Non-commercial Air Purifier—The Effectiveness and Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Room and Experimental Conditions
2.2. Air Purifier
2.3. Bioaerosol Determination
2.4. Ozone Determination
- take 5 cm3 of the absorbing solution from the scrubber and transfer it to a colorimetric tube,
- add 0.5 cm3 of 0.02% dimethyl-p-phenylenediamine hydrochloride and mix it.
- after 15 min, test the color of the solution in visible light (λ = 550 nm) in compare to earlier prepared scale of standards.
- in both cases (without or with carbon filter) the laboratory room was not ventilated,
- ozone generation was turned on for 20 min (116 mg/min × 20 min), which corresponds to 2320 mg of generated O3,
- after 20 min, the ozone generator was turned off,
- in the case of an activated carbon filter, the flow remained constant of 180 m3/h,
- time in which the ozone concentration dropped below the lowest limit value of 40 µg/m3 (Health Canada) was measured.
3. Results
3.1. Bacterial And Fungal Aerosol Reduction with the Ozone Generator
3.2. Ozone Concentrations
3.3. Bacterial and Fungal Aerosol Reduction with Ozone Generator and Carbon Filter
3.4. The Efficiency of Bacterial and Fungal Aerosol Removal
3.5. Ozone Decay Rate
4. Discussion
4.1. Effectiveness of Bioaerosol Removal by a Low-Cost Air Purifier
4.2. Ozone Threat
4.3. Implications for Health
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiayu, C.; Qiaoqiao, R.; Feilong, C.; Chen, L.; Jiguo, W.; Zhendong, W.; Lingyun, C.; Liu, R.; Guoxia, Z. Microbiology Community Structure in Bioaerosols and the Respiratory Diseases. J. Environ. Sci. Public Health 2019, 3, 347–357. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I.; Hryb, W. Microbiological air quality and drug resistance in airborne bacteria isolated from a waste sorting plant located in poland—A case study. Microorganisms 2020, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wéry, N. Bioaerosols from composting facilities-a review. Front. Cell. Infect. Microbiol. 2014, 4, 42. [Google Scholar] [PubMed]
- Pearson, C.; Littlewood, E.; Douglas, P.; Robertson, S.; Gant, T.W.; Hansell, A.L. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: A systematic review of occupational and community studies. J. Toxicol. Environ. Health B Crit. Rev. 2015, 18, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Fung, F.; Hughson, W.G. Health Effects of Indoor Fungal Bioaerosol Exposure. Appl. Occup. Environ. Hyg. 2003, 18, 535–544. [Google Scholar] [CrossRef]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [PubMed] [Green Version]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. China 2018, 67, 23–35. [Google Scholar] [CrossRef]
- Górny, R.L. Microbial Aerosols: Sources, Properties, Health Effects, Exposure Assessment—A Review. KONA Powder Part. J. 2020, 37, 264–285. [Google Scholar] [CrossRef] [Green Version]
- Gunschera, J.; Markewitz, D.; Bansen, B.; Salthammer, T.; Ding, H. Portable photocatalytic air cleaners: Efficiencies and by-product generation. Environ. Sci. Pollut. Res. 2016, 23, 7482–7493. [Google Scholar] [CrossRef]
- Shaughnessy, R.J.; Sextro, R.G. What is an effective portable air cleaning device? A review. J. Occup. Environ. Hyg. 2006, 3, 169–181. [Google Scholar] [CrossRef]
- Grinshpun, S.A.; Mainelis, G.; Trunov, M.; Adhikari, A.; Reponen, T.; Willeke, K. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces. Indoor Air 2005, 15, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Salonen, H.; Salthammer, T.; Morawska, L. Human exposure to ozone in school and office indoor environments. Environ. Int. 2018, 119, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.A. Primary and secondary consequences of indoor air cleaners. Indoor Air 2016, 26, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, H.F.; Coleman, B.K.; Sarwar, G.; Corsi, R.L. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings. Indoor Air 2005, 15, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Cestonaro, L.V.; Marcolan, A.M.; Rossato-Grando, L.G.; Anzolin, A.P.; Goethel, G.; Vilani, A.; Garcia, S.C.; Bertol, C.D. Ozone generated by air purifier in low concentrations: Friend or foe? Environ. Sci. Pollut. Res. 2017, 24, 22673–22678. [Google Scholar] [CrossRef] [PubMed]
