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Featured Application: This work provides the testing and theoretical reference for
material and structure design of asphalt pavement in three-dimensional stress states under
freeze-thaw conditions.

Abstract: In order to study the influence of freeze-thaw cycles on the multi-axial strength of AC
(Asphalt Concrete)-13 and SMA (Stone Mastic Asphalt)-13 asphalt mixtures which are widely used
in China, triaxial tests were carried out in the laboratory. Two nonlinear failure criterions under
three-dimensional stress states in octahedral space were established. A linear model for engineering
design and its simplified testing method were then presented. The three-dimensional failure criteria of
asphalt mixtures after 0, 1, 3, 5, 10, 15, 20 freeze-thaw cycles were also proposed. The results indicated
that the multi-axial strength decayed significantly after 20 freeze-thaw cycles. It is noteworthy that
the strength degrades rapidly during the first 5 freeze-thaw cycles. Compared with AC-13 asphalt
mixture, the SMA-13 asphalt mixture exhibits better performance on the resistance to freeze-thaw
damage, and it is recommended as the upper surface layer material of pavement structure.

Keywords: asphalt mixtures; three-dimensional stress states; freeze-thaw cycles; triaxial strength;
failure criterion

1. Introduction

Asphalt pavement is influenced by freeze-thaw cycles in the middle and lower reaches of the
Yangtze River and some seasonally frozen areas of China in winter. Many studies have shown that
freeze-thaw cycles significantly affect the performance of asphalt mixtures [1–3]. The freeze-thaw
process would lead to the loss of adhesion between binder and aggregates, which can also change
the properties of aggregate, such as strength, compressibility, porosity, and permeability [2], as well
as reduce the strength and stiffness of asphalt mixtures. Therefore, it can cause various forms of
premature pavement distress [3]. Some asphalt pavements were discovered to have grave freeze injury
during construction right away or after the construction process is completed [4,5]. Hence, effective
analysis of the freeze-thaw cycles on the performance of asphalt mixtures is necessary [6–8].

General studies are mainly focused on the influence of freeze-thaw cycles and the macro
performance of asphalt mixtures under simple stress states including resistance, stiffness, stability,
fatigue life, low-temperature properties, etc. [9–15]. They have made contributions to improve the
accuracy of asphalt pavement design parameters. And a number of studies on the damage evolution of
asphalt mixtures during freeze-thaw cycles from the basis of micro-level were reported in Ref. [16,17].
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Furthermore, a lot of models were established to characterize the mechanical performance of asphalt
mixtures after multiple freeze-thaw cycles under simple stress states [18,19].

However, the asphalt mixtures are not only affected by the freeze-thaw cycles, but also by the
complex stress states in the site [20,21]. Therefore, the uniaxial tensile test, uniaxial compression
test, bending test, and indirect test under one-dimensional or two-dimensional stress states cannot
reflect the failure modes of asphalt mixtures in three-dimensional stress conditions in the asphalt
pavement structures [22–24]. Generally speaking, the tensile properties of asphalt materials should
be emphasized at relatively low temperature. While the conventional triaxial test is available only
for the triaxial compressive stress state with confining pressure if the first principal stress σ1 equal to
the second principal stress σ2, the triaxial tensile tests cannot be carried out [25–27]. As it is difficult
to study the multi-axial strength properties of asphalt mixtures [28,29], the three-dimensional failure
criterion of asphalt mixture after freeze-thaw cycles has not been developed.

The objective in this paper is to study the effects of the complex stress states and freeze-thaw
in asphalt pavement in the laboratory, as well as to perform triaxial tests (especially triaxial tensile
testing) for AC (Asphalt Concrete)-13 and SMA (Stone Mastic Asphalt)-13 asphalt mixtures after
freeze-thaw cycles with the self-developed triaxial test method. In addition, the nonlinear and linear
failure criterions under three-dimensional stress states are established to evaluate the impact of stress
and freeze-thaw cycles on the performance of these asphalt mixtures. From the strength point of view,
the SMA-13 asphalt mixture exhibits better freeze-thaw resistance under complex stress condition
compared with the AC-13 asphalt mixture. Therefore, it is recommended as the upper surface layer
material of pavement structure.

