Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = portable air purifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2703 KiB  
Review
Indoor Air Quality Control for Airborne Diseases: A Review on Portable UV Air Purifiers
by Shriram Sankurantripati and Florent Duchaine
Fluids 2024, 9(12), 281; https://doi.org/10.3390/fluids9120281 - 26 Nov 2024
Cited by 2 | Viewed by 4339
Abstract
The spread of airborne diseases such as COVID-19 underscores the need for effective indoor air quality control. This review focuses on ventilation strategies and portable air purifiers as key mitigation solutions. Ventilation systems, including natural and mechanical approaches, can reduce pathogen concentrations by [...] Read more.
The spread of airborne diseases such as COVID-19 underscores the need for effective indoor air quality control. This review focuses on ventilation strategies and portable air purifiers as key mitigation solutions. Ventilation systems, including natural and mechanical approaches, can reduce pathogen concentrations by improving airflow. However, combining ventilation with portable air purifiers, particularly those using HEPA filters, ESP filters, and UV-C radiation, can enhance Indoor air quality. While HEPA and ESP filters focus on trapping airborne particles, UV-C radiation can inactivate pathogens by disrupting their RNA. A review of UV air purifiers reveals a lack of studies on their efficacy and effectiveness in real-world settings. A thorough investigation into the performance of this mitigation solution is necessary, focusing on varying key factors, such as purifier placement, airflow dynamics, and UV dosage, to ensure optimal effectiveness. High-fidelity computational methods are essential in accurately assessing these factors, as informed by the physics of airborne transmission. Such advanced computations are necessary to determine the viability of portable UV air purifiers in mitigating airborne transmission in enclosed environments such as hospitals and public spaces. Integrating advanced air purification technologies with proper ventilation can improve safety in indoor environments and prevent future disease-related outbreaks. Full article
(This article belongs to the Special Issue Recent Advances in Fluid Mechanics: Feature Papers, 2024)
Show Figures

Figure 1

17 pages, 5286 KiB  
Article
Assessment of a Portable Air Cleaning Device Performance in Eliminating Indoor Air Contaminants by Considering Particle Transport Characteristics
by Miray Gür and Muhsin Kılıç
Appl. Sci. 2024, 14(18), 8362; https://doi.org/10.3390/app14188362 - 17 Sep 2024
Cited by 1 | Viewed by 1609
Abstract
Human health is significantly impacted by the quality of the air in living areas. Numerous factors, such as the kind of particle, clean air delivery rate, room geometry, surface features, and thermal plume produced by people or other equipment, all have an impact [...] Read more.
Human health is significantly impacted by the quality of the air in living areas. Numerous factors, such as the kind of particle, clean air delivery rate, room geometry, surface features, and thermal plume produced by people or other equipment, all have an impact on indoor particle movement. This work uses computational fluid dynamics to quantitatively examine the performance of a portable air purifier that is routinely used to improve the indoor air quality of a room. The volumetric flow rate, particle diameter, and placement of the air cleaner device were considered in the assessment of the particle transport characteristics. The temperature, velocity, and age of the air distribution in the room were computed in three-dimensional simulations, and the effectiveness of the air cleaning device (ACD) in eliminating contaminants was then investigated. Clean air delivery rate (CADR), collection efficiency, and particle concentration rate values were also computed for every case that was taken into consideration. It is found that CADR and collection efficiency values for larger particles are about 2–7% better than those for smaller particles. The collection efficiency of ACD with different operating conditions is in the range of 71% to 87%. Better collection performance parameters are observed with higher flow rates. Full article
(This article belongs to the Special Issue Advances and Applications of CFD (Computational Fluid Dynamics))
Show Figures

Figure 1

18 pages, 3043 KiB  
Article
Application of Sensory Methods to Evaluate the Effectiveness of Solutions to Reduce the Exposure to Odour Nuisance and Ammonia Emissions from the Compost Heaps
by Mirosław Szyłak-Szydłowski and Wojciech Kos
Sensors 2024, 24(13), 4200; https://doi.org/10.3390/s24134200 - 28 Jun 2024
Cited by 3 | Viewed by 1222
Abstract
Exposure to high concentrations of odours can result in health effects associated with direct health risks and irritation from nuisance. This investigation aimed to correlate aspects of the waste composting process with the emission levels of malodourous compounds. An essential optimisation criterion is [...] Read more.
Exposure to high concentrations of odours can result in health effects associated with direct health risks and irritation from nuisance. This investigation aimed to correlate aspects of the waste composting process with the emission levels of malodourous compounds. An essential optimisation criterion is the reduction of negative environmental impacts, particularly odour emissions. This study characterises odour concentration variations across various technological variants over different weeks of the composting process. A secondary objective is evaluating the efficacy of these variants, which differ in inoculation substances and compost heap composition. Olfactometric analyses were conducted using portable field olfactometers, enabling precise dilutions by mixing contaminated and purified air. The primary aim was to examine the correlation between selected odour parameters, determined via sensory analysis, and ammonia concentration during different composting weeks. Ammonia levels were measured using an RAE electrochemical sensor. Research shows that odour concentration is a significant indicator of compost maturity. In situ, olfactometric testing can effectively monitor the aerobic stabilisation process alone or with other methods. The most effective technological solution was identified by combining olfactometric and ammonia measurements and monitoring composting parameters, ensuring minimal odour emissions and the safety of employees and nearby residents. Full article
Show Figures

