Smart Textiles in Building and Living Applications: WG4 CONTEXT Insight on Elderly and Healthcare Environments
Abstract
:1. Introduction
2. Background on Building Performance Indicators and Human, Health, Social Needs
3. Smart Textiles for Buildings and Healthcare Environments
4. Applications, Potentials, Challenges for Buildings and Healthcare Environments
4.1. Acoustic Insulation by Natural Fibres and Textiles
4.2. Acoustic Insulation by Nanofibrous Layers and Textiles
4.3. Acoustic and Thermal Insulation by Phase Change Materials (PCM) and Textiles
4.4. Smart Textiles for Indoor Air Quality Improvement
4.5. Smart Shading Devices
5. Applications, Potentials, Challenges for Life Quality Improvement
5.1. Smart Textiles for Health Monitoring
5.2. Smart Textiles for Life Quality Improvement in Dementia Disease
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Echeverria, C.A.; Handoko, W.; Pahlevani, F.; Sahajwalla, V. Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. J. Clean. Prod. 2019, 208, 1524–1536. [Google Scholar] [CrossRef]
- CONTEXT. CA17107—European Network to Connect Research and Innovation Efforts on Advanced Smart Textiles. 2017. Available online: https://www.context-cost.eu/ (accessed on 6 November 2022).
- Bedon, C.; Rajčić, V. Textiles and Fabrics for Enhanced Structural Glass Facades: Potentials and Challenges. Buildings 2019, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Prabhakaran, R.T.D.; Spear, M.J.; Curling, S.; Wootton-Beard, P.; Jones, P.; Donnison, I.; Ormondroyd, G.A. Plants and architecture: The role of biology and biomimetics in materials development for buildings. Intell. Build. Int. 2019, 11, 178–211. [Google Scholar] [CrossRef]
- Gruber, P.; Imhof, B. Patterns of Growth—Biomimetics and Architectural Design. Buildings 2017, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Fang, F. A Biomimetic Textile with Self-Assembled Hierarchical Porous Fibers for Thermal Insulation. ACS Appl. Mater. Interfaces 2022, 14, 25851–25860. [Google Scholar] [CrossRef] [PubMed]
- Zuazua-Ros, A.; Martín-Gómez, C.; Ramos, J.C.; Gómez-Acebo, T. Bio-inspired Heat Dissipation System Integrated in Buildings: Development and Applications. Energy Procedia 2017, 111, 51–60. [Google Scholar] [CrossRef]
- Fratzl, P. Biomimetic materials research: What can we really learn from nature’s structural materials? J. R. Soc. Interface 2007, 4, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Stachewicz, U. Microstructure study of fractured polar bear hair for toughening, strengthening, stiffening designs via energy dissipation and crack deflection mechanisms in materials. Mol. Syst. Des. Eng. 2021, 6, 997–1002. [Google Scholar] [CrossRef]
- Knapczyk-Korczak, J.; Szewczyk, P.K.; Ura, D.P.; Bailey, R.J.; Bilotti, E.; Stachewicz, U. Improving water harvesting efficiency of fog collectors with electrospun random and aligned Polyvinylidene fluoride (PVDF) fibers. Sustain. Mater. Technol. 2020, 25, e00191. [Google Scholar] [CrossRef]
- Oatley, G.; Choudhury, T.; Buckman, P. Smart Textiles for Improved Quality of Life and Cognitive Assessment. Sensors 2021, 21, 8008. [Google Scholar] [CrossRef]
- Blaylock, A.; Constantin, F.; Ligabue, L.; Bocaletti, L.; Siroka, B.; Siroky, J.; Wright, T.; Bechtold, T. Caregiver’s vision of bedding textiles for elderly. Fash. Text. 2015, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, L.-C.; Lenz, A.; Spencer, N.D.; Munzer, T.; Derler, S. Skin-textile friction and skin elasticity in young and aged persons. Ski. Res. Technol. 2009, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Li, L. Design Thinking Applied to Home Textiles Innovation: A Case Study in an Elderly Centre in Hong Kong. Designs 2022, 6, 49. [Google Scholar] [CrossRef]
- Bournas, D.A.; Triantafillou, T.; Zygouris, K.; Stavropoulos, F. Textile-Reinforced Mortar versus FRP Jacketing in Seismic Retrofitting of RC Columns with Continuous or Lap-Spliced Deformed Bars. J. Compos. Constr. 2009, 13, 360–371. [Google Scholar] [CrossRef]
- POLYMAST Project, 2011. Polyfunctional technical textiles for the protection and monitoring of masonry structures against earthquakes. Final report. Transnational access within the SERIES project: SEVENTH FRAMEWORK PROGRAM capacities specific programme research infrustructures (project No.: 227887).
