.; Galvanetto, U. Experimental and hybrid FEM/peridynamic study on the fracture of ultra-high-performance concretes reinforced by different volume fractions of polyvinyl alcohol fibers. Polymers 2023, 15, 501. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.; Thenmozhi, R.; Raman, S.N.; Subramanian, C. Characterization of eco-friendly steel fiber-reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement. Struct. Concr. 2020, 21, 437–447. [Google Scholar] [CrossRef]
- Sekar, K.C.; Murugesan, R.; Sivaraja, M.; Prakash, R. Development of sustainable concrete from hypo sludge combined with basalt fibre and latex. Sustainability 2023, 15, 10986. [Google Scholar] [CrossRef]
- Tran, T.K.; Kim, D.J. High strain rate effects on direct tensile behavior of high performance fiber reinforced cementitious composites. Cem. Concr. Compos. 2014, 45, 186–200. [Google Scholar] [CrossRef]
- Shao, Y.; Billington, S.L. Predicting the two predominant flexural failure paths of longitudinally reinforced high-performance fiber-reinforced cementitious composite structural members. Eng. Struct. 2019, 199, 109581. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Banthia, N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Concr. Compos. 2016, 73, 267–280. [Google Scholar] [CrossRef]
- Prakash, R.; Divyah, N.; Srividhya, S.; Avudaiappan, S.; Amran, M.; Raman, S.N.; Guindos, P.; Vatin, N.I.; Fediuk, R. Effect of steel fiber on the strength and flexural characteristics of coconut shell concrete partially blended with fly ash. Materials 2022, 15, 4272. [Google Scholar] [CrossRef]
- Divyah, N.; Thenmozhi, R.; Neelamegam, M.; Prakash, R. Characterization and behavior of basalt fiber-reinforced lightweight concrete. Struct. Concr. 2021, 22, 422–430. [Google Scholar] [CrossRef]
- Shao, Y.; Nguyen, W.; Bandelt, M.J.; Ostertag, C.P.; Billington, S.L. Seismic performance of high-performance fiber-reinforced cement-based composite structural members: A review. J. Struct. Eng. 2022, 148, 03122004. [Google Scholar] [CrossRef]
- Hou, L.J.; Xu, R.; Chen, D.; Xu, S.L.; Aslani, F. Seismic behavior of reinforced engineered cementitious composite members and reinforced concrete/engineered cementitious composite members: A review. Struct. Concr. 2020, 21, 199–219. [Google Scholar] [CrossRef]
- Noushini, A.; Samali, B.; Vessalas, K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr. Build. Mater. 2013, 49, 374–383. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Y.H.; Wang, J.; Jiao, M.J.; Ling, Y.F. Fracture models and effect of fibers on fracture properties of cementitious composites-a review. Materials 2020, 13, 5495. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, F.X.; Yang, H.M.; Wang, Y.; Tang, S.W. Comparison of fly ash, PVA fiber, MgO and shrinkage-reducing admixture on the frost resistance of face slab concrete via pore structural and fractal analysis. Fractals-Complex Geom. Patterns Scaling Nat. Soc. 2021, 29, 2140002. [Google Scholar] [CrossRef]
- Ding, C.; Guo, L.P.; Chen, B. An optimum polyvinyl alcohol fiber length for reinforced high ductility cementitious composites based on theoretical and experimental analyses. Constr. Build. Mater. 2020, 259, 119824. [Google Scholar] [CrossRef]
- Qiu, J.S.; Lim, X.N.; Yang, E.H. Fatigue-induced deterioration of the interface between micro-polyvinyl alcohol (PVA) fiber and cement matrix. Cem. Concr. Res. 2016, 90, 127–136. [Google Scholar] [CrossRef]
- Cao, M.; Xie, C.; Li, L.; Khan, M. Effect of different PVA and steel fiber length and content on mechanical properties of CaCO3 whisker reinforced cementitious composites. Mater. Constr. 2019, 69, e200. [Google Scholar] [CrossRef]
