Degradation Model Applied to the Plasterwork of the Palace of Pedro I (Royal Alcazar of Seville)
Abstract
:1. Introduction and Literature Review
1.1. Degradation Condition of Decorative Plasterworks
1.2. Case Study: The Royal Alcazar of Seville (RAS) and Its Plasterworks
2. Materials and Methods
2.1. Characterization of the Anomalies Observed and Measurement Methodologies Applied during On-Site Inspection
2.1.1. Chromatic Changes and Stains
2.1.2. Cracking
- Microcracks, which are linear and thinner than 0.2 mm, make quadrilateral grids less than 20 cm wide and are usually due to the beginning of the expansion cracking of the iron nails used to fix the plasterwork or to structural movements;
- Average cracks, also linear and with a width between 0.2 mm and 2 mm, go through the whole plaster depth and may have their origin in the initial loss of adherence from the constructive base element, movements of the structure, or continuation of the increase in the volume of the metallic elements used to fix the plasterworks due to the evolution of oxidation, enhanced by the opening of the microcracks;
- Fractures or large cracks, over 2 mm wide and whose origin is in high-intensity structural movements or a greater detachment from the constructive base element.
- On the one hand, 20 cm is considered to correspond to the minimum width that can be easily visible and identifiable in 1/100 scale representations of the façade (that is, the most common scale of available designed elements, for most situations)—in fact, an influence band of 20 cm corresponds, on this scale, to an influence line with a distance of 1 mm for each side of the crack;
- On the other hand, this dimension corresponds to the crack repair area—an operation that generally involves widening the crack, cleaning the area, using a sealing plaster, and, when necessary, repainting the damaged area.
2.1.3. Lack of Adherence
2.1.4. Incorrect Restoration Actions
2.1.5. Surface Properties: Conductivity Moisture and Shore C Hardness
2.1.6. Environmental Conditions (Temperature and Bulb Humidity)
2.2. Modelling the Conservation State of Plasterworks
3. Results and Discussion
4. Conclusions and Lessons Learned from the Field
- Data compiled as inputs for the mathematical models will be available and accessible to other experts that will take part in the preservation of the plasterwork process, facilitating future work and generating a database with relevant information on maintenance and restoration plans.
- The definition of the degradation levels and the relative weighting of the severity of the different anomalies requires the analysis of several plasterworks in the RAS, to calibrate the proposed model according to anomalies detected and repair costs. The numerical index used allows for the quantification of the physical degradation of the plasterworks, modeling their loss of performance over time, and, according to present anomalies, the degradation agents and mechanisms. This model allows for the establishment of a ranking of priority of maintenance and restoration interventions, according to conventional performance criteria. It also intends to reduce the risks for users, improving the conservation state and usability of the RAS, a monument of intensive use.
- Visual inspection and NDT revealed that cracks and metal fixing elements represent the commonly severe anomalies in the plasterworks from the RAS. Numerical results obtained by the application of the Sw model showed that the case study that was in a worse state of conservation (i.e., worse degradation level and, so, the worse durability throughout useful life) was the plasterworks located outside in large areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortiz, R.; Macias-Bernal, J.M.; Ortiz, P. Vulnerability and buildings service life applied to preventive conservation in cultural heritage. Int. J. Disaster Resil. Built Environ. 2018, 9, 31–47. [Google Scholar] [CrossRef]
- Ortiz, R.; Ortiz, P. Vulnerability Index: A New Approach for Preventive Conservation of Monuments. Int. J. Arch. Herit. 2016, 10, 1078–1100. [Google Scholar] [CrossRef]
