Grey Correlation Analysis between Macro Mechanical Damage and Meso Volume Characteristics of SBS Modified Asphalt Mixture under Freeze-Thaw Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Specimen Preparation
2.2. Experimental Procedure
2.3. CT Scanning Test
3. Results and Discussion
3.1. Analysis of Macro Mechanical Properties
3.2. Analysis of Meso Volume Characteristics
3.2.1. Meso Characteristic Parameters
- Air void content
- Connected void content
- Void number and average void diameter
3.2.2. Air Void Content
3.2.3. Connected Void Content
3.2.4. Void Number
3.2.5. Average Void Diameter
3.3. Grey Correlation Analysis between Macro Mechanical Damage and Micro Characteristics
- The order of influence factor on the compressive strength loss of asphalt mixture with basalt fiber from high to low is: void number > air void content > connected void content > average void diameter. The change of void number is the main factor affecting the compressive strength loss of the asphalt mixture with basalt fiber. The correlation between the void number and the compressive strength could be observed and analyzed by combining the above results. It can be found that the void number decreases at the initial stage of the F–T cycle. At this time, the secondary influencing factor for the loss rate of compressive strength, namely, air void content, dominates. When the F–T cycle treatment reaches about 9~12 cycles, the change rate of the void number increases, and the generation of new voids dominates. Similar laws can be found in the loss rate of uniaxial compressive strength. In the early stage of the F–T cycle, the compressive strength of the asphalt mixture decreases and then tends to be flat. When the F–T cycle reaches 12 cycles, the decline rate gradually increases.
- As for the loss rate of splitting strength, the correlation degree of influence factor from high to low is: air void content > connected void content > void number > average void diameter. The change of air void content is the main factor affecting the loss of splitting strength of the asphalt mixture with basalt fiber. The correlation between air void content and splitting strength can be analyzed by combining the above results. The internal air void content of the asphalt mixture increases gradually with the F–T cycle, and the F–T damage continues to form. The change rate of air void content is fast and slow. The observation on the loss rate of low-temperature splitting strength of asphalt mixture shows that the splitting strength decreases continuously, and the loss rate is fast and slow, which is more consistent with the change of air void content.
- For the loss rate of ITSM, the correlation degree of influence factor from high to low is: connected void content > air void content > void number > average void diameter. The increase in connected void content is the main factor affecting the loss rate of ITSM. Therefore, the above results can be combined to analyze and explain the loss rate of ITSM from the perspective of the change of connected void content. With the F–T cycle, the change of internal connected void content of asphalt mixture gradually increases, and the change of connected void content slows down due to the generation of new voids. At the same time, according to the change of ITSM, the loss rate gradually increases with the increase of F–T cycles, and the change amplitude tends to be gentle. It can be seen that the change rate of connected void content is similar to the loss rate of ITSM.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, S.C.; Guo, N.S.; Wang, L.; You, Z.P.; Tan, Y.Q.; Guo, Z.X.; Luo, X.D.; Chen, Z. Effect of freeze-thaw cycles on the pavement performance of sbs modified and composite crumb rubber modified asphalt mixtures. Constr. Build. Mater. 2022, 342, 127799. [Google Scholar] [CrossRef]