2. Laboratory Experimental Program

2.1. Materials

The continuous-graded AC(Asphalt Concrete)-13 and gap-graded SMA(Stone Mastic Asphalt)-13
asphalt mixtures, which are very commonly used for the surface layer on the highway and
recommended by Technical Specifications for Construction of Highway Asphalt Pavements (JTG
F40-2004) in China, were prepared for the experiment with its gradations listed in Figure 1. The basalt
was used as aggregates and the SBS (Styrene Butadiene Styrene) modified bitumen (Zhonghai Asphalt
(Taizhou) Co.,Ltd., Taizhou, China) was used as a binder for the preparation of specimens. The basic
properties of SBS modified bitumen are as shown in Table 1 and the properties of lignin fiber for the
SMA-13 asphalt mixture are shown in Table 2.
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Table 1. Properties of SBS (Styrene Butadiene Styrene) modified bitumen.

Test SBS Modified Bitumen Technical Requirements

penetration (25 ◦C) (0.1 mm) 55.9 30~60
penetration index 0.53 >0

ductility (5 ◦C /cm, 5 cm/min) 34.2 ≥20
softening point (◦C) 79.4 ≥60

viscosity (135 ◦C, Pa·s) 2.30 ≤3

Table 2. Properties of fiber.

Test Lignin Fiber Technical Requirements

fiber length (mm) 3.5~4.8 ≤6
ash content (%) 15.9 18 ± 5

pH value 7.12 7.5 ± 1.0
oil absorption (%) 841 ≥500

moisture content (%) 1.29 ≤5.0
density (g/cm3) 0.938 /

The solid cylindrical specimens were made by the gyratory compactor (TIPTOP China Limited,
Shanghai, China) with 100 mm diameter and 102 mm height. The performances of mixtures were
extensively tested earlier by Huang [27,28]. The optimum asphalt-aggregates weight ratio of the AC-13
specimens was 5.2% with the air void content of 4.5%. The optimum asphalt-aggregates weight ratio of
the SMA-13 specimens was 6.1% with the air void content 3.6%, and the content of the lignin fiber was
0.3%. Moreover, the two ends of the original specimen were polished by the diamond blade (Zhejiang
Chenxin Machinery Equipment Co., Ltd, Shaoxing, China) up to the height of 100 mm. The hollow
cylinder specimens with a dimension of 10 mm × 50 mm × 100 mm (inner radius × outer radius ×
height) were prepared for the triaxial tests by coring the solid cylinder specimens.

2.2. Testing Conditions and Procedures

2.2.1. Freeze-Thaw Cycles

The freeze-thaw experiments were carried out by repeating the freeze-thaw cycles according to
the specification of the Standard Test Methods of Bitumen and Bituminous mixtures for Highway
Engineering (JTG E20-2011) in China. Firstly, the specimens were immerged into the tap water in the
water tank which was placed in the vacuum drying oven and kept the vacuum for 15 min under the
condition of 97.3~98.7 kPa. Then, the valve was opened, the atmospheric pressure restored, and the
specimens were placed in the water for 0.5 h. After that, we took out the specimens and put them into
a plastic bag, added about 10 mL water and tightened the plastic bag. The specimens were put into the
thermostats at the condition of −18 ◦C for 16 h. Finally, we took out the specimens and immediately
put them in the water thermostat tank at 60 ◦C for 24 h. One freeze-thaw cycle was completed by
following the above steps. The triaxial tests were conducted at the end of 0, 1, 3, 5, 10, 15, and 20 cycles.

2.2.2. Triaxial Test

The triaxial test method is used to characterize the mechanical properties of asphalt mixtures
under complex stress states, especially in the triaxial tensile stress state, as shown in Figure 2. In this
test, a hollow cylinder specimen was placed in the test equipment while the inner and outer surfaces of
the specimen were loaded by two independent flexible airbags. Hence, adjustable radial compressive
stress and circumferential tensile stress can be generated. Meanwhile, the axial tensile or compressive
stresses were produced by a material testing system MTS (Mechanical Testing & Simulation systems
company, Minneapolis, USA). Therefore, the three-dimensional unequal stress states can be generated
to simulate the complex stress states of asphalt pavement materials in the pavement structures.
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According to elastic mechanics, the principal stresses, including axial stress, σz, radial stress, σρ, and
circumferential stress, σϕ, can be sorted numerically in terms of the principal stresses σ1, σ2, and σ3,
respectively [29].
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Figure 2. Diagram of triaxial test.

