Multi-Level Numerical Modelling and Analysis of Tile Vaults
Abstract
1. Introduction
2. Experimental Tests and Generated Data
2.1. Material Properties
2.2. Load Tests of Vaults
3. Modelling of the Structural Performance of the Vault
3.1. Limit Analysis
3.2. Macro-Modelling Approach
3.3. Simplified Micro-Modelling Approach
3.4. Comparison of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Truñó, Á. Construcción de Bóvedas Tabicadas; The Library of the Col·legi d’Arquitectes de Catalunya: Barcelona, Spain, 1951. [Google Scholar]
- Bergós, J. Tabicados Huecos: Bases Para Las Dimensiones de Las Bóvedas y Cubiertas Del Templo Expiatorio de La Sagrada Familia; Col·legi d’Arquitectes de Catalunya i Balears: Barcelona, Spain, 1965. [Google Scholar]
- Choisy, A. Histoire de l’architecture, Tome Premier; Éditions Vincent, Fréal & Cie (Ed. 1955): Paris, France, 1899. [Google Scholar]
- Collins, G.R. The Transfer of Thin Masonry Vaulting from Spain to America. J. Soc. Archit. Hist. 1968, 27, 176–201. [Google Scholar] [CrossRef]
- Araguas, P. Voûte à La Roussillon. Butlletí R. Acadèmia Catalana Belles Arts St. Jordi 1999, 13, 173–185. [Google Scholar]
- Fortea, M. Origen de La Bóveda Tabicada. In Proceedings of the Sexto Congreso Nacional de Historia de la Construcción, Valencia, Spain, 21–24 October 2009; Instituto Juan de Herrera: Madrid, Spain, 2009; pp. 491–500. [Google Scholar]
- González Moreno-Navarro, J.L. La Bóveda Tabicada: Pasado y Futuro de Un Elemento de Gran Valor Patrimonial. In Truñó, A. Construcción de Bóvedas Tabicadas; Instituto Juan de Herrera: Madrid, Spain, 2004; pp. 11–60. [Google Scholar]
- Ochsendorf, J. Guastavino Vaulting: The Art of Structural Tile; Reprint edition; Princeton Architectural Press: New York, NY, USA, 2013; ISBN 978-1-61689-244-9. [Google Scholar]
- Douglas, I.; Napolitano, R.; Garlock, M.; Glisic, B. Reconsidering the Vaulted Forms of Cuba’s National School of Ballet. In Structural Analysis of Historical Constructions; Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 2150–2158. [Google Scholar]
- Douglas, I.; Napolitano, R.K.; Garlock, M.; Glisic, B. Cuba’s National School of Ballet: Redefining a Structural Icon. Eng. Struct. 2020, 204, 110040. [Google Scholar] [CrossRef]
- Al Asali, M.W.; Couret, D.G.; Ramage, M.H. Beyond the National Art Schools: Thin-Tile Vaulting in Cuba after the Revolution. J. Soc. Archit. Hist. 2021, 80, 321–345. [Google Scholar] [CrossRef]
- Del Curto, D.; Celli, S. The Treachery of Images: Redefining the Structural System of Havana’s National Art Schools. Sustainability 2021, 13, 3767. [Google Scholar] [CrossRef]
- Hughes, M.; Celli, S.; Heubner, C.; Garlock, M.; Ottoni, F.; Del Curto, D.; Wang, S.; Glisić, B. Nonlinear Finite-Element Analysis for Structural Investigation and Preservation of Reinforced Hybrid Thin Tile–Concrete Domes of the Historic School of Ballet Classrooms in Havana, Cuba. J. Perform. Constr. Facil. 2023, 37, 04022074. [Google Scholar] [CrossRef]
- Block, P.; Van Mele, T.; Rippmann, M.; Ranaudo, F.; Calvo Barentin, C.; Paulson, N. Redefining Structural Art: Strategies, Necessities and Opportunities. Struct. Eng. 2020, 98, 66–72. [Google Scholar] [CrossRef]
- De Wolf, C.; Ramage, M.; Ochsendorf, J. Low Carbon Vaulted Masonry Structures. J. Int. Assoc. Shell Spat. Struct. 2016, 57, 275–284. [Google Scholar] [CrossRef]
- Leo Samuel, D.G.; Dharmasastha, K.; Shiva Nagendra, S.M.; Maiya, M.P. Thermal Comfort in Traditional Buildings Composed of Local and Modern Construction Materials. Int. J. Sustain. Built Environ. 2017, 6, 463–475. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Truong, N.S.H.; Rockwood, D.; Tran Le, A.D. Studies on Sustainable Features of Vernacular Architecture in Different Regions across the World: A Comprehensive Synthesis and Evaluation. Front. Archit. Res. 2019, 8, 535–548. [Google Scholar] [CrossRef]