- Prieto, A.J.; Silva, A.; de Brito, J.; Macías-Bernal, J.M.; Alejandre, F.J. Multiple linear regression and fuzzy logic models applied to the functional service life prediction of cultural heritage. J. Cult. Herit. 2017, 27, 20–35. [Google Scholar] [CrossRef]
- Bond, S.; Worthing, D. Managing Built Heritage: The Role of Cultural Values and Significance; John Willey & Sons: New York, NY, USA, 2016. [Google Scholar]
- Bastem, S.S.; Cekmis, A. Development of historic building information modelling: A systematic literature review. Build. Res. Inf. 2021, 50, 527–558. [Google Scholar] [CrossRef]
- Yang, X.; Grussenmeyer, P.; Koehl, M.; Macher, H.; Murtiyoso, A.; Landes, T. Review of built heritage modelling: Integration of HBIM and other information techniques. J. Cult. Herit. 2020, 46, 350–360. [Google Scholar] [CrossRef]
- Ferreira-Lopes, P. Achieving the state of research pertaining to gis applications for cultural heritage by a systematic literature review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Campanaro, D.M.; Landeschi, G.; Dell’Unto, N.; Touati, A.-M.L. 3D GIS for cultural heritage restoration: A ‘white box’ workflow. J. Cult. Herit. 2016, 18, 321–332. [Google Scholar] [CrossRef]
- Apollonio, F.I.; Basilissi, V.; Callieri, M.; Dellepiane, M.; Gaiani, M.; Ponchio, F.; Rizzo, F.; Rubino, A.R.; Scopigno, R.; Sobra’, G. A 3D-centered information system for the documentation of a complex restoration intervention. J. Cult. Herit. 2018, 29, 89–99. [Google Scholar] [CrossRef]
- Campiani, A.; Lingle, A.; Lercari, N. Spatial analysis and heritage conservation: Leveraging 3-D data and GIS for monitoring earthen architecture. J. Cult. Herit. 2019, 39, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Iandelli, N.; Coli, M.; Donigaglia, T.; Ciuffreda, A. An Unconventional Field Mapping Application: A Complete Opensource Workflow Solution Applied to Lithological Mapping of the Coatings of Cultural Heritage. ISPRS Int. J. Geo-Inform. 2021, 10, 357. [Google Scholar] [CrossRef]
- del, J.J.M.R.; Hidalgo-Sánchez, F.M.; Torres-González, M.; Mascort-Albea, E.; Canivell, J.; Romero-Hernández, R. Monumental buildings NDT spatial data integration. Technical information management for the Royal Alcazar of Seville’, Building Research and Information. 2023; in press. [Google Scholar] [CrossRef]
- López González, L. Aplicación de Herramientas GIS Para la Cartografía y Correlación de Datos de Ensayos no Destructivos en el Diagnóstico de Edificios Históricos. Ph.D. Thesis, Polytechnic University of Madrid, Madrid, Spain, 2015. [Google Scholar]
- Sánchez-Aparicio, L.J.; Masciotta, M.-G.; García-Alvarez, J.; Ramos, L.F.; Oliveira, D.V.; Martín-Jiménez, J.A.; González-Aguilera, D.; Monteiro, P. Web-GIS approach to preventive conservation of heritage buildings. Autom. Constr. 2020, 118, 103304. [Google Scholar] [CrossRef]
- Azenha, M.; Barontini, A.; Oliveira, D.V.; Alarcon, C.; Sousa, H.; Masciotta, M.G. ‘Monitorização e Conservação Preventiva de Património Histórico com BIM: O Projeto HeritageCare. In Proceedings of the 3º Congresso Português de ‘Building Information Modelling’ (ptBIM 2020), Porto, Portugal, 26 November–4 December 2020; pp. 643–653. [Google Scholar] [CrossRef]
- HeritageCare_Project. Guidelines for Good Practices on Preventive Conservation, volume 59. 2019, pp. 1–70. Available online: https://tidop.usal.es/heritagecare-project (accessed on 21 June 2021).
- Masciotta, M.G.; Morais, M.; Ramos, L.F.; Oliveira, D.V.; Sánchez-Aparicio, L.J.; González-Aguilera, D. A Digital-based Integrated Methodology for the Preventive Conservation of Cultural Heritage: The Experience of HeritageCare Project. Int. J. Arch. Herit. 2021, 15, 844–863. [Google Scholar] [CrossRef]
- HeritageCare_Project. General Methodology for the Preventive Conservation of Cultural Heritage Buildings—Report of the Project Activity. 2017. Available online: https://www.interreg-sudoe.eu/gbr/projects/the-approved-projects/171-monitorising-preventive-conservation-of-historical-and-cultural-heritage (accessed on 23 June 2021).