- Boeniger, M.F. Use of ozone generating devices to improve indoor air quality. Am. Ind. Hyg. Assoc. J. 1995, 56, 590–598. [Google Scholar] [CrossRef]
- Cheng, K.C.; Park, H.K.; Tetteh, A.O.; Zheng, D.; Ouellette, N.T.; Nadeau, K.C.; Hildemann, L.M. Mixing and sink effects of air purifiers on indoor PM2.5 concentrations: A pilot study of eight residential homes in Fresno, California. Aerosol Sci. Technol. 2016, 50, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Mo, J.; Li, Y.; Sundell, J.; Wargocki, P.; Zhang, J.; Little, J.C.; Corsi, R.; Deng, Q.; Leung, M.H.K.; et al. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmos. Environ. 2011, 45, 4329–4343. [Google Scholar] [CrossRef]
- Custovic, A.; Smith, A.; Green, R.; Woodcock, A. Distribution and aerodynamic characteristics of major cat allergen Fel d 1. Thorax 1996, 51, 33–38. [Google Scholar]
- Gherasim, A.; Jacob, A.; Schoettel, F.; Domis, N.; de Blay, F. Efficacy of air cleaners in asthmatics allergic to cat in ALYATEC® environmental exposure chamber. Clin. Exp. Allergy 2020, 50, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Punsmann, S.; Van Der Graaf, T.; Zahradnik, E.; Czibor, C.; Raulf, M.; Sander, I.; Punsmann, S.; Zahradnik, E.; Czibor, C.; Raulf, M.; et al. Effectiveness of a portable air filtration device in reducing allergen exposure during household chores. Allergo J. Int. 2019, 28, 299–307. [Google Scholar] [CrossRef]
- Polidori, A.; Fine, P.M.; White, V.; Kwon, P.S. Pilot study of high-performance air filtration for classroom applications. Indoor Air 2013, 23, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, P.T.J.; De Hartog, J.J.; Reijnaerts, J.; Beckmann, G.; Anzion, R.; Poels, K.; Godderis, L. Influence of combined dust reducing carpet and compact air filtration unit on the indoor air quality of a classroom. Environ. Sci. Process. Impacts 2015, 17, 316–325. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kawakami, Y. Effectiveness of Airborne Fungi Removal by using a HEPA Air Purifier Fan in Houses. Biocontrol Sci. 2018, 23, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, S.; Srivastav, N.; Spears, D. An experiment with air purifiers in delhi during winter 2015–2016. PLoS ONE 2016, 11, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- How to Buy the Best Air Purifier. CHOICE. Available online: https://www.choice.com.au/home-and-living/cooling/air-purifiers/buying-guides/air-purifiers (accessed on 5 September 2019).
- Britigan, N.; Alshawa, A.; Nizkorodov, S.A. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. J. Air Waste Manag. Assoc. 2006, 56, 601–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagda, N.L. Air Quality and Comfort in Airliner Cabins; ASTM: Chelsea, MI, USA, 2000; ISBN 0803128665. Available online: https://books.google.pl/books?id=41mdymdg0cwC&pg=PA208&lpg=PA208&dq=28.+Nagda,+N.L.+Air+Quality+and+Comfort+in+Airliner+Cabins;+ASTM&source=bl&ots=YubnoN5U7k&sig=ACfU3U0VONopy27atgomJMihPXBdJXu_Cg&hl=pl&sa=X&ved=2ahUKEwiWq7mOjtnpAhUrBhAIHd1WCZMQ6AEwAHoECAcQAQ#v=onepage&q=28.%20Nagda%2C%20N.L.%20Air%20Quality%20and%20Comfort%20in%20Airliner%20Cabins%3B%20ASTM&f=false (accessed on 30 August 2019).
- Phillips, T.J.; Bloudoff, D.P.; Jenkins, P.L.; Stroud, K.R. Ozone emissions from a “personal air purifier”. J. Expo. Anal. Environ. Epidemiol. 1999, 9, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, M.; Zajusz-Zubek, E. Occupational exposure to ozone in workers using photocopiers and printers. Medycyna Pracy 2010, 61, 549–551. (In Polish) [Google Scholar]
- WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Dz.U.1286 Regulation of the Minister of Family, Labor and Social Policy regarding the highest permissible concentrations and intensities of harmful factors in the work environment. Pol. J. Laws 2018. Available online: http://www.ilo.org/dyn/natlex/natlex4.detail?p_lang=en&p_isn=99664 (accessed on 26 August 2019). (In Polish).
- Health Canada Residential Indoor Air Quality Guideline: Ozone. Available online: www.canada.ca/content/dam/canada/health-canada/migration/healthy-canadians/publications/healthy-living-vie-saine/ozone/alt/ozone-eng.pdf (accessed on 31 October 2019).