- Wang, D.; Che, J.L.; Liu, H.F.; Chin, S.C. Enhanced ductility and toughness of desert sand engineered cementitious composites. Buildings 2023, 13, 1538. [Google Scholar] [CrossRef]
- Kim, J.; Lee, G.P.; Moon, D.Y. Evaluation of mechanical properties of steel-fibre-reinforced concrete exposed to high temperatures by double-punch test. Constr. Build. Mater. 2015, 79, 182–191. [Google Scholar] [CrossRef]
- Naaman, A.E. Engineered steel fibers with optimal properties for reinforcement of cement composites. J. Adv. Concr. Technol. 2003, 1, 241–252. [Google Scholar] [CrossRef]
- Karalar, M.; Ozkilic, Y.O.; Deifalla, A.F.; Aksoylu, C.; Arslan, M.H.; Ahmad, M.; Sabri, M.M.S. Improvement in bending performance of reinforced concrete beams produced with waste lathe scraps. Sustainability 2022, 14, 12660. [Google Scholar] [CrossRef]
- Chen, J.H.; Pakdel, E.; Xie, W.J.; Sun, L.; Xu, M.Y.; Liu, Q.Z.; Wang, D. High-performance natural melanin/poly(vinyl alcohol-co-ethylene) nanofibers/PA6 fiber for twisted and coiled fiber-based actuator. Adv. Fiber Mater. 2020, 2, 64–73. [Google Scholar] [CrossRef]
- Haines, C.S.; Lima, M.D.; Li, N.; Spinks, G.M.; Foroughi, J.; Madden, J.D.W.; Kim, S.H.; Fang, S.L.; de Andrade, M.J.; Goktepe, F.; et al. Artificial muscles from fishing line and sewing thread. Science 2014, 343, 868–872. [Google Scholar] [CrossRef]
- Yuan, J.K.; Poulin, P. Fibers do the twist. Science 2014, 343, 845–846. [Google Scholar] [CrossRef] [PubMed]
- Du, W.P.; Yang, C.Q.; Wang, C.; Pan, Y.; Zhang, H.L.; Yuan, W.W. Flexural behavior of polyvinyl alcohol fiber-reinforced ferrocement cementitious composite. J. Mater. Civ. Eng. 2021, 33, 04021040. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, M.K.; Yang, J.S.; Zhang, Y.X. Experimental study on the shear behavior of reinforced highly ductile fiber-reinforced concrete beams with stirrups. Buildings 2022, 12, 1264. [Google Scholar] [CrossRef]
- Guo, L.; Berglin, L.; Mattila, H. Improvement of electro-mechanical properties of strain sensors made of elastic-conductive hybrid yarns. Text. Res. J. 2012, 82, 1937–1947. [Google Scholar] [CrossRef]
- Pang, Z.M.; Lu, C.; Liu, J.X.; Yao, Y.M.; Wang, J.J. Experimental study of tensile properties of strain-hardening cementitious composites (SHCCs) reinforced with innovative twisted basalt fibers. Structures 2023, 48, 1977–1988. [Google Scholar] [CrossRef]
- Cao, M.L.; Xie, C.P.; Guan, J.F. Fracture behavior of cement mortar reinforced by hybrid composite fiber consisting of CaCO3 whiskers and PVA-steel hybrid fibers. Compos. Pt. A Appl. Sci. Manuf. 2019, 120, 172–187. [Google Scholar] [CrossRef]
- Qsymah, A.; Sharma, R.; Yang, Z.; Margetts, L.; Mummery, P. Micro X-ray computed tomography image-based two-scale homogenisation of ultra high performance fibre reinforced concrete. Constr. Build. Mater. 2017, 130, 230–240. [Google Scholar] [CrossRef]
- Ye, J.D.; Liu, G.H. Pullout response of ultra-high-performance concrete with twisted steel fibers. Appl. Sci. 2019, 9, 658. [Google Scholar] [CrossRef]
- ISO 679; Cement–Test Methods–Determination of Strength. ISO: Geneva, Switzerland, 2009.
- ASTM C1609/C1609M-19a; Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2019.
- Kim, D.J.; Naaman, A.E.; El-Tawil, S. Comparative flexural behavior of four fiber reinforced cementitious composites. Cem. Concr. Compos. 2008, 30, 917–928. [Google Scholar] [CrossRef]