- Paulo, P.V.; Branco, F.; de Brito, J. BuildingsLife: A building management system. Struct. Infrastruct. Eng. 2014, 10, 388–397. [Google Scholar] [CrossRef]
- Pereira, C.; Silva, A.; Ferreira, C.; de Brito, J.; Flores-Colen, I.; Silvestre, J.D. Uncertainty in Building Inspection and Diagnosis: A Probabilistic Model Quantification. Infrastructures 2021, 6, 124. [Google Scholar] [CrossRef]
- Silva, A.; Prieto, A. Modelling the service life of timber claddings using the factor method. J. Build. Eng. 2021, 37, 102137. [Google Scholar] [CrossRef]
- Ferreira, C.; De Silva, A.; Brito, J.; Dias, I.S.; Flores-Colen, I. Maintenance Modelling of Ceramic Claddings in Pitched Roofs Based on the Evaluation of Their In Situ Degradation Condition. Infrastructures 2020, 5, 77. [Google Scholar] [CrossRef]
- Parra, J.; Lombillo, I.; Ribalaygua, C. Indicadores para la priorización de las intervenciones en el patrimonio histórico arquitectónico: Un acercamiento a través del método hírido DELPHI-AHP’, in Construction Pathology, Rehabilitation Technology and Heritage Management. REHABEND 2022, 124, 1241–1253. [Google Scholar]
- Pavón Maldonado, B. Arte Toledano, Islámico y Mudéjar; Instituto Hispano-Árabe de Cultura: Madrid, Spain, 1973. [Google Scholar]
- Torres-González, M.; Prieto, A.; Alejandre, F.; Blasco-López, F. Digital management focused on the preventive maintenance of World Heritage Sites. Autom. Constr. 2021, 129, 103813. [Google Scholar] [CrossRef]
- Silva, A.; de Brito, J.; Gaspar, P.L. Methodologies for Service Life Prediction of Buildings; Springer: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Bordalo, R.; de Brito, J.; Gaspar, P.L.; Silva, A. Service life prediction modelling of adhesive ceramic tiling systems. Build. Res. Inf. 2011, 39, 66–78. [Google Scholar] [CrossRef]
- Chai, C.; de Brito, J.; Gaspar, P.L.; Silva, A. Predicting the Service Life of Exterior Wall Painting: Techno-Economic Analysis of Alternative Maintenance Strategies. J. Constr. Eng. Manag. 2014, 140, 04013057. [Google Scholar] [CrossRef]
- Ximenes, S.; de Brito, J.; Gaspar, P.L.; Silva, A. Modelling the degradation and service life of ETICS in external walls. Mater. Struct. 2015, 48, 2235–2249. [Google Scholar] [CrossRef]
- Serralheiro, M.I.; de Brito, J.; Silva, A. Methodology for service life prediction of architectural concrete facades. Constr. Build. Mater. 2017, 133, 261–274. [Google Scholar] [CrossRef]
- Campos de Alvear, R. Programme of actions for the conservation-restoration of the plasterwork of the Mudéjar Palace. Apunt. Alcázar Sevilla 2020, 20, 63–85. [Google Scholar]
- Gleeson, J.F. The Survey and Inspection of External Plasterwork for Repair and Replacement. In The University of Reading, England. 2002. Available online: http://www.palazzospinelli.org/plaster/essay/essay/Gleeindex.html (accessed on 4 December 2022).
- Dias, I.; Flores-Colen, I.; Silva, A. Critical Analysis about Emerging Technologies for Building’s Façade Inspection. Buildings 2021, 11, 53. [Google Scholar] [CrossRef]
- Cathedral, Alcázar and Archivo de Indias in Seville—UNESCO World Heritage Centre. (n.d.). Retrieved 13 December 2021. Available online: https://whc.unesco.org/en/list/383/ (accessed on 4 December 2022).