- Bournas, D.A. Concurrent seismic and energy retrofitting of RC and masonry building envelopes using inorganic tex-tile-based composites combined with insulation materials: A new concept. Compos. Part B Eng. 2018, 148, 166–179. [Google Scholar] [CrossRef]
- Furtado, A.; Rodrigues, H.; Arêde, A.; Varum, A. Cost-effective analysis of textile-reinforced mortar solutions used to re-duce masonry infill walls collapse probability under seismic loads. Structures 2020, 28, 141–157. [Google Scholar] [CrossRef]
- Jalil, W.D.A. Smart textiles for the architectural façade. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 737. [Google Scholar] [CrossRef]
- Oliveira, A. Smart Textile for Architecture: Living with Technology, Advances in Intelligent Systems and Computing Human Interaction, Emerging Technologies and Future Applications II. In Proceedings of the 2nd International Conference on Human Interaction and Emerging Technologies: Future Applications (IHIET—AI 2020), Lausanne, Switzerland, 23–25 April 2020. [Google Scholar]
- Priniotakis, G.; Stachewicz, U.; van Hoof, J. Smart textiles and the indoor environment of buildings. Indoor Built Environ. 2022, 31, 1443–1446. [Google Scholar] [CrossRef]
- Gounni, A.; Mabrouk, M.T.; El Wazna, M.; Kheiri, A.; El Alami, M.; El Bouari, A.; Cherkaoui, O. Thermal and economic evaluation of new insulation materials for building envelope based on textile waste. Appl. Therm. Eng. 2019, 149, 475–483. [Google Scholar] [CrossRef]
- Gravagnuolo, A.; Angrisano, M.; Girard, L.F. Circular Economy Strategies in Eight Historic Port Cities: Criteria and Indicators Towards a Circular City Assessment Framework. Sustainability 2019, 11, 3512. [Google Scholar] [CrossRef]
- Briga-Sá, A.; Nascimento, D.; Teixeira, N.; Pinto, J.; Caldeira, F.; Varum, H.; Paiva, A. Textile Waste as an Alternative Thermal Insulation Building Material Solution. Constr. Build. Mater. 2013, 38, 155–160. [Google Scholar] [CrossRef]
- Binici, H.; Eken, M.; Dolaz, M.; Aksogan, O.; Kara, M. An environmentally-friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Constr. Build. Mater. 2014, 51, 24–33. [Google Scholar] [CrossRef]
- Antolinc, D.; Filipič, K.E. Recycling of Nonwoven Polyethylene Terephthalate Textile into Thermal and Acoustic Insulation for More Sustainable Buildings. Polymers 2021, 13, 3090. [Google Scholar] [CrossRef] [PubMed]
- Iașnicu, I.; Vasile, O.; Iatan, R. Thickness influence on absorbing properties of stratified composite materials. J. Eng. Stud. Res. 2015, 21, 28–34. [Google Scholar] [CrossRef]
- Oh, Y.K. An assessment model for the indoor noise environment of aged apartment houses. J. Asian Archit. Build. Eng. 2014, 13, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Khatana, S. A review on the use of fibers in reinforced cementitious concrete. J. Ind. Text. 2015, 45, 239–264. [Google Scholar] [CrossRef]
- Danihelová, A.; Němec, M.; Gergeľ, T.; Gejdoš, M.; Gordanová, J.; Sčensný, P. Usage of Recycled Technical Textiles as Thermal Insulation and an Acoustic Absorber. Sustainability 2019, 11, 2968. [Google Scholar] [CrossRef] [Green Version]
- Enache, F.; Vasile, V.; Gruin, A.; Bolborea, B. Use of wool in the composition of building materials-sustainable solution for improving thermal, acoustic performance and indoor air quality. Constructii 2020, 21, 43–46. [Google Scholar]
- Jami, T.; Karade, S.R.; Singh, L.P. A review of the properties of hemp concrete for green building applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Pixabay GmbH. Available online: https://pixabay.com/ (accessed on 6 November 2022).