- Mumtaz, K.K.; Ahmed, H. The Shrine of Baba Hassan Din, Lahore. J. Tradit. Build. Archit. Urban. 2022, 3, 30–45. [Google Scholar] [CrossRef]
- Rashid, M.; Ara, D.R. Modernity in Tradition: Reflections on Building Design and Technology in the Asian Vernacular. Front. Archit. Res. 2015, 4, 46–55. [Google Scholar] [CrossRef]
- Özdeniz, M.B.; Bekleyen, A.; Gönül, I.A.; Gönül, H.; Sarigül, H.; Ilter, T.; Dalkiliç, N.; Yildirim, M. Vernacular Domed Houses of Harran, Turkey. Habitat Int. 1998, 22, 477–485. [Google Scholar] [CrossRef]
- Keskin, K.; Erbay, M. A Study on the Sustainable Architectural Characteristics of Traditional Anatolian Houses and Current Building Design Precepts. Procedia Soc. Behav. Sci. 2016, 216, 810–817. [Google Scholar] [CrossRef][Green Version]
- Karabag, N.E.; Fellahi, N. Learning from Casbah of Algiers for More Sustainable Environment. Energy Procedia 2017, 133, 95–108. [Google Scholar] [CrossRef]
- Dayaratne, R. Toward Sustainable Development: Lessons from Vernacular Settlements of Sri Lanka. Front. Archit. Res. 2018, 7, 334–346. [Google Scholar] [CrossRef]
- Barbero-Barrera, M.M.; Gil-Crespo, I.J.; Maldonado-Ramos, L. Historical Development and Environment Adaptation of the Traditional Cave-Dwellings in Tajuña’s Valley, Madrid, Spain. Build. Environ. 2014, 82, 536–545. [Google Scholar] [CrossRef]
- Almssad, A.; Almusaed, A. Environmental Reply to Vernacular Habitat Conformation from a Vast Areas of Scandinavia. Renew. Sustain. Energy Rev. 2015, 48, 825–834. [Google Scholar] [CrossRef]
- López López, D. The Formwork as a Major Challenge in the Fabrication of Efficient, Economical and Sustainable Concrete Slabs. Blog of the Chair of Concrete Structures and Bridge Design, IBK, ETH Zurich; ETH Zürich: Zürich, Switzerland, 2022. [Google Scholar]
- López López, D.; Van Mele, T.; Block, P. Tile vaulting in the 21st century. Inf. Construcción 2016, 68, e162. [Google Scholar] [CrossRef]
- Davis, L.; Rippmann, M.; Pawlofsky, T.; Block, P. Innovative funicular tile vaulting: A prototype vault in Switzerland. Struct. Eng. 2012, 90, 46–56. [Google Scholar]
- López López, D.; Domènech Rodríguez, M.; Palumbo Fernández, M. “Brick-Topia”, the Thin-Tile Vaulted Pavilion. Case Stud. Struct. Eng. 2014, 2, 33–40. [Google Scholar] [CrossRef]
- Ramage, M.; Hall, T.J.; Gatóo, A.; Al Asali, M.W. Rwanda Cricket Stadium: Seismically Stabilised Tile Vaults. Structures 2019, 18, 2–9. [Google Scholar] [CrossRef]
- Ramage, M.H.; Gatóo, A.; Al Asali, M.W. Complex Simplicity—Design of Innovative Sustainable Thin-Shell Masonry Structures. In From Corbel Arches to Double Curvature Vaults: Analysis, Conservation and Restoration of Architectural Heritage Masonry Structures; Milani, G., Sarhosis, V., Eds.; Research for Development; Springer International Publishing: Cham, Switzerland, 2022; pp. 257–281. ISBN 978-3-031-12873-8. [Google Scholar]
- López López, D.; Van Mele, T.; Block, P. The Combination of Tile Vaults with Reinforcement and Concrete. Int. J. Archit. Herit. 2019, 13, 782–798. [Google Scholar] [CrossRef]
- Dejong, M.; Ramage, M.; Travers, B.; Terry, S. Testing and Analysis of Geogrid-Reinforced Thin-Shell Masonry. In Proceedings of the 35th Annual Symposium of IABSE/52nd Annual Symposium of IASS/6th International Conference on Space Structures, London, UK, 20–23 September 2011. [Google Scholar]