- Tabales Rodríguez, M.Á.; Alejandre Sánchez, F.J.; Blasco López, F.J.; Vargas Lorenzo, C. 14C Chronological data and thermoluminiscence of islamic tapiales of the Real Alcazar of Seville. J. Archeol. Archit. Arts 2017, 4, 51–57. [Google Scholar] [CrossRef]
- Troitiño Vinuesa, M.Á.; Troitió Torralba, L.; Salmerón Escobar, P.; Pérez de la Torre, R.M. Public tour of the Royal Alcázar of Seville: Basis for the functional reorganisation of the monumental ensemble. Apunt. Alcázar Sevilla 2020, 20, 127–169. [Google Scholar]
- Almagro Gorbea, A. El Alcázar de Sevilla. Un palacio musulmán para un rey cristiano. Cristianos y Musulmanes En La Península Ibérica: La Guerra, La Frontera y La Convivencia. In Proceedings of the XI Congreso de Estudios Medievales, León, Spain, 23–26 October 2007; pp. 331–365. [Google Scholar]
- Blasco López, F.J. Yeserías Medievales De Tradición Islámica Del Real Alcázar De Sevilla: Revisión Historiográfica, Metodología Para La Carac-Terización, Evaluación De Su Durabilidad Y Elaboración De Un Inventario. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2011. [Google Scholar]
- Pleguezuelo, A. Tile-work in the mudéjar palace in the Royal Alcázar of Seville. A Preliminary Visual Analysis. Apunt. Alcázar Sevilla 2015, 16, 219–230. [Google Scholar]
- Cañas Palop, C. Las Armaduras De Cubiertas Mudéjares Del Palacio De Pedro I, Del Alcázar De Sevilla: Análisis Integral Y Propuestas Para La Restauración. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2006. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=23333 (accessed on 4 December 2022).
- Silva, A.; Freire, M.T.; Blasco-López, F.; Sánchez, F.A.; Alés, V.; Calero, A. Modelling of the conservation state of gypsum-based plasters in the Real Alcazar of Seville. In Science and Digital Technology for Cultural Heritage—Interdisciplinary Approach to Diagnosis, Vulnerability, Risk Assessment and Graphic Information Models; CRC Press: Boca Raton, FL, USA, 2019; pp. 375–379. [Google Scholar] [CrossRef]
- Alejandre, F.; Blasco-López, F.; Flores-Alés, V.; Villegas, R.; Freire, M. Study of the Influence of Limewash on the Conservation of Islamic Plasterworks through Weathering Tests. Int. J. Arch. Herit. 2019, 15, 580–592. [Google Scholar] [CrossRef]
- Calero Castillo, A.I. Materiales, Técnicas Y Procedimientos En La Decoración Arquitectónica. Aplicaciones a La Con-Servación Y Restauración De Las Yeserías Del Patio De Las Doncellas. Real Alcázar De Sevilla. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2016. Available online: http://hdl.handle.net/10481/43864 (accessed on 21 June 2021).
- Martínez-Domingo, M.; Castillo, A.C.; García, E.V.; Valero, E. Evaluation of Cleaning Processes Using Colorimetric and Spectral Data for the Removal of Layers of Limewash from Medieval Plasterwork. Sensors 2020, 20, 7147. [Google Scholar] [CrossRef]
- Torres-González, M.; Alducin-Ochoa, J.M.; Alejandre Sánchez, F.J.; Flores-Alés, V.; Blasco López, F.J. Ground penetration radar (GPR) as non-destructive test for muslim plasterworks characterization. In Proceedings of the 5° Congreso Internacional de Innovación Tecnológica en Edificación (CITE 2020), Madrid, Spain, 25–27 March 2020. [Google Scholar]
- Pedro, J.A.C.B.D.O.; de Paiva, J.V.; Vilhena, A.J.D.S.M. Portuguese method for building condition assessment. Struct. Surv. 2008, 26, 322–335. [Google Scholar] [CrossRef]
- Gaspar, P.L. Vida Útil Das Construções: Desenvolvimento De Uma Metodologia Para a Estimativa da Durabilidade De Elementos da Con-Strução. Aplicação a Rebocos De Edifícios Correntes. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2009. [Google Scholar]
- Veiga, M.d.R. Behavior of Wall Coating Mortars. Contribution to the Study of Its Resistance to Cracking. Ph.D. Thesis, University of Porto, Porto, Portugal, 1997. [Google Scholar]
- Rubio Domene, F.R. Fijación De Paños De Yeserías En El Periodo Nazarí En La Alhambra. Granada. 2002. Available online: https://www.alhambra-patronato.es/ria/bitstream/handle/10514/14025/Fijación de paños de yeserías en el periodo Naza-rí.pdf?sequence=1 (accessed on 22 June 2021).