Figure 1

20 pages, 8171 KiB  
Article
Low-Cost Sensor System for Air Purification Process Evaluation
by Arkadiusz Moskal, Wiktor Jagodowicz, Agata Penconek and Krzysztof Zaraska
Sensors 2024, 24(6), 1769; https://doi.org/10.3390/s24061769 - 9 Mar 2024
Cited by 1 | Viewed by 2269
Abstract
With the development of civilisation, the awareness of the impact of versatile aerosol particles on human health and the environment is growing. New advanced materials and techniques are needed to purify the air to reduce this impact. This brings the necessity of fast [...] Read more.
With the development of civilisation, the awareness of the impact of versatile aerosol particles on human health and the environment is growing. New advanced materials and techniques are needed to purify the air to reduce this impact. This brings the necessity of fast and low-cost devices to evaluate the air quality from particulate and gaseous impurities, especially in a place where gas chromatography (GC) techniques are unavailable. Small portable and low-cost systems may work separately or be incorporated into devices responsible for air-cleaning processes, such as filters, smoke adsorbers, or plasma air cleaners. Given the above, this study proposes utilising a self-assembled low-cost system to evaluate air quality, which can be used in many outdoor and indoor applications. ESP32 boards with the wireless communication protocol ESP-NOW were used as the framework of the system. The concentration of aerosol particles was measured using Alphasense sensors. The concentrations of the following gases were measured: NO2, SO2, O3, CO, CO2, and H2S. The system was used to evaluate the quality of air containing tobacco smoke after passing through an actual DBD plasma reactor where the purification occurred. A high amount of reduction in aerosol particles and a reduction in the SO2 concentration were detected. An increase in the NO2 concentration was seen as an undesirable effect. The aerosol particle measurements were compared with those using a professional device (GRIMM, Hamburg, Germany), which showed the same trends in aerosol particle behaviour. The obtained results are auspicious and are a step towards producing a low-cost, efficient system for evaluating air quality as well as indoor and outdoor conditions. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

17 pages, 2058 KiB  
Article
A Simple, Inexpensive Alkaline Method for Bacterial DNA Extraction from Environmental Samples for PCR Surveillance and Microbiome Analyses
by Abdulkarim Shwani, Bin Zuo, Adnan Alrubaye, Jiangchao Zhao and Douglas D. Rhoads
Appl. Sci. 2024, 14(1), 141; https://doi.org/10.3390/app14010141 - 22 Dec 2023
Cited by 8 | Viewed by 12523
Abstract
DNA extraction for downstream molecular diagnostic applications can be an expensive, time-consuming process. We devised a method to quickly extract total bacterial DNA from environmental samples based on the sodium hydroxide lysis of cells with or without capture by magnetic beads for subsequent [...] Read more.
DNA extraction for downstream molecular diagnostic applications can be an expensive, time-consuming process. We devised a method to quickly extract total bacterial DNA from environmental samples based on the sodium hydroxide lysis of cells with or without capture by magnetic beads for subsequent PCR or quantitative PCR. The final DNA extraction method using NaOH is extremely low-cost and can be completed in as little as 10 min at room temperature with dilution, or the DNA can be further purified using silica-coated paramagnetic beads. NaOH extraction was effective for Gram-negative and Gram-positive bacteria in samples from air, soil, sewage, food, laboratory surfaces, and chicken cloacal swabs. The NaOH extraction method was comparable to commercial kits for extraction of DNA from pig fecal samples for 16S amplicon sequencing analyses. We demonstrated that an impinger and portable pump can efficiently capture bacteria from the air in poultry facilities for rapid NaOH extraction to quantify total bacteria and for detection of specific species using qPCR. The air sampling and NaOH extraction procedures are well suited for routine, high-throughput screening and for metagenomic analyses for specific pathogens, even in resource-limited situations. Full article
(This article belongs to the Special Issue Applied Microbial Biotechnology for Poultry Science)
Show Figures