- Wang, W.S.; Tan, G.J.; Liang, C.Y.; Wang, Y.; Cheng, Y.C. Study on viscoelastic properties of asphalt mixtures incorporating sbs polymer and basalt fiber under freeze-thaw cycles. Polymers 2020, 12, 1804. [Google Scholar] [CrossRef] [PubMed]
- Haghighatpour, P.J.; Aliha, M.R.M. Assessment of freezing and thawing cycle (ftc) effects on mixed mode i/iii fracture toughness and work of fracture of hma asphalt mixtures. Theor. Appl. Fract. Mech. 2022, 118, 103261. [Google Scholar] [CrossRef]
- Raza, A.; Khan, I.; Tufail, R.F.; Frankovska, J.; Mushtaq, M.U.; Salmi, A.; Awad, Y.A.; Javed, M.F. Evaluation of moisture damage potential in hot mix asphalt using polymeric aggregate treatment. Materials 2022, 15, 5437. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.S.; Cheng, Y.C.; Ma, G.R.; Tan, G.J.; Sun, X.; Yang, S.T. Further investigation on damage model of eco-friendly basalt fiber modified asphalt mixture under freeze-thaw cycles. Appl. Sci. 2019, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Yu, Y.H.; Cai, D.G.; Xie, G.Y.; Chen, X.H.; Yang, J. Multi-scale damage characterization of asphalt mixture subject to freeze-thaw cycles. Constr. Build. Mater. 2020, 240, 117947. [Google Scholar] [CrossRef]
- Lou, B.W.; Sha, A.M.; Barbieri, D.M.; Liu, Z.Z.; Zhang, F.; Jiang, W.; Hoff, I. Characterization and microwave healing properties of different asphalt mixtures suffered freeze-thaw damage. J. Clean. Prod. 2021, 320, 128823. [Google Scholar] [CrossRef]
- Tan, G.J.; Wang, W.S.; Cheng, Y.C.; Wang, Y.; Zhu, Z.Q. Establishment of complex modulus master curves based on generalized sigmoidal model for freeze-thaw resistance evaluation of basalt fiber-modified asphalt mixtures. Polymers 2020, 12, 1698. [Google Scholar] [CrossRef]
- Meng, A.X.; Xu, H.N.; Feng, X.L.; Tan, Y.Q. Feasibility of freeze-thaw damage analysis for asphalt mixtures through dynamic nondestructive testing. Constr. Build. Mater. 2020, 233, 117220. [Google Scholar] [CrossRef]
- Guo, Z.X.; Wang, L.; Feng, L.; Guo, Y.Y. Research on fatigue performance of composite crumb rubber modified asphalt mixture under freeze thaw cycles. Constr. Build. Mater. 2022, 323, 126603. [Google Scholar] [CrossRef]
- Badeli, S.; Carter, A.; Dore, G.; Saliani, S. Evaluation of the durability and the performance of an asphalt mix involving aramid pulp fiber (apf): Complex modulus before and after freeze-thaw cycles, fatigue, and tsrst tests. Constr. Build. Mater. 2018, 174, 60–71. [Google Scholar] [CrossRef]
- Zarei, M.; Kordani, A.A.; Naseri, A.; Khordehbinan, M.W.; Khajehzadeh, M.; Zahedi, M. Evaluation of fracture behaviour of modified warm mix asphalt containing vertical and angular cracks under freeze-thaw damage. Int. J. Pavement. Eng. 2022. [Google Scholar] [CrossRef]
- Huang, T.; Qi, S.; Yang, M.; Lv, S.T.; Liu, H.F.; Zheng, J.L. Strength criterion of asphalt mixtures in three-dimensional stress states under freeze-thaw conditions. Appl. Sci. 2018, 8, 1302. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.C.; Yu, D.; Tan, G.J.; Zhu, C.F. Low-temperature performance and damage constitutive model of eco-friendly basalt fiber-diatomite-modified asphalt mixture under freeze-thaw cycles. Materials 2018, 11, 2148. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.F.; Bi, H.P.; Tian, Z.H.; Tan, G.J. Pavement performance investigation of nano-tio2/caco3 and basalt fiber composite modified asphalt mixture under freeze-thaw cycles. Appl. Sci. 2018, 8, 2581. [Google Scholar] [CrossRef] [Green Version]
- You, L.Y.; You, Z.P.; Dai, Q.L.; Xie, X.F.; Washko, S.; Gao, J.F. Investigation of adhesion and interface bond strength for pavements underlying chip-seal: Effect of asphalt-aggregate combinations and freeze-thaw cycles on chip-seal. Constr. Build. Mater. 2019, 203, 322–330. [Google Scholar] [CrossRef]
