A Grammar-Based Optimization Approach for Designing Urban Fabrics and Locating Amenities for 15-Minute Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parametric Urban Grammar Interpreter: Chicago Urban Grammar
2.2. Physical Proximity—A Metric for Pedestrian Accessibility
2.3. Integration
2.4. Street Network Length as a Proxy for Pedestrian Accessibility and Infrastructure Cost
2.5. Computational Optimization in Urban Contexts
2.6. A Grammar-Based Optimization Approach for 15-Minute Fabrics—Exploring Pedestrian Accessibility and Infrastructure Cost
3. Case Study
3.1. Area of Study
3.2. Experiment
4. Results
4.1. Optimization Step 1 Results—Fabric Layout Definition
4.2. Optimization Step 2 Results—Distribution of Amenities
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Appleyard, D. Livable Streets: Protected Neighborhoods? Ann. Am. Acad. Polit. Soc. Sci. 1980, 451, 106–117. [Google Scholar] [CrossRef]
- Gössling, S. Why cities need to take road space from cars—And how this could be done. J. Urban Des. 2020, 25, 443–448. [Google Scholar] [CrossRef]
- Brown, L. Redesigning Cities for People: Planning Cities for People; Earth Policy Institute: Washington, DC, USA, 2001. [Google Scholar]
- United Nations. World Urbanization Prospects; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Global Fuel Economy. Available online: http://www.globalfueleconomy.org/ (accessed on 4 October 2016).
- Nicoli, T. 15-Minute City: A Vision for the Future?|Urban Design Lab. Available online: https://urbandesignlab.in/15-minute-city-a-vision-for-the-future/ (accessed on 25 April 2022).
- Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-minute city”: Sustainability, resilience and place identity in future post-pandemic cities. Smart Cities 2021, 4, 93–111. [Google Scholar] [CrossRef]
- Weng, M.; Ding, N.; Li, J.; Jin, X.; Xiao, H.; He, Z.; Su, S. The 15-minute walkable neighborhoods: Measurement, social inequalities and implications for building healthy communities in urban China. J. Transp. Health 2019, 13, 259–273. [Google Scholar] [CrossRef]
- Capasso Da Silva, D.; King, D.A.; Lemar, S. Accessibility in practice: 20-minute city as a sustainability planning goal. Sustainability 2020, 12, 129. [Google Scholar] [CrossRef] [Green Version]
- Duarte, J.P. Customizing Mass Housing: A Discursive Grammar for Siza’s Malagueira Houses. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001. [Google Scholar]
- Duarte, J.P. A discursive grammar for customizing mass housing: The case of Siza’s houses at Malagueira. Autom. Constr. 2005, 14, 265–275. [Google Scholar] [CrossRef]
- Lima, F.; Brown, N.; Duarte, J.P. A grammar-based optimization approach for walkable urban fabrics considering pedestrian accessibility and infrastructure cost. Environ. Plan. B Urban Anal. City Sci. 2021, 498, 1489–1506. [Google Scholar] [CrossRef]
- Lima, F. Urban Metrics: (Para)metric System for Analysis and Optimization of Urban Configurations. Ph.D. Thesis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Lima, F.; Montenegro, N.; Paraizo, R.; Kós, J. Urbanmetrics: An algorithmic-(para)metric methodology for analysis and optimization of urban configurations. In Planning Support Science for Smarter Urban Futures; Lecture Notes in Geoinformation and Cartography; Geertman, S., Allan, A., Pettit, C., Stillwell, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 47–64. ISBN 978-3-319-57819-4. [Google Scholar]
- Lima, F.T.; Brown, N.; Duarte, J.P. Optimizing urban grid layouts using proximity metrics. In Artificial Intelligence in Urban Planning and Design; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Heitor, T.; Duarte, J.P.; Marques, R.P. Combining Grammars and Space Syntax. IJAC Int. J. Archit. Comput. 2004, 2, 491–515. [Google Scholar]
- Granadeiro, V.; Pina, L.; Duarte, J.P.; Correia, J.R.; Leal, V.M.S. A general indirect representation for optimization of generative design systems by genetic algorithms: Application to a shape grammar-based design system. Autom. Constr. 2013, 35, 374–382. [Google Scholar] [CrossRef]