- Next Technology Tecnotessile (NTT). Available online: https://www.tecnotex.it (accessed on 6 November 2022).
- Kizildag, N. Smart composite nanofiber mats with thermal management functionality. Sci. Rep. 2021, 11, 4256. [Google Scholar] [CrossRef]
- Chalco-Sandoval, W.; Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Use of phase change materials to develop electrospun coatings of interest in food packaging applications. J. Food Eng. 2017, 192, 122–128. [Google Scholar] [CrossRef]
- Paroutoglou, E.; Fojan, P.; Gurevich, L.; Afshari, A. Thermal Properties of Novel Phase-Change Materials Based on Tamanu and Coconut Oil Encapsulated in Electrospun Fiber Matrices. Sustainability 2022, 14, 7432. [Google Scholar] [CrossRef]
- Mao, X.; Hatton, T.A.; Rutledge, G.C. A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage. Curr. Org. Chem. 2013, 17, 1390–1401. [Google Scholar] [CrossRef] [Green Version]
- Ivanoska-Dacikj, A.; Stachewicz, U. Smart textiles and wearable technologies—Opportunities offered in the fight against pandemics in relation to current COVID-19 state. Rev. Adv. Mater. Sci. 2020, 59, 487–505. [Google Scholar] [CrossRef]
- Metwally, S.; Comesaña, S.M.; Zarzyka, M.; Szewczyk, P.K.; Karbowniczek, J.E.; Stachewicz, U. Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair. Acta Biomater. 2019, 91, 270–283. [Google Scholar] [CrossRef]
- Altay, P.; Uçar, N. Comparative analysis of sound and thermal insulation properties of porous and non-porous polystyrene submicron fiber membranes. J. Text. Inst. 2022, 113, 2177–2184. [Google Scholar] [CrossRef]
- Si, Y.; Yu, Y.; Tang, X.; Ge, J.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802. [Google Scholar] [CrossRef] [Green Version]
- Bertocchi, M.J.; Vang, P.; Balow, R.B.; Wynne, J.H.; Lundin, J.G. Enhanced Mechanical Damping in Electrospun Polymer Fibers with Liquid Cores: Applications to Sound Damping. ACS Appl. Polym. Mater. 2019, 1, 2068–2076. [Google Scholar] [CrossRef]
- Alves, J.; Paiva, F.; Silva, L.; Remoaldo, P. Low-Frequency Noise and Its Main Effects on Human Health—A Review of the Literature between 2016 and 2019. Appl. Sci. 2020, 10, 5205. [Google Scholar] [CrossRef]
- Hurrell, A.; Horoshenkov, K.; King, S.; Stolojon, V. On the relationship of the observed acoustical and related non-acoustical behaviours of nanofibers membranes using Biot- and Darcy-type models. Appl. Acoust. 2021, 179, 108075. [Google Scholar] [CrossRef]
- Rabbi, A.; Bahrambeygi, H.; Shoushtari, A.M.; Nasouri, K. Incorporation of Nanofiber Layers in Nonwoven Materials for Improving Their Acoustic Properties. J. Eng. Fibers Fabr. 2013, 8, 155892501300800412. [Google Scholar] [CrossRef]
- Weschler, C.J. Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry. Environ. Health Perspect. 2006, 114, 1489–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakey, P.S.J.; Morrison, G.C.; Won, Y.; Parry, K.M.; Von Domaros, M.; Tobias, D.J.; Rim, D.; Shiraiwa, M. The impact of clothing on ozone and squalene ozonolysis products in indoor environments. Commun. Chem. 2019, 2, 56. [Google Scholar] [CrossRef] [Green Version]