Figure 1

14 pages, 5645 KiB  
Article
Portable Air Purifiers’ Predicted Efficacy in Mitigating Airborne Pathogen Transmission in an Office Room Featuring Mixing Ventilation
by Xiangdong Li, Milan J. Patel and Ivan S. Cole
Fluids 2023, 8(12), 307; https://doi.org/10.3390/fluids8120307 - 27 Nov 2023
Cited by 2 | Viewed by 3131
Abstract
Portable air purifiers have been extensively used to improve indoor air quality and mitigate the transmission of airborne diseases. However, the efficacy of mitigation is strongly affected by the interactions between jet flows of processed air from the air purifiers and the background [...] Read more.
Portable air purifiers have been extensively used to improve indoor air quality and mitigate the transmission of airborne diseases. However, the efficacy of mitigation is strongly affected by the interactions between jet flows of processed air from the air purifiers and the background airflows driven by the ventilation system. Critical factors in this context include the position and capacity of air purifiers and the ventilation rate of the heating ventilation and air-conditioning (HVAC) system. These factors are investigated in this study via computational fluid dynamics (CFD) simulations and the infection probability for different scenarios is quantified using the latest airborne infection predictive model incorporating recent pathological and clinical data for SARS-CoV-2. The results show that the use of air purifiers can significantly reduce the concentration of particulate matter, thus contributing to a generally lower risk of airborne transmission. However, the position of air purifiers affects their overall efficacy remarkably. Comparatively, a central HVAC system is more efficient at removing airborne particles under an equivalent ventilation rate assuming it uses a mixing ventilation scheme. Full article
Show Figures

Figure 1

16 pages, 7486 KiB  
Article
Numerical Evaluation of the Efficiency of an Indoor Air Cleaner under Different Heating Conditions
by Andrejs Sabanskis, Dagis Daniels Vidulejs, Jevgēnijs Teličko, Jānis Virbulis and Andris Jakovičs
Atmosphere 2023, 14(12), 1706; https://doi.org/10.3390/atmos14121706 - 21 Nov 2023
Cited by 4 | Viewed by 1870
Abstract
For an efficient indoor air purification, it is important to know the detailed airflow distribution in the room. A series of numerical simulations are carried out for five heating regimes using an air–air heat pump, capillary mat on the ceiling, capillary mat on [...] Read more.
For an efficient indoor air purification, it is important to know the detailed airflow distribution in the room. A series of numerical simulations are carried out for five heating regimes using an air–air heat pump, capillary mat on the ceiling, capillary mat on the walls, heated floor, and radiator. The most homogeneous temperature field is obtained for the case with the heated floor. The highest velocity is obtained for the air–air heat pump, while the lowest is obtained for the capillary mat on the ceiling. A portable air cleaner based on the prototype device is introduced into the model and its influence on the velocity and temperature distributions is calculated. Our simulations additionally consider is the transport of an infectious aerosol and its purification inside the air cleaner. The time dependency of the concentration is exponential, and the purification rate depends on the air cleaner’s orientation and heating regime. The efficiency is higher for a purifier with flow in the upwards direction compared to in a horizontal one. In the experimental part, an NaCl solution is dispersed into the air, and the efficiency of purification in the case of the air–air heat pump is evaluated by measuring the time-dependent particle concentrations. These experimental results corroborate the numerical model. Full article
Show Figures