In order to simulate the weather of the middle and lower reaches of the Yangtze River and some
seasonally frozen areas of China in winter, as shown in Figure 3, 5 ◦C was selected as the testing
temperature. Before the test, the specimens were kept in the temperature control chamber for more
than 6 h. The axial loading rate was 2 mm/min, which is the same as the loading rate of the uniaxial
compressive test in the current specification.
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Before the triaxial compressive test, some measures have been taken to reduce the friction at the
end of the specimen. For example, lubricant oil was smeared on the upper and lower surfaces of the
specimen. During the triaxial tensile test, it is necessary to ensure that the specimen is broken without
degumming [29]. The triaxial test procedures are as follow:

(1) Tensile meridian and compressive meridian: The tensile meridian/compressive meridian
can be obtained by the triaxial tensile/compressive test. Three-direction isobaric stress condition
(σ1 = σ2 = σ3) of specimens were set at certain stress levels by applying the inner, outer airbags and
loading shaft of MTS, and thereafter, the axial tensile/compressive stress σ1/σ3 was applied until the
failure of the specimen. A series of tensile tests were carried out under different three-direction isobaric
stress conditions to obtain the tensile meridian. Likewise, the compressive meridian can be obtained.
On the tensile meridian and compressive meridian, the lode angle was equal to 0◦and 60◦, respectively.
The stress path of the tensile meridian and compressive meridians are shown in Figure 4.
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(2) Strength envelope curve: The strength envelope curve can be obtained by plane tensile and
compressive/axial tensile tests. At first, the transverse stresses, σ2 and σ3, were increased up to the
pre-determined values proportionally by applying pressure with the inner airbag. Then, the axial
tensile stress, σ1, was applied by an MTS material testing machine until specimen failure. On the
strength envelope curve, the average stresses were basically the same and the lode angles ranged from
0◦~60◦ gradually. The stress path is shown in Figure 5 [28,29].
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3. Failure Criterions

3.1. Nonlinear Failure Criterion

The average value of three effective test results of triaxial compressive/tensile tests, the plane
tensile, and compressive/axial tensile tests are presented in Table 3. Based on the test results, the
octahedral normal stress, σoct, octahedral shear stress, τoct, and lode angle, θ can be obtained by the
following formulas [29]:

σoct = σm = (σ1 + σ2 + σ3)/3 (1)

τoct =

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2/3 (2)

θ = arccos
2σ1 − σ2 − σ3

3
√

2τoct
(3)
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Table 3. Results of triaxial tests for asphalt mixtures.