- Penney, D.; Benignus, V.; Kephalopoulos, S.; Kotzias, D.; Kleinman, M. Agnes Verrier Guidelines for indoor air quality. WHO Guidel. 2010, 9, 454. [Google Scholar]
- Shaughnessy, R.J.; Levetin, E.; Blocker, J.; Sublette, K.L. Effectiveness of Portable Indoor Air Cleaners: Sensory Testing Results. Indoor Air 1994, 4, 179–188. [Google Scholar] [CrossRef]
- Huang, R.; Agranovski, I.; Pyankov, O.; Grinshpun, S. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions. Indoor Air 2008, 18, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, J.Y.; Cho, B.B.; Anusha, J.R.; Sim, J.Y.; Raj, C.J.; Yu, K.H. Assessment of air purifier on efficient removal of airborne bacteria, Staphylococcus epidermidis, using single-chamber method. Environ. Monit. Assess. 2019, 191, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff, W.; Russell, G.; Willard, E.; Stehle, J. Impact of a novel mobile high-efficiency particulate air-ultraviolet air recirculation system on the bacterial air burden during routine care. Am. J. Infect. Control 2019, 47, 1025–1027. [Google Scholar] [CrossRef] [PubMed]
- Alexis, N.E.; Becker, S.; Bromberg, P.A.; Devlin, R.; Peden, D.B. Circulating CD11b expression correlates with the neutrophil response and airway mCD14 expression is enhanced following ozone exposure in humans. Clin. Immunol. 2004, 111, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Novoselac, A.; Siegel, J.A. Impact of placement of portable air cleaning devices in multizone residential environments. Build. Environ. 2009, 44, 2348–2356. [Google Scholar] [CrossRef]
- Pichat, P. A brief survey of the practicality of using photocatalysis to purify the ambient air (indoors or outdoors) or air effluents. Appl. Catal. B Environ. 2019, 245, 770–776. [Google Scholar] [CrossRef]
- Travers, M.J.; Kulak, J.A.; Vogl, L. Waterpipe cafés are hazardous to your health: Determination of a waterpipe specific calibration factor. Int. J. Hyg. Environ. Health 2018, 221, 48–53. [Google Scholar] [CrossRef]
- Mahyuddin, N.; Awbi, H.B. A Review of CO2 measurement procedures in ventilation research. Int. J. Vent. 2012, 10, 353–370. [Google Scholar] [CrossRef]
- PN-Z-04007-2. Protection of Air Purity—Ozone Content Tests—Determination of Ozone in the Presence of Nitrogen Oxides at Workplaces Using Spectrophotometric Method in Visible Light; Polish Committee for Standarization: Warsaw, Poland, 1994. (In Polish) [Google Scholar]
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- Guo, C.; Gao, Z.; Shen, J. Emission rates of indoor ozone emission devices: A literature review. Build. Environ. 2019, 158, 302–318. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.S. Bacterial aerosols in an urban nursery school in Gliwice, Poland: A case study. Aerobiologia (Bologna) 2016, 32, 469–480. [Google Scholar]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J. Bacterial and Fungal Aerosols in Rural Nursery Schools in Southern Poland. Atmosphere (Basel) 2016, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Pastuszka, J.S.; Mucha, W.; Wlazło, A.; Lis, D.; Marchwińska-Wyrwał, E.; Mainka, A. The study of the sterilization of the indoor air in hospital/clinic rooms by using the electron wind generator. Int. J. Environ. Res. Public Health 2019, 16, 4935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeroqual Limited, Aeroqual Aeroqual Series 200, 300 & 500 User Guide MRK-D-0022V3.1. Auckland New Zeland. Available online: https://www.aeroqual.com/wp-content/uploads/Series-200-300-500-Portable-Monitor-User-Guide-11-14.pdf (accessed on 5 September 2019).
- Thanomsub, B.; Anupunpisit, V.; Chanphetch, S.; Watcharachaipong, T.; Poonkhum, R.; Srisukonth, C. Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J. Gen. Appl. Microbiol. 2002, 48, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.W. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 2009, 6, S737–S746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.H.; Li, C.S. Associations of fungal aerosols, air pollutants, and meteorological factors. Aerosol Sci. Technol. 2000, 32, 359–368. [Google Scholar] [CrossRef]
- Moore, G.; Griffith, C.; Peters, A. Bactericidal properties of ozone and its potential application as a terminal disinfectant. J. Food Prot. 2000, 63, 1100–1106. [Google Scholar] [CrossRef]