- Abbass, O.A.; Sailor, D.J.; Gall, E.T. Effect of fiber material on ozone removal and carbonyl production from carpets. Atmos. Environ. 2017, 148, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Abidi, M.; Hajjaji, A.; Bouzaza, A.; Lamaa, L.; Peruchon, L.; Brochier, C.; Rtimi, S.; Wolbert, D.; Bessais, B.; Assadi, A.A. Mod-eling of indoor air treatment using an innovative photocatalytic luminous textile: Reactor compactness and mass transfer enhancement. Chem. Eng. J. 2022, 430, 132636. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, Y.; Ding, X.; Wu, X.; Sand, W.; Zhou, H. A novel method for textile odor removal using engineered water nanostructures. RSC Adv. 2019, 9, 17726–17736. [Google Scholar] [CrossRef] [Green Version]
- Akinci, Z.S.; Marquet, O.; Delclòs-Alió, X.; Miralles-Guasch, C. Urban vitality and seniors’ outdoor rest time in Barcelona. J. Transp. Geogr. 2022, 98, 103241. [Google Scholar] [CrossRef]
- Chang, P.-J. Effects of the built and social features of urban greenways on the outdoor activity of older adults. Landsc. Urban Plan. 2020, 204, 103929. [Google Scholar] [CrossRef]
- Larriva, M.T.B.; Higueras, E. Health risk for older adults in Madrid, by outdoor thermal and acoustic comfort. Urban Clim. 2020, 34, 100724. [Google Scholar] [CrossRef]
- Yıldırım, M. Shading in the outdoor environments of climate-friendly hot and dry historical streets: The passageways of Sanliurfa, Turkey. Environ. Impact Assess. Rev. 2019, 80, 106318. [Google Scholar] [CrossRef]
- Szopińska, E.; Kazak, J.; Kempa, O.; Rubaszek, J. Spatial Form of Greenery in Strategic Environmental Management in the Context of Urban Adaptation to Climate Change. Pol. J. Environ. Stud. 2019, 28, 2845–2856. [Google Scholar] [CrossRef]
- Adams, G.R.; Okoli, O.I. A review of perovskite solar cells with a focus on wire-shaped devices. Renew. Energy Focus 2018, 25, 17–23. [Google Scholar] [CrossRef]
- Hussain, I.; Chowdhury, A.R.; Jaksik, J.; Grissom, G.; Touhami, A.; Ibrahim, E.E.; Schauer, M.; Okoli, O.; Uddin, M.J. Conductive glass free carbon nanotube micro yarn based perovskite solar cells. Appl. Surf. Sci. 2019, 478, 327–333. [Google Scholar] [CrossRef]
- Yang, Y.; Hoang, M.T.; Bhardwaj, A.; Wilhelm, M.; Mathur, S.; Wang, H. Perovskite solar cells based self-charging power packs: Fundamentals, applications and challenges. Nano Energy 2022, 94, 106910. [Google Scholar] [CrossRef]
- Zhang, X.; Shiu, B.; Li, T.-T.; Liu, X.; Ren, H.-T.; Wang, Y.; Lou, C.-W.; Lin, J.-H. Photo-thermoelectric nanofiber film based on the synergy of conjugated polymer and light traps for the solar-energy harvesting of textile solar panel. Sol. Energy Mater. Sol. Cells 2021, 232, 111353. [Google Scholar] [CrossRef]
- Zhang, X.; Shiu, B.; Li, T.-T.; Liu, X.; Ren, H.-T.; Wang, Y.; Lou, C.-W.; Lin, J.-H. Synergistic work of photo-thermoelectric and hydroelectric effects of hierarchical structure photo-thermoelectric textile for solar energy harvesting and solar steam generation simultaneously. Chem. Eng. J. 2021, 426, 131923. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Zhang, Q.; Zhou, Y.; Tai, M.; Koumoto, K.; Lin, H. A highly-efficient concentrated perovskite solar cell-thermoelectric generator tandem system. J. Energy Chem. 2021, 59, 730–735. [Google Scholar] [CrossRef]