Test Mixture Type σ1 (MPa) σ2 (MPa) σ3 (MPa) σoct
fc

τoct
fc

θ◦

triaxial
compressive

AC-13

− 0.000 −8.477 −0.333 0.471 60

−0.200 −0.200 −9.372 −0.384 0.510 60

−0.400 −0.400 9.984 −0.424 0.533 60

−0.600 −0.600 −10.750 −0.470 0.564 60

−0.800 −0.800 −11.806 −0.527 0.612 60

SMA-13

0.000 0.000 −9.240 −0.333 0.471 60

−0.200 −0.200 −10.506 −0.393 0.526 60

−0.400 −0.400 −10.983 −0.425 0.540 60

−0.600 −0.600 −11.617 −0.462 0.562 60

−0.800 −0.800 −12.969 −0.526 0.621 60

triaxial
tensile

AC-13

1.110 0.000 0.000 0.044 0.062 0

1.017 −0.500 −0.500 0.001 0.084 0

0.913 −1.000 −1.000 −0.043 0.106 0

0.700 −1.500 −1.500 −0.090 0.122 0

0.588 −2.000 −2.000 −0.134 0.144 0

SMA-13

1.258 0.000 0.000 0.045 0.064 0

1.176 −0.500 −0.500 0.006 0.086 0

1.059 −1.000 −1.000 −0.034 0.105 0

0.864 −1.500 −1.500 −0.077 0.121 0

0.748 −2.000 −2.000 −0.117 0.140 0

plane tensile
and

compressive/
axial tensile

AC-13

1.110 0.000 0.000 0.044 0.062 0

1.091 0.125 −0.115 0.043 0.061 10.8

1.042 0.313 −0.289 0.042 0.064 26.8

0.991 0.442 −0.408 0.040 0.068 37.8

0.987 0.505 −0.467 0.040 0.071 41.0

0.955 0.594 −0.548 0.039 0.076 46.7

0.896 0.780 −0.720 0.038 0.087 56.3

0.834 0.834 −0.770 0.035 0.089 60

SMA-13

1.258 0.000 0.000 0.045 0.064 0.0

1.204 0.125 −0.115 0.044 0.062 9.8

1.179 0.313 −0.289 0.043 0.065 24.1

1.128 0.442 −0.408 0.042 0.068 33.5

1.112 0.505 −0.467 0.041 0.070 37.6

1.083 0.594 −0.548 0.041 0.074 43.0

0.945 0.783 −0.720 0.036 0.081 54.9

0.880 0.880 −0.810 0.034 0.086 60.0

For triaxial compressive tests, both AC-13 and SMA-13 specimens are mainly represented as shear
failure shown in Figure 6. For the triaxial tensile test, the plane tensile, and compressive/axial tensile
test, the specimen failures are shown in Figure 7.
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Based on the triaxial test results, the SMA-13 asphalt mixture has a higher strength in
three-dimensional stress states (especially in triaxial tensile stress states) compared with AC-13 asphalt
mixture. The three-dimensional nonlinear failure criterions of AC-13 and SMA-13 asphalt mixtures
were established as follows:

Tensile meridian:

τt
oct
fc

= a + b
σoct

fc
+ c
(

σoct

fc

)2
, R2

AC = 0.98; R2
SMA = 0.98 (4)

Compressive meridian:

τc
oct
fc

= d + e
σoct

fc
+ f

(
σoct

fc

)2
, R2

AC = 0.99; R2
SMA = 0.98 (5)

Strength envelope curve:

τoct(θ) = τt
oct −

(
τt

oct − τc
oct
)

sinn 1.5θ, R2
AC = 0.96; R2

SMA = 0.97 (6)

where fc is the uniaxial compressive strength, a, b, c, d, e, f, and n are model parameters as shown in
Table 4. The results of the experiments/prediction are presented in Figures 8 and 9, respectively.

Table 4. Parameters of the nonlinear failure criterions.

Mixture Type a b c d e f n

AC-13 0.072 −0.55 −0.41 0.145 −1.138 −0.541 5

SMA-13 0.084 −0.664 −0.426 0.139 −1.095 −0.632 7
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It is shown that these failure criteria are in good agreement with the test results and reflect the
difference between the tensile and compressive strength of the asphalt mixtures under complex stress
states, as well as the synergistic failure effect of each stress component in the pavement structures.

However, these criteria are complicated and have many fitting parameters. In the process of
regression, the tensile meridian can be approximated with a quadratic polynomial. The tensile and
compressive meridians must intersect at the triaxial equal tensile point when τoct = 0. The tensile
meridian and compressive meridian were set at a proportion relationship to simplify the meridians.
Furthermore, it is assumed that the strength envelope in the region of 0◦~60◦ is interpolated with the
sine function [29,30]. Therefore, the failure criteria can be represented as

Tensile meridian:

τt
oct
fc

= a1 + b1
σoct

fc
+ c1

(
σoct

fc

)2
, R2

AC = 0.94; R2
SMA = 0.99 (7)

Compressive meridian:

τc
oct
fc

= k

[
a1 + b1

σoct

fc
+ c1

(
σoct

fc

)2
]

, R2
AC = 0.94; R2

SMA = 0.97 (8)

Strength envelope curve:

τoct(θ) = τt
oct −

(
τt

oct − τc
oct
)

sinm 1.5θ, R2
AC = 0.94; R2

SMA = 0.97 (9)
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where a1, b1, c1, k, and m are model parameters as shown in Table 5. The comparison with experiments
is shown in Figures 8 and 9.