- Noronha, M.; Celani, G.; Duarte, J.P. Computationally evaluating street retrofitting interventions. Nexus Netw. J. 2022, 24, 481–502. [Google Scholar] [CrossRef]
- Lima, F. Urban design optimization: Generative approaches towards urban fabrics with improved transit accessibility and walkability—Generative approaches towards urban fabrics with improved transit accessibility and walkability. In Proceedings of the PROJECTIONS—26th CAADRIA Conference, Hong Kong, China, 29 March–1 April 2021; Volume 2, pp. 719–728. [Google Scholar]
- Stiny, G. Introduction to shape and shape grammars. Environ. Plan. B Plan. Des. 1980, 7, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Teeling, C. Algorithmic design: Generating urban form. Urban Des. Stud. 1996, 2, 89–100. [Google Scholar]
- Mayall, K.; Hall, G.B. Landscape grammar 1: Spatial grammar theory and landscape planning. Environ. Plan. B Plan. Des. 2005, 32, 895–920. [Google Scholar] [CrossRef]
- Duarte, J.P.; Rocha, J.; Soares, G. Unveiling the structure of the Marrakech Medina: A shape grammar and an interpreter for generating urban form. Artif. Intell. Eng. Des. Anal. Manuf. 2007, 21, 317–349. [Google Scholar] [CrossRef] [Green Version]
- Duarte, J.P.; Beirão, J. Towards a methodology for flexible urban design: Designing with urban patterns and shape grammars. Environ. Plan. B Plan. Des. 2011, 38, 879–902. [Google Scholar] [CrossRef]
- Beirão, J. CItyMaker: Designing Grammars for Urban Design; TU Delft: Delft, The Netherlands, 2012. [Google Scholar]
- Brewster, M.; Hurtado, D.; Olson, S.; Yen, J. Walkscore.com: A new methodology to explore associations between neighborhood resources, race, and health. In Proceedings of the 137st APHA Annual Meeting and Exposition 2009, Philadelphia, PA, USA, 10 November 2009. [Google Scholar]
- Carr, L.; Dunsigen, I.; Marcus, B. Validation of walk score for estimating access to walkable amenities. Br. J. Sports Med. 2011, 45, 1144–1158. [Google Scholar] [CrossRef]
- Dogan, T.; Yang, Y.; Samaranayake, S.; Saraf, N. Urbano: A tool to promote active mobility modeling and amenity analysis in urban design. Technol. Archit. Des. 2020, 4, 92–105. [Google Scholar] [CrossRef]
- Lima, F.; Paraízo, R.C.; Kós, J.R. Algorithms-aided sustainable urban design: Geometric and parametric tools for transit-oriented development. In Handbook of Research on Visual Computing and Emerging Geometrical Design Tools; Amoruso, G., Ed.; IGI Global: Hershey, PA, USA, 2016; pp. 875–897. [Google Scholar]
- Nourian, P.; Rezvani, S.; Sariyildiz, I.; Van der Hoeven, F. Configurbanist: Urban configuration analysis for walking and cycling via easiest paths. In Proceedings of the eCAADe 2015 33rd Annual Conference, Vienna, Austria, 16–18 September 2015. [Google Scholar]
- Lima, F.T.; Brown, N.C.; Duarte, J.P. Understanding the impact of walkability, population density, and population size on COVID-19 spread: A pilot study of the early contagion in the United States. Entropy 2021, 23, 1512. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Kalvo, R.; Ekmekci, O. Pedestrian accessibility in grid layouts: The role of block, plot and street dimensions. Urban Morphol. 2016, 20, 89–106. [Google Scholar]
- Hillier, B.; Penn, A.; Hanson, J.; Grajewski, T.; Xu, J. Natural Movement: Or, configuration and attraction in urban pedestrian movement. Environ. Plan. B Plan. Des. 1993, 20, 29–66. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B. A theory of the city as object: Or, how spatial laws mediate the social construction of urban space. Urban Des. Int. 2002, 7, 153–179. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Structural Analysis in the Social Sciences; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-38707-1. [Google Scholar]
- Lynch, K. The Image of the City, Illustrated ed.; The MIT Press: Cambridge, MA, USA, 1960; ISBN 978-0-262-62001-7. [Google Scholar]
- Zhao, P.; Yen, Y.; Bailey, E.; Sohail, M.T. Analysis of urban drivable and walkable street networks of the ASEAN smart cities network. ISPRS Int. J. Geo-Inf. 2019, 8, 459. [Google Scholar] [CrossRef] [Green Version]