- Du, K.; Lin, R.; Yin, L.; Ho, J.S.; Wang, J.; Lim, C.T. Electronic textiles for energy, sensing, and communication. iScience 2022, 25, 104174. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Y.; Lu, S.; Wang, R.; Chen, L.; Xu, F. The elderly’s preference for the outdoor environment in Fragrant Hills Nursing Home, Beijing: Interpreting the visual-behavioural relationship. Urban For. Urban Green. 2021, 64, 127242. [Google Scholar] [CrossRef]
- Arcelus, A.; Jones, M.H.; Goubran, R.; Knoefel, F. Integration of Smart Home Technologies in a Health Monitoring System for the Elderly. In Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21–23 May 2007. [Google Scholar]
- Karagoz, S.; Kiremitler, N.B.; Sarp, G.; Pekdemir, S.; Salem, S.; Goksu, A.G.; Onses, M.S.; Sozdutmaz, I.; Sahmetlioglu, E.; Ozkara, E.S.; et al. Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Appl. Mater. Interfaces 2021, 13, 5678–5690. [Google Scholar] [CrossRef]
- Goel, S.; Hawi, S.; Goel, G.; Thakur, V.K.; Agrawal, A.; Hoskins, C.; Pearce, O.; Hussain, T.; Upadhyaya, H.M.; Cross, G.; et al. Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic. Mater. Today Chem. 2020, 17, 100300. [Google Scholar] [CrossRef]
- Naragund, V.S.; Panda, P.K. Electrospun nanofiber-based respiratory face masks—A review. Emergent Mater. 2022, 5, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewska, A.; Bayan, M.A.H.; Nakielski, P.; Petronella, F.; De Sio, L.; Pierini, F. Nanotechnology Transition Roadmap toward Multifunctional Stimuli-Responsive Face Masks. ACS Appl. Mater. Interfaces 2022, 14, 46123–46144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, P.; Wu, Y.; Luo, D.; Li, Z. Artificial intelligence-enhanced skin-like sensors based on flexible nanogenerators. View 2022, 3, 20220026. [Google Scholar] [CrossRef]
- Babu, A.; Aazem, I.; Walden, R.; Bairagi, S.; Mulvihill, D.M.; Pillai, S.C. Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 2022, 452, 139060. [Google Scholar] [CrossRef]
- Pang, Y.; Cao, Y.; Derakhshani, M.; Fang, Y.; Wang, Z.L.; Cao, C. Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators. Matter 2021, 4, 116–143. [Google Scholar] [CrossRef]
- Busolo, T.; Szewczyk, P.K.; Nair, M.; Stachewicz, U.; Kar-Narayan, S. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS Appl. Mater. Interfaces 2021, 13, 16876–16886. [Google Scholar] [CrossRef] [PubMed]
- Ura, D.P.; Stachewicz, U. The Significance of Electrical Polarity in Electrospinning: A Nanoscale Approach for the Enhancement of the Polymer Fibers’ Properties. Macromol. Mater. Eng. 2022, 307, 2100843. [Google Scholar] [CrossRef]
- Stachewicz, U.; Dijksman, J.F.; Yurteri, C.; Marijnissen, J.C.M. Experiments on single event electrospraying. Appl. Phys. Lett. 2007, 91, 254109. [Google Scholar] [CrossRef]
- Stachewicz, U.; Stone, C.A.; Willis, C.R.; Barber, A.H. Charge assisted tailoring of chemical functionality at electrospun nanofiber surfaces. J. Mater. Chem. 2012, 22, 22935–22941. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Stachewicz, U. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Adv. Colloid Interface Sci. 2020, 286, 102315. [Google Scholar] [CrossRef]