Table 5. Parameters of the simplified nonlinear failure criteria.

Mixture Type a1 b1 c1 k m

AC-13 0.085 −0.67 −0.32 1.69 5
SMA-13 0.085 −0.664 −0.426 1.63 7

3.2. Linear Failure Criterion

As it is difficult for the engineering design department to establish the failure criteria, the nonlinear
criteria should be further simplified for the convenience of analysis. Therefore, a linear failure criterion
can be established by curve fitting as below [29].

Tensile meridian:
τt

oct
fc

= a2 + b2
σoct

fc
, R2

AC = 0.94; R2
SMA = 0.96 (10)

Compressive meridian:

τc
oct
fc

= k1

(
a2 + b2

σoct

fc

)
, R2

AC = 0.94; R2
SMA = 0.98 (11)

Strength envelope curve:

τoct(θ) = τt
oct − (τt

oct − τc
oct)3θ/π, R2

AC = 0.88; R2
SMA = 0.89 (12)

where a2, b2, and k1 are model parameters as shown in Table 6.

Table 6. Parameters of the linear failure criteria.

Mixture Type a2 b2 k1

AC-13 0.088 −0.733 1.4

SMA-13 0.08 −0.579 1.6

Seeing from Figures 9 and 10, the nonlinear failure envelope curves of asphalt mixtures are
transformed from the shape similar to a shield into a hexagon in the σoct − τoct space due to linear
fitting. With the increase of average stress, the hexagon strength envelope gradually expands along the
linear tensile and compressive meridians as shown in Figure 11. Furthermore, the simplified failure
criterion under complex stress states can be established by the uniaxial compressive, uniaxial tensile,
and the ordinary triaxial tests. Although each of these tests cannot reflect the strength properties of
asphalt mixtures under three-dimensional stress states, the synergistic failure effect of each stress
component can be considered with the combination of these tests. Therefore, the engineering design
department has the ability to complete the related tests.
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3.3. Failure Criterion after Freeze-Thaw Cycles

According to the establishment of engineering failure criterion and its testing method, the failure
criterion of AC-13 and SMA-13 asphalt mixtures following freeze-thaw cycles can be established by
conducting uniaxial compressive, uniaxial tensile, and the conventional triaxial tests. The average
value of three effective test results of failure strength after 0, 1, 3, 5, 10, 15, and 20 freeze-thaw cycles
are listed in Table 7.

The three-dimensional failure criteria after freeze-thaw cycles can be represented by
Tensile meridian:

τt
oct
fc

= a2 + b2
σoct

fc
− c2N, R2

AC = 0.85; R2
SMA = 0.83 (13)

Compressive meridian:

τc
oct
fc

= k1

(
a2 + b2

σoct

fc
− c2N

)
, R2

AC = 0.98; R2
SMA = 0.98 (14)

Strength envelope curve:

τoct(θ) = τt
oct − (τt

oct − τc
oct)3θ/π (15)

where N is the number of freeze-thaw cycles; a2, b2 c2, and k1 are model parameters as shown in Table 8.
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Table 7. Failure strength of asphalt mixtures after freeze-thaw cycles.

Mixture
Type

Freeze-Thaw
Cycles (N)

Uniaxial
Compressive

Strength
Triaxial Compressive Strength Uniaxial Tensile

Strength

fc (MPa) σ1 (MPa) σ2 (MPa) σ3 (MPa) ft (MPa)

AC-13

0 −8.477 −0.2 −0.2 −9.372 1.110
1 −8.201 −0.2 −0.2 −9.194 1.072
3 −7.913 −0.2 −0.2 −8.765 0.994
5 −7.460 −0.2 −0.2 −8.451 0.936

10 −6.866 −0.2 −0.2 −7.835 0.818
15 −6.358 −0.2 −0.2 −7.423 0.733
20 −6.104 −0.2 −0.2 −7.301 0.692

SMA-13

0 −9.240 −0.2 −0.2 −10.506 1.258
1 −9.067 −0.2 −0.2 −10.287 1.217
3 −8.634 −0.2 −0.2 −9.862 1.109
5 −8.271 −0.2 −0.2 −9.643 1.043

10 −7.596 −0.2 −0.2 −8.970 0.925
15 −7.128 −0.2 −0.2 −8.553 0.844
20 −6.714 −0.2 −0.2 −8.302 0.796

Table 8. Parameters of the linear failure criterions after freeze-thaw cycles.