- Ramage, M.; Dejong, M. Design and Construction of Geogrid-Reinforced Thin-Shell Masonry. In Proceedings of the 35th Annual Symposium of IABSE/52nd Annual Symposium of IASS/6th International Conference on Space Structures, London, UK, 20–23 September 2011. [Google Scholar]
- López López, D.; Bernat-Maso, E.; Gil, L.; Roca, P. Experimental Testing of a Composite Structural System Using Tile Vaults as Integrated Formwork for Reinforced Concrete. Constr. Build. Mater. 2021, 300, 123974. [Google Scholar] [CrossRef]
- López López, D.; Roca, P.; Liew, A.; Van Mele, T.; Block, P. Tile Vaults as Integrated Formwork for Reinforced Concrete: Construction, Experimental Testing and a Method for the Design and Analysis of Two-Dimensional Structures. Eng. Struct. 2019, 188, 233–248. [Google Scholar] [CrossRef]
- López López, D.; Bernat-Maso, E.; Saloustros, S.; Gil, L.; Roca, P. Experimental Testing and Structural Analysis of Composite Tile—Reinforced Concrete Domes. Eng. Struct. 2023, 292, 116512. [Google Scholar] [CrossRef]
- Ramage, M.H.; Hall, T.; Rich, P. Light Earth Designs: Natural Material, Natural Structure. In Earthen Architecture: Past, Present and Future; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-0-429-22678-6. [Google Scholar]
- Bertolesi, E.; Torres, B.; Adam, J.M.; Calderón, P.A.; Moragues, J.J. Effectiveness of Textile Reinforced Mortar (TRM) Materials for the Repair of Full-Scale Timbrel Masonry Cross Vaults. Eng. Struct. 2020, 220, 110978. [Google Scholar] [CrossRef]
- Bertolesi, E.; Milani, G.; Adam, J.M.; Calderón, P.A. 3D Advanced Numerical Modelling of a Catalan-Layered Masonry Vault Unreinforced and Reinforced with Glass-TRM Materials and Subjected to Vertical Support Movements. In Proceedings of the 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, 28–30 June 2021; pp. 415–422. [Google Scholar]
- Castori, G.; Borri, A.; Corradi, M. Behavior of Thin Masonry Arches Repaired Using Composite Materials. Compos. Part B Eng. 2016, 87, 311–321. [Google Scholar] [CrossRef]
- Corradi, M.; Castori, G.; Borri, A. A New Method for Strengthening Tiled Vaults: “Reinforced Catalan Vaulting”. In Proceedings of the 9th International Masonry Conference, Guimarães, Portugal, 7–9 July 2014. [Google Scholar]
- Savino, V.; Franciosi, M.; Viviani, M. Engineering and Analyses of a Novel Catalan Vault. Eng. Fail. Anal. 2023, 143, 106841. [Google Scholar] [CrossRef]
- Heyman, J. The Stone Skeleton. Int. J. Solids Struct. 1966, 2, 249–279. [Google Scholar] [CrossRef]
- Andreu, A.; Gil, L.; Roca, P. Computational Analysis of Masonry Structures with a Funicular Model. J. Eng. Mech. 2007, 133, 473–480. [Google Scholar] [CrossRef]
- Block, P.; Lachauer, L. Three-Dimensional (3D) Equilibrium Analysis of Gothic Masonry Vaults. Int. J. Archit. Herit. 2014, 8, 312–335. [Google Scholar] [CrossRef]
- Block, P.; Ciblac, T.; Ochsendorf, J. Real-Time Limit Analysis of Vaulted Masonry Buildings. Comput. Struct. 2006, 84, 1841–1852. [Google Scholar] [CrossRef]
- Fraternali, F. A Thrust Network Approach to the Equilibrium Problem of Unreinforced Masonry Vaults via Polyhedral Stress Functions. Mech. Res. Commun. 2010, 37, 198–204. [Google Scholar] [CrossRef]
- Bertolesi, E.; Milani, G.; Carozzi, F.G.; Poggi, C. Ancient Masonry Arches and Vaults Strengthened with TRM, SRG and FRP Composites: Numerical Analyses. Compos. Struct. 2018, 187, 385–402. [Google Scholar] [CrossRef]