- Stachewicz, U.; Modaresifar, F.; Bailey, R.J.; Peijs, T.; Barber, A.H. Manufacture of Void-Free Electrospun Polymer Nanofiber Composites with Optimized Mechanical Properties. ACS Appl. Mater. Interfaces 2012, 4, 2577–2582. [Google Scholar] [CrossRef] [PubMed]
- Ura, D.P.; Rosell-Llompart, J.; Zaszczyńska, A.; Vasilyev, G.; Gradys, A.; Szewczyk, P.K.; Knapczyk-Korczak, J.; Avrahami, R.; Šišková, A.O.; Arinstein, A.; et al. The Role of Electrical Polarity in Electrospinning and on the Mechanical and Structural Properties of As-Spun Fibers. Materials 2020, 13, 4169. [Google Scholar] [CrossRef] [PubMed]
- Mailley, D.; Hébraud, A.; Schlatter, G. A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications. Macromol. Mater. Eng. 2021, 306, 2100115. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Lavielle, N.; Hébraud, A.; Schlatter, G.; Thöny-Meyer, L.; Rossi, R.M.; Popa, A.M. Simultaneous Electrospinning and Electrospraying: A Straightforward Approach for Fabricating Hierarchically Structured Composite Membranes. ACS Appl. Mater. Interfaces 2013, 5, 10090–10097. [Google Scholar] [CrossRef]
- Stachewicz, U.; Qiao, T.; Rawlinson, S.C.; Almeida, F.; Li, W.-Q.; Cattell, M.; Barber, A.H. 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomater. 2015, 27, 88–100. [Google Scholar] [CrossRef]
- Krysiak, Z.J.; Stachewicz, U. Electrospun fibers as carriers for topical drug delivery and release in skin bandages and patches for atopic dermatitis treatment. WIREs Nanomed. Nanobiotechnol. 2022, e1829. [Google Scholar] [CrossRef]
- Jun, I.; Han, H.-S.; Edwards, J.R.; Jeon, H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int. J. Mol. Sci. 2018, 19, 745. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.; Reis, R.L.; Neves, N.M. Electrospinning: Processing technique for tissue engineering scaffolding. Int. Mater. Rev. 2008, 53, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Knapczyk-Korczak, J.; Szewczyk, P.K.; Stachewicz, U. The importance of nanofiber hydrophobicity for effective fog water collection. RSC Adv. 2021, 11, 10866–10873. [Google Scholar] [CrossRef]
- Knapczyk-Korczak, J.; Stachewicz, U. Biomimicking spider webs for effective fog water harvesting with electrospun polymer fibers. Nanoscale 2021, 13, 16034–16051. [Google Scholar] [CrossRef] [PubMed]
- Ura, D.P.; Knapczyk-Korczak, J.; Szewczyk, P.K.; Sroczyk, E.A.; Busolo, T.; Marzec, M.M.; Bernasik, A.; Kar-Narayan, S.; Stachewicz, U. Surface Potential Driven Water Harvesting from Fog. ACS Nano 2021, 15, 8848–8859. [Google Scholar] [CrossRef] [PubMed]
- Knapczyk-Korczak, J.; Szewczyk, P.K.; Ura, D.P.; Berent, K.; Stachewicz, U. Hydrophilic nanofibers in fog collectors for increased water harvesting efficiency. RSC Adv. 2020, 10, 22335–22342. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, P.K.; Gradys, A.; Kim, S.K.; Persano, L.; Marzec, M.; Kryshtal, A.; Busolo, T.; Toncelli, A.; Pisignano, D.; Bernasik, A.; et al. Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 13575–13583. [Google Scholar] [CrossRef]