- Mora, P.; Mora, L.; Philippot, P. La Conservazione Delle Pitture Murali. In La Conservacion De Los Bienes Culturales Con Especial Referencia a Las Condiciones Tropicales; Unesco: Madrid, Spain, 2003. [Google Scholar]
- Caballero, F. El Alcázar de Sevilla. In Books Abroad. Imprenta del Establecimiento de Mellado. Available online: http://www.cervantesvirtual.com/obra-visor/el-alcazar-de-sevilla--1/html/ff089a16-82b1-11df-acc7-002185ce6064_2.html#PagFin (accessed on 22 June 2021).
- D.J.B.; de L, M. Guía Para Visitar el Alcázar de Sevilla. Breve Reseña histórico Descriptiva de este Célebre Edificio, en que se Exponen sus Tradiciones y los Hechos más Notables que en él Han Tenido Lugar (pp. 1–32). Imprenta de la Revista Mercantil. 1858. Available online: https://www.cervantesvirtual.com/obra/guia-para-visitar-el-alcazar-de-sevilla--breve-resena-historico-descriptiva-de-este-celebre-en-que-se-exponen-sus-tradiciones-y-los-hechos-mas-notables-que-en-el-han-tenido-lugar/ (accessed on 23 June 2021).
- Gestoso Pérez, J. Guía Histórico Descriptiva del Alcázar de Sevilla; Escuela Tipográfica Salesiana: Bogotá, Colombia, 1886. [Google Scholar]
- Tubino, F.M. Estudios sobre el arte en España. La arquitectura hispano-visigoda y árabe española. El Alcázar de Sevilla. Una iglesia mozárabe. C. Segovia de los Ríos. 1886. Available online: http://www.bibliotecavirtualdeandalucia.es/catalogo/es/consulta/registro.cmd?id=7836 (accessed on 23 June 2021).
- UNE-EN 16682; Conservation of Cultural Heritage—Methods of Measurement of Moisture Content, or Water Content, in Materials Constituting Immovable Cultural Heritage. B S I Standards: London, UK, 2018.
- Torres-González, M.; Alejandre, F.J.; Flores-Alés, V.; Calero-Castillo, A.I.; Blasco-López, F.J. Analysis of the state of conservation of historical plasterwork through visual inspection and non-destructive tests. The case of the upper frieze of the Toledanos Room (The Royal Alcázar of Seville, Spain). J. Build. Eng. 2021, 40, 102314. [Google Scholar] [CrossRef]
- Villanueva Domínguez, L.; García Santos, A. Manual del yeso. In ATEDY-DOSSAT 2000; CIE Inversiones Editoriales: Madrid, Spain, 2001. [Google Scholar]
- Blasco-López, F.J.; Sánchez, F.J.A. Porosity and surface hardness as indicators of the state of conservation of Mudéjar plasterwork in the Real Alcázar in Seville. J. Cult. Herit. 2013, 14, 169–173. [Google Scholar] [CrossRef]
- Torres-González, M.; Rubio-Bellido, C.; Bienvenido-Huertas, D.; Alducin-Ochoa, J.; Flores-Alés, V. Long-term environmental monitoring for preventive conservation of external historical plasterworks. J. Build. Eng. 2021, 47, 103896. [Google Scholar] [CrossRef]
- Ritterbach, L.; Becker, P. Temperature and humidity dependent formation of CaSO4·xH2O (x = 0...2) phases. Glob. Planet. Change 2020, 187, 103132. [Google Scholar] [CrossRef]
- Silveira, P.M.; do Veiga, M.R.; de Brito, J. Cracking of ancient gypsum plasters. In Proceedings of the XXX IAHS World Congress on Housing, Coimbra, Portugal, October 2015; pp. 1779–1785. [Google Scholar]