- Ståhle, A.; Marcus, L.; Karlström, A. Place syntax—Geographic accessibility with axial lines in GIS. In Proceedings of the Fifth International Space Syntax Symposium, Delft, The Netherlands, 13–17 June 2005; pp. 131–144. [Google Scholar]
- Feng, C.; Peponis, J. The definition of syntactic types: The generation, analysis, and sorting of universes of superblock designs. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 1031–1046. [Google Scholar] [CrossRef]
- Feng, C.; Peponis, J. Pathways to creating differentiated grids: Types, benefits and costs. Environ. Plan. B Urban Anal. City Sci. 2021, 49, 535–548. [Google Scholar] [CrossRef]
- ARTBA. How Much Does It Cost to Build a Mile of Road; American Road & Transportation Builders Association Web Site: Washington, DC, USA, 2021. [Google Scholar]
- Navarro-Mateu, D.; Makki, M.; Cocho-Bermejo, A. Urban-Tissue Optimization through Evolutionary Computation. Mathematics 2018, 6, 189. [Google Scholar] [CrossRef] [Green Version]
- Makki, M.; Showkatbakhsh, M.; Tabony, A.; Weinstock, M. Evolutionary algorithms for generating urban morphology: Variations and multiple objectives. Int. J. Archit. Comput. 2019, 17, 5–35. [Google Scholar] [CrossRef]
- Brown, N.; Jusiega, V.; Mueller, C. Implementing data-driven parametric building design with a flexible toolbox. Autom. Constr. 2020, 118, 103252. [Google Scholar] [CrossRef]
- Wortmann, T. Opossum: Introducing and evaluating a model-based optimization tool for grasshopper. In Proceedings of the Protocols, Flows and Glitches, 22nd CAADRIA Conference, Suzhou, China, 5–8 April 2017; pp. 283–292. [Google Scholar]
- Makki, M.; Weinstock, M.; Showkatbajhsh, M. Wallacei. 2020. Available online: https://www.wallacei.com/ (accessed on 30 June 2022).
- Chicago Ward, Community Area and Neighborhood Maps. Available online: https://www.chicago.gov/content/city/en/depts/dgs/supp_info/citywide_maps.html (accessed on 13 May 2022).
- Chicago Metropolitan Agency for Planning CMAP Community Data Snapshot|Portage Park. Available online: https://www.cmap.illinois.gov/search?q=portage%20park (accessed on 17 May 2022).
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Lecture Notes in Computer Sciences, Proceedings of the Parallel Problem Solving from Nature PPSN VI, Paris, France, 18–20 September 2000; Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar]
- Carpio-Pinedo, J.; Pozo Menéndez, E.; Lamíquiz Daudén, F.J.; Higueras García, E. When a city must be a tree: Rethinking the spatial approach to fighting epidemics based on the notion of ‘intermediate confinement’. Urban Des. Int. 2021, 26, 332–347. [Google Scholar] [CrossRef]
- Cagan, J.; Mitchell, W.J. Optimally directed shape generation by shape annealing. Environ. Plan. B Plan. Des. 1993, 20, 5–12. [Google Scholar] [CrossRef]
Amenity Category | Number of Amenities | Secondary Goals |
---|---|---|
education | 2 | not on corners |
retail | 4 | on corners |
food | 4 | minimize distances to retail 1 |
others | 4 | minimize distances to retail |
recreation | 3 | minimize distances to education |
entertainment | 1 | minimize distances to Food |
Procedure | Performance Metric | Average PPI | Average Integration |
---|---|---|---|
By Authors | 7.51 | 0.84 | 0.79 |
SPBLX (Radical) | 7.52 | 0.83 | 0.80 |
RBFOpt (Opossum) | 8.19 | 0.72 | 0.86 |
CMAES (Opossum) | 8.24 | 0.74 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, F.T.; Brown, N.C.; Duarte, J.P. A Grammar-Based Optimization Approach for Designing Urban Fabrics and Locating Amenities for 15-Minute Cities. Buildings 2022, 12, 1157. https://doi.org/10.3390/buildings12081157
Lima FT, Brown NC, Duarte JP. A Grammar-Based Optimization Approach for Designing Urban Fabrics and Locating Amenities for 15-Minute Cities. Buildings. 2022; 12(8):1157. https://doi.org/10.3390/buildings12081157
Chicago/Turabian StyleLima, Fernando T., Nathan C. Brown, and Jose P. Duarte. 2022. "A Grammar-Based Optimization Approach for Designing Urban Fabrics and Locating Amenities for 15-Minute Cities" Buildings 12, no. 8: 1157. https://doi.org/10.3390/buildings12081157