- Laverde, V.; Marin, A.; Benjumea, J.M.; Ortiz, M.R. Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review. Constr. Build. Mater. 2022, 340, 127729. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, S.Y.; Wu, J.J.; Zhang, Y.; Zheng, Y.X. Investigation of mechanical properties of PVA fiber-reinforced cementitious composites under the coupling effect of wet-thermal and chloride salt environment. Case Stud. Constr. Mater. 2022, 17, e01325. [Google Scholar] [CrossRef]
Diameter (μm) | Tensile Strength (MPa) | Elongation (%) | Elastic Modulus (Gpa) |
---|---|---|---|
17 | 1600 | 6–8 | 40 |
Silicate Cement | Fly Ash | Silica Fume | Medium Sand | Water |
---|---|---|---|---|
702.6 | 122.2 | 61.1 | 1197.5 | 301.2 |
Specimens | Bundles | Twist Factor |
---|---|---|
B-1-1-(1–3) | 1 | 0 |
B-2-1-(1–3) | 2 | |
B-3-1-(1–3) | 3 | |
B-1-2-(1–3) | 1 | 50 |
B-2-2-(1–3) | 2 | |
B-3-2-(1–3) | 3 | |
B-1-3-(1–3) | 1 | 100 |
B-2-3-(1–3) | 2 | |
B-3-3-(1–3) | 3 | |
B-1-4-(1–3) | 1 | 150 |
B-2-4-(1–3) | 2 | |
B-3-4-(1–3) | 3 |
Deflection | Indicator | B-1-1 | B-1-2 | B-1-3 | B-1-4 |
---|---|---|---|---|---|
L/1000 | (mm) | 0.12 | 0.12 | 0.12 | 0.12 |
(kN) | 0.15 | 0.20 | 0.15 | 0.31 | |
(MPa) a | 2.04 | 2.65 | 2.04 | 4.08 | |
(J) b | 0.0083 | 0.0108 | 0.0088 | 0.0147 | |
L/600 | (mm) | 0.20 | 0.20 | 0.20 | 0.20 |
(kN) | 0.32 | 0.33 | 0.33 | 0.56 | |
(MPa) | 4.33 | 4.40 | 4.39 | 7.49 | |
(J) | 0.0274 | 0.0310 | 0.0263 | 0.0494 | |
LOP | (mm) | 0.25 | 0.30 | 0.34 | 0.21 |
(kN) | 0.46 | 0.70 | 0.77 | 0.60 | |
(MPa) | 6.10 | 9.37 | 10.25 | 8.06 | |
(J) | 0.0453 | 0.0835 | 0.0991 | 0.0563 |
Deflection | Indicator | B-2-1 | B-2-2 | B-2-3 | B-2-4 |
---|---|---|---|---|---|
L/1000 | (mm) | 0.12 | 0.12 | 0.12 | 0.12 |
(kN) | 0.15 | 0.23 | 0.19 | 0.31 | |
(MPa) a | 1.99 | 3.12 | 2.57 | 4.09 | |
(J) b | 0.0086 | 0.0131 | 0.0111 | 0.0169 | |
L/600 | (mm) | 0.20 | 0.20 | 0.20 | 0.20 |
(kN) | 0.33 | 0.45 | 0.37 | 0.57 | |
(MPa) | 4.34 | 6.03 | 4.95 | 7.55 | |
(J) | 0.0279 | 0.0401 | 0.0334 | 0.0518 | |
LOP | (mm) | 0.23 | 0.25 | 0.30 | 0.22 |
(kN) | 0.40 | 0.57 | 0.68 | 0.64 | |
(MPa) | 5.37 | 7.57 | 9.01 | 8.55 | |
(J) | 0.0402 | 0.0659 | 0.0882 | 0.0646 |
Deflection | Indicator | B-3-1 | B-3-2 | B-3-3 | B-3-4 |
---|---|---|---|---|---|
L/1000 | (mm) | 0.12 | 0.12 | 0.12 | 0.12 |
(kN) | 0.16 | 0.26 | 0.23 | 0.32 | |
(MPa) a | 2.20 | 3.47 | 3.07 | 4.25 | |
(J) b | 0.0099 | 0.0158 | 0.0142 | 0.0173 | |
L/600 | (mm) | 0.20 | 0.20 | 0.20 | 0.20 |
(kN) | 0.37 | 0.41 | 0.44 | 0.63 | |
(MPa) | 4.88 | 5.51 | 5.82 | 8.39 | |
(J) | 0.0305 | 0.0431 | 0.0405 | 0.0546 | |
LOP | (mm) | 0.21 | 0.23 | 0.25 | 0.22 |
(kN) | 0.38 | 0.46 | 0.57 | 0.73 | |
(MPa) | 5.13 | 6.10 | 7.59 | 9.77 | |
(J) | 0.0324 | 0.0545 | 0.0662 | 0.0711 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Hu, F.; Duan, Y.; Yang, J.; Duan, Z.; Cao, L. Interaction Mechanism of Cementitious Composites Containing Different Twisted PVA Fiber Bundles. Buildings 2023, 13, 2194. https://doi.org/10.3390/buildings13092194
Zhang H, Hu F, Duan Y, Yang J, Duan Z, Cao L. Interaction Mechanism of Cementitious Composites Containing Different Twisted PVA Fiber Bundles. Buildings. 2023; 13(9):2194. https://doi.org/10.3390/buildings13092194
Chicago/Turabian StyleZhang, Hongmei, Fan Hu, Yuanfeng Duan, Jiaqi Yang, Zhengteng Duan, and Lening Cao. 2023. "Interaction Mechanism of Cementitious Composites Containing Different Twisted PVA Fiber Bundles" Buildings 13, no. 9: 2194. https://doi.org/10.3390/buildings13092194
APA StyleZhang, H., Hu, F., Duan, Y., Yang, J., Duan, Z., & Cao, L. (2023). Interaction Mechanism of Cementitious Composites Containing Different Twisted PVA Fiber Bundles. Buildings, 13(9), 2194. https://doi.org/10.3390/buildings13092194