- Junta de Andalucía, C. Banco de precios de Conservación y Restauración de Bienes Culturales de Anda-lucía: Manual de utilización y cuadro de precios. Cultura 2010, 2010, 1. [Google Scholar]
- González Ramírez, M.I. El Trazado Geométrico En La Ornamentación Mudéjar Del Alcázar De Sevilla. Ph.D. Thesis, University of Seville, Seville, Spain, 1988. [Google Scholar]
- Serrano Rodríguez, J. Actuaciones De Urgencia De Conservación Preventiva Y Mantenimiento De Las Yeserías Del Palacio Mudéjar Del Real Alcázar De Sevilla; Patronato del Real Alcázar de Sevilla: Sevilla, Spain, 2019. [Google Scholar]
- Torres-González, M.; Alejandre, F.J.; Alducin-ochoa, J.M.; Calero-Castillo, A.I.; Blasco-López, F.J.; Carrasco-Huertas, A. Methodology to evaluate the state of conservation of historical plasterwork and its polychrome to promote its conservation. Appl. Sci. 2022, 12, 4814. [Google Scholar] [CrossRef]
Slight Defects | Moderate Defects | Severe Defects | Critical Defects | |
---|---|---|---|---|
Possible Anomalies | Accumulation of dirt, vandalism actions, limewash, re-polychromies, | Biodeterioration *, dark stains, superficial efflorescence | Adhesion failure, detachment, blistering, severe efflorescence | Cracking, loss of material/detachments, loss of cohesion/disintegration, impact, corrosion stains ** |
Impacted Qualities | Aesthetics and visual | Aesthetics and visual | Adherence and cohesion | Adherence, cohesion, and integrity |
Consequences | Defects that require simple repairs. | Defects requiring complex repairs. | Defects that prejudice the use or comfort, requiring simple or complex repairs. | Defects that endanger health or safety and may cause minor or major accidents, requiring complex repairs. |
Degradation Levels | Characterization | kn |
---|---|---|
Condition A | No visible degradation | 0 |
Condition B | Passive cracking (w ≤ 0.2 mm) * | 1 |
Condition C | Passive cracking (0.2 mm ≤ w ≤ 2 mm) * | 2 |
Active cracking (w ≤ 0.2 mm) * | ||
Condition D | Passive cracking (w ≥ 2 mm) * | 3 |
Active cracking (0.2 mm ≤ w ≤ 2 mm) * | ||
Condition E | Loss of adherence/detachment or severe efflorescence ** | 4 |
Active cracking (w ≥ 2 mm) * |
Degradation Levels | Characterization | kn |
---|---|---|
Condition A | No visible degradation | 0 |
Condition B | Inadequate repair works * | 1 |
Pulverulence (superficial hardness less than 45 Shore C) | ||
Condition C | Presence of metallic elements without corrosion stains or the presence of water | 2 |
Condition D | Presence of metallic elements without the presence of water (<6 ud/m2) | 3 |
Condition E | Presence of metallic elements without the presence of water (>6 ud/m2) | 4 |
Degradation Levels | Characterization | kn |
---|---|---|
Condition A | No visible degradation | 0 |
Condition B | Superficial dirt | 1 |
Limewash * | ||
Alteration of polychromies | ||
Condition C | Dark crusts | 2 |
Damp stains ** | ||
Corrosion stains ** | ||
Condition D | Biodegradation ** | 3 |
Superficial efflorescence ** |