- Busolo, T.; Ura, D.P.; Kim, S.K.; Marzec, M.M.; Bernasik, A.; Stachewicz, U.; Kar-Narayan, S. Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric performance. Nano Energy 2018, 57, 500–506. [Google Scholar] [CrossRef]
- Karbowniczek, J.E.; Ura, D.P.; Stachewicz, U. Nanoparticles distribution and agglomeration analysis in electrospun fiber based composites for desired mechanical performance of poly(3-hydroxybuty-rate-co-3-hydroxyvalerate (PHBV) scaffolds with hydroxyapatite (HA) and titanium dioxide (TiO2) towards medical applications. Compos. Part B Eng. 2022, 241, 110011. [Google Scholar] [CrossRef]
- Kaniuk, Ł.; Podborska, A.; Stachewicz, U. Enhanced mechanical performance and wettability of PHBV fiber blends with evening primrose oil for skin patches improving hydration and comfort. J. Mater. Chem. B 2022, 10, 1763–1774. [Google Scholar] [CrossRef]
- Hong, K. SMART Textiles: The Use of Embedded Technology on Tactile Textiles as Therapy for the Elderly. In Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014); Ahmad, M., Yahya, M., Eds.; Springer: Singapore, 2014; pp. 43–47. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Jakob, A.; Collier, L. Sensory enrichment for people living with dementia: Increasing the benefits of multisensory environments in dementia care through design. Des. Health 2017, 1, 115–133. [Google Scholar] [CrossRef]
- Treadaway, C.; Fennell, J.; Kenning, G.; Prytherch, D.; Walters, A. Designing for wellbeing in late stage dementia, Well-Being 2016: Co-Creating Pathways to Well-Being. In Proceedings of the Third International Conference Exploring the Multi-Dimensions of Well-Being, Birmingham, UK, 5–6 September 2016; pp. 126–129. [Google Scholar]
- Yang, K.; Isaia, B.; Brown, L.J.; Beeby, S. E-Textiles for Healthy Ageing. Sensors 2019, 19, 4463. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venturini Degli Esposti, E.; Bedon, C.; Jonaitiene, V.; Kazak, J.K.; Liotta, L.F.; Priniotakis, G.; Stachewicz, U. Smart Textiles in Building and Living Applications: WG4 CONTEXT Insight on Elderly and Healthcare Environments. Buildings 2022, 12, 2156. https://doi.org/10.3390/buildings12122156
Venturini Degli Esposti E, Bedon C, Jonaitiene V, Kazak JK, Liotta LF, Priniotakis G, Stachewicz U. Smart Textiles in Building and Living Applications: WG4 CONTEXT Insight on Elderly and Healthcare Environments. Buildings. 2022; 12(12):2156. https://doi.org/10.3390/buildings12122156
Chicago/Turabian StyleVenturini Degli Esposti, Enrico, Chiara Bedon, Vaida Jonaitiene, Jan K. Kazak, Leonarda Francesca Liotta, Georgios Priniotakis, and Urszula Stachewicz. 2022. "Smart Textiles in Building and Living Applications: WG4 CONTEXT Insight on Elderly and Healthcare Environments" Buildings 12, no. 12: 2156. https://doi.org/10.3390/buildings12122156
APA StyleVenturini Degli Esposti, E., Bedon, C., Jonaitiene, V., Kazak, J. K., Liotta, L. F., Priniotakis, G., & Stachewicz, U. (2022). Smart Textiles in Building and Living Applications: WG4 CONTEXT Insight on Elderly and Healthcare Environments. Buildings, 12(12), 2156. https://doi.org/10.3390/buildings12122156