- Alexakis, H.; Makris, N. Hinging Mechanisms of Masonry Single-Nave Barrel Vaults Subjected to Lateral and Gravity Loads. J. Struct. Eng. 2017, 143, 04017026. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Grillanda, N.; Tralli, A. A Fast and General Upper-Bound Limit Analysis Approach for out-of-Plane Loaded Masonry Walls. Meccanica 2018, 53, 1875–1898. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Tralli, A. A Genetic Algorithm NURBS-Based New Approach for Fast Kinematic Limit Analysis of Masonry Vaults. Comput. Struct. 2017, 182, 187–204. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Tralli, A. Fast Kinematic Limit Analysis of FRP-Reinforced Masonry Vaults. I: General Genetic Algorithm–NURBS–Based Formulation. J. Eng. Mech. 2017, 143, 04017071. [Google Scholar] [CrossRef]
- Milani, G. Upper Bound Sequential Linear Programming Mesh Adaptation Scheme for Collapse Analysis of Masonry Vaults. Adv. Eng. Softw. 2015, 79, 91–110. [Google Scholar] [CrossRef]
- Dinani, A.T.; Destro Bisol, G.; Ortega, J.; Lourenço, P.B. Structural Performance of the Esfahan Shah Mosque. J. Struct. Eng. 2021, 147, 05021006. [Google Scholar] [CrossRef]
- Saloustros, S.; Pelà, L.; Roca, P.; Portal, J. Numerical Analysis of Structural Damage in the Church of the Poblet Monastery. Eng. Fail. Anal. 2015, 48, 41–61. [Google Scholar] [CrossRef]
- Creazza, G.; Matteazzi, R.; Saetta, A.; Vitaliani, R. Analyses of Masonry Vaults: A Macro Approach Based on Three-Dimensional Damage Model. J. Struct. Eng. 2002, 128, 646–654. [Google Scholar] [CrossRef]
- Oñate, E.; Hanganu, A.; Barbat, A.; Oller, S.; Vitaliani, R.; Saetta, A.; Scotta, R. Structural Analysis and Durability Assesment of Historical Constructions Using a Finite Element Damage Model. In Structural Analysis of Historic Construction: Possibilities of Numerical and Experimental Techniques; CIMNE: Barcelona, Spain, 1995; pp. 189–224. [Google Scholar]
- Atamturktur, S.; Sevim, B. Seismic Performance Assessment of Masonry Tile Domes through Nonlinear Finite-Element Analysis. J. Perform. Constr. Facil. 2012, 26, 410–423. [Google Scholar] [CrossRef]
- Pantò, B.; Cannizzaro, F.; Caddemi, S.; Caliò, I.; Chácara, C.; Lourenço, P.B. Nonlinear Modelling of Curved Masonry Structures after Seismic Retrofit through FRP Reinforcing. Buildings 2017, 7, 79. [Google Scholar] [CrossRef]
- D’Altri, A.M.; De Miranda, S.; Castellazzi, G.; Sarhosis, V.; Hudson, J.; Theodossopoulos, D. Historic Barrel Vaults Undergoing Differential Settlements. Int. J. Archit. Herit. 2020, 14, 1196–1209. [Google Scholar] [CrossRef]
- Bianchini, N.; Mendes, N.; Calderini, C.; Lourenço, P.B. Modelling of the Dynamic Response of a Reduced Scale Dry Joints Groin Vault. J. Build. Eng. 2023, 66, 105826. [Google Scholar] [CrossRef]
- Milani, G.; Rossi, M.; Calderini, C.; Lagomarsino, S. Tilting Plane Tests on a Small-Scale Masonry Cross Vault: Experimental Results and Numerical Simulations through a Heterogeneous Approach. Eng. Struct. 2016, 123, 300–312. [Google Scholar] [CrossRef]
- Roca, P.; Cervera, M.; Gariup, G.; Pela’, L. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Arch. Comput. Methods Eng. 2010, 17, 299–325. [Google Scholar] [CrossRef]
- López López, D.; Domènech Rodríguez, M. Tile Vaults: Structural Analysis and Experimentation. 2015 Guastavino Biennial; Ajuntament de Barcelona: Barcelona, Spain, 2017.
- Rots, J.G. Structural Masonry: An Experimental/Numerical Basis for Practical Design Rules (CUR Report 171); Balkerma: Rotterdam, The Netherlands, 1977. [Google Scholar]
- Lourenço, P.B. Computational Strategies for Masonry Structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1996. [Google Scholar]
- Placo Saint-Gobain. Available online: https://www.placo.es/ (accessed on 9 June 2023).
- UNE-EN 13.279-1:2006; Yesos de Construcción y Conglomerantes a Base de Yeso Para la Construcción. AENOR: Madrid, Spain, 2006.