Anomalies | Possibility of Causing Other Anomalies | Repair Cost (€/m2) [62] | Weighting Factor (ka,n) |
---|---|---|---|
Detachment | xo | 420.53 | 1.20 |
Lack of adherence | xx | 201.00 | 0.57 |
Corrosion Stains | xx | 114.34 | 0.33 |
Damp stains | xx | 108.34 | 0.31 |
Dark crust | xo | 92.01 | 0.26 |
Cracking | xx | 80.80 | 0.23 |
Superficial dirt | xo | 16.74 | 0.05 |
Biodegradation | xo | 15.54 | 0.04 |
Degradation Level | Sw | Visual Examples |
---|---|---|
Level A Unchanged | Sw ≤ 1% | |
Level B Good | 1% < Sw ≤ 10% | |
Level C Slight degradation | 10% < Sw ≤ 20% | |
Level D Moderate degradation | 20% < Sw ≤ 40% | |
Level E Generalized degradation | Sw > 40% |
Case Study | Number of Measures (n) | Average Superficial Shore C Hardness | SD | CoV (%) | Average Superficial Moisture (%) | SD | CoV (%) |
---|---|---|---|---|---|---|---|
(i) | 73 | 66.16 | 10.62 | 14.55 | 4.77 | 3.90 | 5.34 |
(ii) | 148 | 73.07 | 11.48 | 7.76 | 0.34 | 0.40 | 0.27 |
(iii) | 173 | 64.60 | 13.77 | 7.96 | 0.77 | 0.59 | 0.34 |
Anomalies (m2) | (i) | (ii) | (iii) | ||||||
---|---|---|---|---|---|---|---|---|---|
An | kn | kan | An | kn | kan | An | kn | kan | |
Corrosion stains | - | - | - | 4.6472 | 4 | 0.33 | 1.7584 | 3 | 0.33 |
Lack of adherence—Cavities | 0.55 | 4 | 0.57 | 6.76 | 4 | 0.57 | 8.15 | 4 | 0.57 |
Passive Cracks {<0.2 mm} | 0.620 | 1 | 0.13 | 1.351 | 1 | 0.23 | 2.494 | 1 | 0.23 |
Passive Cracks {0.2–2 mm} | - | - | - | 0.933 | 2 | 0.23 | 2.035 | 2 | 0.23 |
Active Cracks {0.2–2 mm} | - | - | - | 0.155 | 3 | 0.23 | 0.215 | 3 | 0.23 |
Passive Cracks {>2 mm} | - | - | - | 2.120 | 3 | 0.23 | - | - | - |
Superficial dirt | 2.52 | 2 | 0.05 | 12.20 | 2 | 0.05 | 8.64 | 2 | 0.05 |
Dark crusts | 1.47 | 2 | 0.26 | 7.40 | 2 | 0.26 | - | - | - |
Damp stains | - | - | - | 4.65 | 2 | 0.31 | 1.76 | 2 | 0.31 |
Biodegradation | 0.2512 | 4 | 0.04 | - | - | - | 0.89 | 4 | 0.04 |
Sw (%) | 3.45% Level B—Good | 9.48% Level B—Good | 10.13% Level C—Slight degradation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-González, M.; Freire, M.T.; Alejandre, F.J.; Blasco-López, F.J.; Silva, A. Degradation Model Applied to the Plasterwork of the Palace of Pedro I (Royal Alcazar of Seville). Buildings 2023, 13, 121. https://doi.org/10.3390/buildings13010121
Torres-González M, Freire MT, Alejandre FJ, Blasco-López FJ, Silva A. Degradation Model Applied to the Plasterwork of the Palace of Pedro I (Royal Alcazar of Seville). Buildings. 2023; 13(1):121. https://doi.org/10.3390/buildings13010121
Chicago/Turabian StyleTorres-González, Marta, Maria Teresa Freire, F. J. Alejandre, F. J. Blasco-López, and Ana Silva. 2023. "Degradation Model Applied to the Plasterwork of the Palace of Pedro I (Royal Alcazar of Seville)" Buildings 13, no. 1: 121. https://doi.org/10.3390/buildings13010121
APA StyleTorres-González, M., Freire, M. T., Alejandre, F. J., Blasco-López, F. J., & Silva, A. (2023). Degradation Model Applied to the Plasterwork of the Palace of Pedro I (Royal Alcazar of Seville). Buildings, 13(1), 121. https://doi.org/10.3390/buildings13010121