- Wu, H.N.; Li, P.; Nian, T.F.; Zhang, G.H.; He, T.; Wei, X.Y. Evaluation of asphalt and asphalt mixtures’ water stability method under multiple freeze-thaw cycles. Constr. Build. Mater. 2019, 228, 117089. [Google Scholar] [CrossRef]
- Lovqvist, L.; Balieu, R.; Kringos, N. A micromechanical model of freeze-thaw damage in asphalt mixtures. Int. J. Pavement. Eng. 2021, 22, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Enriquez-Leon, A.J.; de Souza, T.D.; Aragao, F.T.S.; Braz, D.; Pereira, A.M.B.; Nogueira, L.P. Determination of the air void content of asphalt concrete mixtures using artificial intelligence techniques to segment micro-ct images. Int. J. Pavement. Eng. 2021, 23, 3973–3982. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.N.; Li, Z.; Chen, Z.Q. Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (ct) and fractal theory. Constr. Build. Mater. 2014, 68, 587–598. [Google Scholar] [CrossRef]
- Taniguchi, S.; Nishizaki, I.; Moriyoshi, A. A study of longitudinal cracking in asphalt pavement using ct scanner. Road Mater. Pavement. 2008, 9, 549–558. [Google Scholar] [CrossRef]
- Tomoto, T.; Moriyoshi, A. Evaluation of damage to asphalt pavements using a micro-focus ct scanner and three-dimensional crack analysis. Road Mater. Pavement. 2009, 10, 519–543. [Google Scholar] [CrossRef]
- Thyagarajan, S.; Tashman, L.; Masad, E.; Bayomy, F. The heterogeneity and mechanical response of hot mix asphalt laboratory specimens. Int. J. Pavement. Eng. 2010, 11, 107–121. [Google Scholar] [CrossRef]
- Kassem, E.; Walubita, L.; Scullion, T.; Masad, E.; Wimsatt, A. Evaluation of full-depth asphalt pavement construction using X-ray computed tomography and ground penetrating radar. J. Perform. Constr. Fac. 2008, 22, 408–416. [Google Scholar] [CrossRef]
- Liu, P.F.; Hu, J.; Falla, G.C.; Wang, D.W.; Leischner, S.; Oeser, M. Primary investigation on the relationship between microstructural characteristics and the mechanical performance of asphalt mixtures with different compaction degrees. Constr. Build. Mater. 2019, 223, 784–793. [Google Scholar] [CrossRef]
- Ji, J.; Yao, H.; Yuan, Z.K.; Suo, Z.; Xu, Y.; Li, P.F.; You, Z.P. Moisture susceptibility of warm mix asphalt (wma) with an organic wax additive based on X-ray computed tomography (ct) technology. Adv. Civ. Eng. 2019, 2019, 7101982. [Google Scholar] [CrossRef]
- Ahmad, K.A.; Hassan, N.A.; Abdullah, M.E.; Bilema, M.A.M.; Usman, N.; Allam, A.M.A.; Hainin, M.R.B. Image processing procedure to quantify the internal structure of porous asphalt concrete. Multidiscip. Model. Mater. Struct. 2019, 15, 206–226. [Google Scholar] [CrossRef]
- Islam, S.K.S.; Singh, S.K.; Ransinchung, R.N.G.D.; Ravindranath, S.S. Performance deterioration of sbs-modified asphalt mix: Impact of elevated storage temperature and sbs concentration of modified binder. J. Mater. Civil. Eng. 2022, 34, 04021475. [Google Scholar] [CrossRef]
- Department of Transportation Highway Research Institute. Technical Specification for Construction of Highway Asphalt Pavements (jtg f40–2004); China Communications Press: Beijing, China, 2004.
- Tan, G.J.; Wang, W.S.; Cheng, Y.C.; Wang, Y.; Zhu, Z.Q. Master curve establishment and complex modulus evaluation of sbs-modified asphalt mixture reinforced with basalt fiber based on generalized sigmoidal model. Polymers 2020, 12, 1586. [Google Scholar] [CrossRef]
- Wang, W.S.; Cheng, Y.C.; Zhou, P.L.; Tan, G.J.; Wang, H.T.; Liu, H.B. Performance evaluation of styrene-butadiene-styrene-modified stone mastic asphalt with basalt fiber using different compaction methods. Polymers 2019, 11, 1006. [Google Scholar] [CrossRef]