- Sabersky, R.H.; Sinema, D.A.; Shair, F.H. Concentrations, decay rates, and removal of ozone and their relation to establishing clean indoor air. Environ. Sci. Technol. 1973, 7, 347–353. [Google Scholar] [CrossRef]
- Mueller, F.X.; Loeb, L.; Mapes, W.H. Decomposition rates of ozone in living areas. Environ. Sci. Technol. 1973, 7, 342–346. [Google Scholar] [CrossRef]
- Shair, F.H.; Heitner, K.L. Theoretical model for relating indoor pollutant concentrations to those outside. Environ. Sci. Technol. 1974, 8, 444–451. [Google Scholar] [CrossRef]
- Niu, J.; Thung, T.C.W.; Burnett, J. Ozone emission rate testing and ranking method using environmental chamber. Atmos. Environ. 2001, 35, 2143–2151. [Google Scholar] [CrossRef]
- Thiele, J.E.N.S.J.T.; Raber, M.A.G.T.; Sang, K.E.T.; Ross, C.A.E.C.; Acker, L.E.P. In vivo exposure to ozone depletes vitamins c and e and induces lipid peroxidation in epidermal layers of murine skin. Free Radic. Biol. Med. 1997, 23, 385–391. [Google Scholar] [CrossRef]
- Clausen, P.A.; Wilkins, C.K.; Wolkoff, P.; Damga, G. Chemical and biological evaluation of a reaction mixture of R-(+) -limonene/ozone Formation of strong airway irritants. Environ. Int. 2001, 26, 511–522. [Google Scholar] [CrossRef]
Device | Mechanism | Reduction | References |
---|---|---|---|
Ozone generator | With prefilter, primary glass media filter, a 0.45 kg granular activated carbon filter, ion generating pulsating section, and ozone generating section | Dust 29% ± 1% Total spores 42% ± 14% Viable spores 38% ± 29% | [35] |
AS150G(Wein Products, Inc. (Los Angeles, CA, USA)), AS150GX(Wein Products, Inc. (Los Angeles, CA, USA)), AS250B(Wein Products, Inc. (Los Angeles, CA, USA)), AS1250((Wein Products, Inc. (Los Angeles, CA, USA), VI-2500 (Wein Products, Inc. (Los Angeles, CA, USA) | Ionic air purifiers | Respirable bacteria 50% after 15 min almost 100% after 1.5 h | [11] |
Not commercial device | Negative ion emitter and HVAC filter | Bacteria 75–85% (20% without ion emitter) Fungi 80–90% (40–60% without ion emitter) | [36] |
Air purifier (model AX9000, Samsung, Suwon, Korea) | HEPA filters for air filtration and is reported by the manufacturer to have a Clean Air Delivery Rate (CADR) up to 1000 m3/h. | Endotoxin 29–37% | [17] |
Not commercial device | HEPA filter device and UV filter | Bioaerosols 79–82% | [37] |
Aerobiotix Illuvia 500uv system (Aerobiotix, West Carrollton, OH, USA) | Combining HEPA filtration, zirconium-based Photochemical oxidation, and germicidal UV irradiation | Bioaerosols 41% | [38] |
Philips AP (AC3256) | Equipped with a HEPA and an activated carbon filter | Cat and dog allergen 60% | [21] |
Pure Air XL® PU6020F0 model Rowenta | HEPA filters | Cat allergen 35% | [20] |
Parameter | Fume Hood | Laboratory Room |
---|---|---|
Length, m | 1.4 | 3.8 |
Height, m | 1.3 | 3.2 |
Width, m | 0.7 | 2.5 |
Volume, m3 | 1.3 | 30.4 |
Environmental conditions | Average | SD |
Temperature, °C | 18.6 | 0.5 |
Relative humidity, % | 39.1 | 3.9 |
PM10, µg/m3 | 20.0 | 5.0 |
CO2, ppm | 363.6 | 22.5 |
Parameter | Air Purifier | |
---|---|---|
without Carbon Filter | with Carbon Filter | |
Average air velocity through the air purifier, m/s | 1.43 | 1.18 |
Average airflow through the air purifier, m3/h | 218 | 180 |
The number of the air exchange rate in the room, h−1 | 7 | 6 |
Parameter | Air Purifier | |||
---|---|---|---|---|
without Carbon Filter | with Carbon Filter | |||
Time of work, min | 5 | 20 | 5 | 20 |
Reduction in bacterial aerosol, % | 64.0 ± 8.9 | 78.0 ± 6.0 | 29.8 ± 7.0 | 47.9 ± 9.9 |
Reduction in fungal aerosol, % | 47.1 ± 20.7 | 62.6 ± 7.5 | 5.7 ± 20.3 | 39.6 ± 22.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mainka, A.; Mucha, W.; Pastuszka, J.S.; Brągoszewska, E.; Janoszek, A. Non-commercial Air Purifier—The Effectiveness and Safety. Buildings 2020, 10, 104. https://doi.org/10.3390/buildings10060104
Mainka A, Mucha W, Pastuszka JS, Brągoszewska E, Janoszek A. Non-commercial Air Purifier—The Effectiveness and Safety. Buildings. 2020; 10(6):104. https://doi.org/10.3390/buildings10060104
Chicago/Turabian StyleMainka, Anna, Walter Mucha, Józef S. Pastuszka, Ewa Brągoszewska, and Agnieszka Janoszek. 2020. "Non-commercial Air Purifier—The Effectiveness and Safety" Buildings 10, no. 6: 104. https://doi.org/10.3390/buildings10060104