- Comite Euro-International Du Beton. CEB-FIP Model Code 1990: Design Code; Thomas Telford Services Ltd.: Lausanne, Switzerland, 1993. [Google Scholar]
- Lourenço, P.B. Recent Advances in Masonry Modelling: Micromodelling and Homogenisation. In Multiscale Modeling in Solid Mechanics; Computational and Experimental Methods in Structures; Imperial College Press: London, UK, 2009; Volume 3, pp. 251–294. ISBN 978-1-84816-307-2. [Google Scholar]
- EN 1015-11; Methods of Test for Mortar for Masonry. European Committee for Standardization: Brussels, Belgium, 2000.
- Lourenço, P.B. Computations on Historic Masonry Structures. Prog. Struct. Eng. Mater. 2002, 4, 301–319. [Google Scholar] [CrossRef]
- Mendes, N. Masonry Macro-Block Analysis. In Encyclopedia of Earthquake Engineering; Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, I.S.-K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–10. ISBN 978-3-642-36197-5. [Google Scholar]
- López López, D.; Roca, P.; Liew, A.; Méndez Echenagucia, T.; Van Mele, T.; Block, P. A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry. Structures 2022, 35, 1062–1077. [Google Scholar] [CrossRef]
- DIANA FEA. User’s Manual—Release 10.2 2017; DIANA FEA: Delft, The Netherlands, 2017. [Google Scholar]




















| Young’s Modulus | Poisson’s Ratio | Density | Tension | Compression | ||
|---|---|---|---|---|---|---|
| E | ν | ρ | ft | Gft | fc | Gfc |
| N/mm2 | - | kg/m3 | N/mm2 | N/mm | N/mm2 | N/mm |
| 3200 | 0.15 | 1219.4 | 0.24 | 0.14 | 5.90 | 9.44 |
| E | G | |
|---|---|---|
| N/mm2 | N/mm2 | |
| Bricks V | 7750 | 3370 |
| Bricks H | 6000 | 2609 |
| Mortar | 1800 | 783 |
| Gypsum | 100 | 43 |
| Bricks V-H | 2700 | 1174 |
| Young’s Modulus | Poisson’s Ratio | Normal Stiffness | Shear Stiffness | |
|---|---|---|---|---|
| Element | E | ν | kn | ks |
| N/mm2 | - | N/mm3 | N/mm3 | |
| Bricks V (first layer) | 7750 | 0.15 | - | - |
| Bricks H (second layer) | 6000 | 0.15 | - | - |
| Interface 1 (V-V, gypsum) | - | - | 13 | 6 |
| Interface 2 (H-H, mortar) | - | - | 321 | 140 |
| Interface 3 (V-H, mortar) | - | - | 675 | 293 |
| Tension | Shear | Compression | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Element | ft | GfI | c | tanϕ | tanφ | GfII | fc | Gfc | kp |
| N/mm2 | N/mm | N/mm2 | - | - | N/mm | N/mm2 | N/mm | N/mm2 | |
| Interface 1 | 0.80 | 0.14 | 1.20 | 0.75 | 0 | 0.093 | 19.56 | 22.03 | 10 |
| Interface 2 | 0.32 | 0.14 | 0.48 | 0.75 | 0 | 0.093 | 7.50 | 12.00 | 10 |
| Interface 3 | 0.32 | 0.14 | 0.48 | 0.75 | 0 | 0.093 | 7.50 | 12.00 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López López, D.; Mendes, N.; Oliveira, D.V.; Calderón Valdiviezo, L.J.; Domènech-Rodríguez, M. Multi-Level Numerical Modelling and Analysis of Tile Vaults. Buildings 2023, 13, 2052. https://doi.org/10.3390/buildings13082052
López López D, Mendes N, Oliveira DV, Calderón Valdiviezo LJ, Domènech-Rodríguez M. Multi-Level Numerical Modelling and Analysis of Tile Vaults. Buildings. 2023; 13(8):2052. https://doi.org/10.3390/buildings13082052
Chicago/Turabian StyleLópez López, David, Nuno Mendes, Daniel V. Oliveira, Lucrecia J. Calderón Valdiviezo, and Marta Domènech-Rodríguez. 2023. "Multi-Level Numerical Modelling and Analysis of Tile Vaults" Buildings 13, no. 8: 2052. https://doi.org/10.3390/buildings13082052
APA StyleLópez López, D., Mendes, N., Oliveira, D. V., Calderón Valdiviezo, L. J., & Domènech-Rodríguez, M. (2023). Multi-Level Numerical Modelling and Analysis of Tile Vaults. Buildings, 13(8), 2052. https://doi.org/10.3390/buildings13082052