Mixture Type a2 b2 c2 k1

AC-13 0.088 −0.733 0.0015 1.4
SMA-13 0.08 −0.579 0.0012 1.6

The failure characteristics of AC-13 and SMA-13 asphalt mixtures after freeze-thaw cycles are
similar to the previous failure modes. The specimens experienced shear failure and tensile failure and
there are a few loose grains on the failure surfaces.

Seeing from Figures 12 and 13, there are multivariate linear relationships between the octahedral
shear strength and the octahedral normal strength, as well as the freeze-thaw numbers of AC-13 and
SMA-13 asphalt mixtures, the failure envelope curves also shrink during the freeze-thaw process.
This criterion provides the testing and theoretical reference for material and structure design of asphalt
pavement in three-dimensional stress states under freeze-thaw conditions.Appl. Sci. 2018, 8, x 12 of 15 
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Figure 12. Tensile and compressive meridians of asphalt mixtures after freeze-thaw cycles.
Note: The meridians from top to bottom represent the tensile and compressive meridians after 0,
1, 3, 5, 10, 15, and 20 freeze-thaw cycles, respectively.
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Figure 13. Strength envelope curves of asphalt mixtures after freeze-thaw cycles. Note: The straight lines
from outside to inside represent the failure envelope curves after 0, 1, 3, 5, 10, 15, and 20 freeze-thaw
cycles, respectively.

As shown in Figure 14, the freeze-thaw process can degrade the resistance of three-dimensional
stress states; the uniaxial compressive strength, triaxial compressive strength, and uniaxial tensile
decayed significantly after 20 freeze-thaw cycles for these two asphalt mixtures. Especially, the strength
degrades rapidly during the first 5 freeze-thaw cycles. Compared with the continuous-graded AC-13
asphalt mixture, the gap-graded SMA-13 asphalt mixture exhibits better resistance to freeze-thaw
damage under complex stress conditions. This is mainly because SMA-13 is a framework-dense
structure and AC-13 is a suspend-dense structure, the SMA-13 asphalt mixture consists of a coarse
aggregate skeleton which has a high binder content and a low air void content, and there are some
fibers in the mixture [31–33]. Since the influence of freeze-thaw cycling and complex stress conditions
are inevitable in the middle and lower reaches of the Yangtze River and some seasonally frozen
areas of China in winter, the SMA-13 asphalt mixture is recommended to improve the resistance to
freeze-thaw erosion.Appl. Sci. 2018, 8, x 13 of 15 
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4. Summary and Conclusions

Through the triaxial experiments, the nonlinear failure criterion with seven parameters and
the simplified nonlinear failure criterion with five parameters have been established to characterize
the mechanical behavior of AC-13 and SMA-13 asphalt mixtures under three-dimensional stress
states. Furthermore, a linear engineering failure criterion with three parameters is also proposed.
This criterion can be obtained by uniaxial compressive, uniaxial tensile, and conventional triaxial
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compressive tests. With the linear criterion, the synergistic failure effect of each stress components can
be considered which is also convenient for engineering analysis.

The three-dimensional failure criteria of AC-13 and SMA-13 asphalt mixtures after 0, 1, 3, 5, 10, 15,
and 20 freeze-thaw cycles are presented based on the combination strength tests. There is a multivariate
linear relationship between the octahedral shear strength, the octahedral normal strength, as well as
the freeze-thaw numbers. Compared with the AC-13 asphalt mixture, the SMA-13 asphalt mixture
exhibits better resistance to freeze-thaw damage under complex stress states. Therefore, the SMA-13
SBS asphalt mixture is recommended as the upper surface layer material of pavement structure.

Further analysis is required for asphalt mixtures with varying asphalt content or varying
compaction in the lab to improve the three-dimensional resistance following freeze-thaw cycles.
Meanwhile, data can be obtained by taking special samples from construction projects to conduct
triaxial tests to establish actual failure criteria.
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