- Guo, Q.L.; Bian, Y.S.; Li, L.L.; Jiao, Y.B.; Tao, J.L.; Xiang, C.X. Stereological estimation of aggregate gradation using digital image of asphalt mixture. Constr. Build. Mater. 2015, 94, 458–466. [Google Scholar] [CrossRef]
- Gong, Y.F.; Bi, H.P.; Liang, C.Y.; Wang, S.R. Microstructure analysis of modified asphalt mixtures under freeze-thaw cycles based on ct scanning technology. Appl. Sci. 2018, 8, 2191. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Yang, J.; Yang, R.C.; Zhu, J.P.; Liu, S.; Wang, C.Y. Investigation of microscopic air void structure of anti-freezing asphalt pavement with X-ray ct and mip. Constr. Build. Mater. 2018, 178, 473–483. [Google Scholar] [CrossRef]
- Yu, D.; Jing, H.S.; Liu, J.N. Effects of freeze-thaw cycles on the internal voids structure of asphalt mixtures. Materials 2022, 15, 3560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.G.; Zhang, Y.P.; Chen, J.; Liu, W.C.; Wang, W.S. Effect of activation modes on the property characterization of crumb rubber powder from waste tires and performance analysis of activated rubber-modified asphalt binder. Polymers 2022, 14, 2490. [Google Scholar] [CrossRef]
Parameters | Unit | Values | Standards |
---|---|---|---|
Penetration | 0.1 mm (@ 25 °C, 100 g, 5 s) | 72 | T0604 |
Ductility | cm (@ 15 °C, 5 cm/min) | 45 | T0605 |
Softening point | °C | 60.5 | T0606 |
Density | g/cm3 | 1.018 | T0603 |
Flash point | °C | 262 | T0611 |
Rolling thin film oven test (RTFOT) | |||
Mass loss | % | −0.094 | T0609 |
Penetration ratio | % (@ 25 °C) | 66.9 | T0609 |
Parameters | Unit | Values | Standard Limits | Standards | |
---|---|---|---|---|---|
Crushing value | % | 13.6 | ≤26 | T0316 | |
Los Angeles abrasion value | % | 17.9 | ≤28 | T0317 | |
Apparent specific gravity | 13.2 mm | — | 2.836 | ≥2.6 | T0304 |
9.5 mm | 2.805 | ||||
4.75 mm | 2.726 | ||||
Water absorption | 13.2 mm | % | 0.6 | ≤2.0 | T0304 |
9.5 mm | 0.28 | ||||
4.75 mm | 0.7 |
Parameters | Unit | Values | Standard Limits | Standards |
---|---|---|---|---|
Apparent specific gravity | — | 2.73 | ≥2.5 | T0328 |
Water absorption | % | 0.64 | — | T0304 |
Angularity (flow time) | s | 39.7 | ≥30 | T0345 |
Sand equivalent | % | 68 | ≥60 | T0334 |
Parameters | Unit | Values | Standard Limits | Standards | |
---|---|---|---|---|---|
Apparent density | t/m3 | 2.712 | ≥2.5 | T0352 | |
Hydrophilic coefficient | — | 0.63 | <1 | T0353 | |
Water content | % | 0.3 | ≤1 | T0103 | |
Plastic index | % | 2 | <4 | T0354 | |
Granular composition | <0.6 mm | % | 100 | 100 | T0351 |
<0.15 mm | 92.5 | 90~100 | |||
<0.075 mm | 81.8 | 75~100 |
Parameters | Unit | Values |
---|---|---|
Length | mm | 6 |
Diameter | µm | 13 |
Specific gravity | g/cm3 | 2.55~2.65 |
Tensile strength | MPa | ≥3000 |
Elongation at break | % | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Xia, W.; Liang, J. Grey Correlation Analysis between Macro Mechanical Damage and Meso Volume Characteristics of SBS Modified Asphalt Mixture under Freeze-Thaw Cycles. Buildings 2022, 12, 2118. https://doi.org/10.3390/buildings12122118
Wang W, Xia W, Liang J. Grey Correlation Analysis between Macro Mechanical Damage and Meso Volume Characteristics of SBS Modified Asphalt Mixture under Freeze-Thaw Cycles. Buildings. 2022; 12(12):2118. https://doi.org/10.3390/buildings12122118
Chicago/Turabian StyleWang, Wensheng, Wenlei Xia, and Jiaxiang Liang. 2022. "Grey Correlation Analysis between Macro Mechanical Damage and Meso Volume Characteristics of SBS Modified Asphalt Mixture under Freeze-Thaw Cycles" Buildings 12, no. 12: 2118. https://doi.org/10.3390/buildings12122118
APA StyleWang, W., Xia, W., & Liang, J. (2022). Grey Correlation Analysis between Macro Mechanical Damage and Meso Volume Characteristics of SBS Modified Asphalt Mixture under Freeze-Thaw Cycles. Buildings, 12(12), 2118. https://doi.org/10.3390/buildings12122118