Figure 1

23 pages, 3169 KiB  
Article
Comparison of Portable and Large Mobile Air Cleaners for Use in Classrooms and the Effect of Increasing Filter Loading on Particle Number Concentration Reduction Efficiency
by Finn Felix Duill, Florian Schulz, Aman Jain, Berend van Wachem and Frank Beyrau
Atmosphere 2023, 14(9), 1437; https://doi.org/10.3390/atmos14091437 - 14 Sep 2023
Cited by 4 | Viewed by 2375
Abstract
This study focuses on the effect of portable and large filter-based air cleaners (HEPA filters), which became popular indoors during the COVID-19 pandemic, and their suitability for classrooms (here 186 m3). The decay rates of the particle number concentration (PNC) were [...] Read more.
This study focuses on the effect of portable and large filter-based air cleaners (HEPA filters), which became popular indoors during the COVID-19 pandemic, and their suitability for classrooms (here 186 m3). The decay rates of the particle number concentration (PNC) were measured simultaneously at up to four positions in the room. It was found that the different air outlet configurations of the units have an effect on the actual PNC removal in the room when operated at the same volume flow rates. This effect of the airflow efficiency of the air cleaners (AP) in a classroom is quantified with an introduced Air Cleaning Efficiency Factor in this study to identify beneficial airflows. In this context, the effect of filter loading in long-term operation on the cleaning effect is also investigated. The emitted sound pressure levels of the APs are given special attention as this is a critical factor for use in schools, as well as power consumption. A total of six different devices were tested—two portable APs and four large APs. In order to achieve the necessary volume flow rates, three or four of the portable units were used simultaneously in one room, while only one of the large units was used per room. When used at the same air circulation rates in the room, the portable APs exhibit higher sound pressure levels compared to the large APs. At air circulation rates of 4–5 h−1, the portable APs exceeded a value of 45 dB(A). Two of the four large units reach sound pressure levels below 40 dB(A) at air circulation rates of 4–5 h−1, whereby both large units, which are positioned on the rear wall, realize a homogeneous dilution of the room air. This is achieved by an air outlet directed horizontally at a height above 2 m or diagonally towards the ceiling, which points into the room and partly to the sides. On the other hand, an air outlet directed exclusively to the sides or horizontally into the room at floor level to all sides achieves lower particle decay rates. To investigate the influence of the filter loading, three large APs were operated in a school for a period of one year (190 days with 8 h each). For the three APs, long-term operation leads to different changes in PNC reduction efficiency, ranging from −3% to −34%. It is found that not only the size of the prefilter and main filter has a significant influence, but also whether there is a prefilter bypass that negatively affects the loading level of the main filter. At the same time, it was shown that one type of AP, measuring the pressure drop across the filters and readjusting the fan, kept the circulation rate almost constant (up to −3%) over a year. Full article
Show Figures

Figure 1

18 pages, 6967 KiB  
Article
Conceptual Design of a UVC-LED Air Purifier to Reduce Airborne Pathogen Transmission—A Feasibility Study
by Saket Kapse, Dena Rahman, Eldad J. Avital, Nithya Venkatesan, Taylor Smith, Lidia Cantero-Garcia, Fariborz Motallebi, Abdus Samad and Clive B. Beggs
Fluids 2023, 8(4), 111; https://doi.org/10.3390/fluids8040111 - 27 Mar 2023
Cited by 6 | Viewed by 3880
Abstract
Existing indoor closed ultraviolet-C (UVC) air purifiers (UVC in a box) have faced technological challenges during the COVID-19 breakout, owing to demands of low energy consumption, high flow rates, and high kill rates at the same time. A new conceptual design of a [...] Read more.
Existing indoor closed ultraviolet-C (UVC) air purifiers (UVC in a box) have faced technological challenges during the COVID-19 breakout, owing to demands of low energy consumption, high flow rates, and high kill rates at the same time. A new conceptual design of a novel UVC-LED (light-emitting diode) air purifier for a low-cost solution to mitigate airborne diseases is proposed. The concept focuses on performance and robustness. It contains a dust-filter assembly, an innovative UVC chamber, and a fan. The low-cost dust filter aims to suppress dust accumulation in the UVC chamber to ensure durability and is conceptually shown to be easily replaced while mitigating any possible contamination. The chamber includes novel turbulence-generating grids and a novel LED arrangement. The turbulent generator promotes air mixing, while the LEDs inactivate the pathogens at a high flow rate and sufficient kill rate. The conceptual design is portable and can fit into ventilation ducts. Computational fluid dynamics and UVC ray methods were used for analysis. The design produces a kill rate above 97% for COVID and tuberculosis and above 92% for influenza A at a flow rate of 100 L/s and power consumption of less than 300 W. An analysis of the dust-filter performance yields the irradiation and flow fields. Full article
(This article belongs to the Special Issue Biological Fluid Dynamics)
Show Figures

Figure 1

20 pages, 10322 KiB  
Article
Optimization of Operations of Air Purifiers for Control of Indoor PM2.5 Using BIM and CFD
by Keyu Chen, Zongneng Tan, Huadong Zhou and Yi Tan
Buildings 2023, 13(1), 77; https://doi.org/10.3390/buildings13010077 - 28 Dec 2022
Cited by 2 | Viewed by 3862
Abstract
Prevention of PM2.5 is attracting increasing attention all over the world as PM2.5 can cause and exacerbate respiratory diseases. Compared with conventional natural ventilation and mechanical ventilation, air purifiers with particular filters are more efficient in the control of indoor PM2.5. Currently, there [...] Read more.
Prevention of PM2.5 is attracting increasing attention all over the world as PM2.5 can cause and exacerbate respiratory diseases. Compared with conventional natural ventilation and mechanical ventilation, air purifiers with particular filters are more efficient in the control of indoor PM2.5. Currently, there are limited studies on the operations of portable indoor air purifiers. To improve the efficiency of an air purifier in control of PM2.5, an optimal operational strategy is needed. This paper proposes a framework for the optimization of operations of air purifiers for control of indoor PM2.5 based on building information modeling (BIM) and computational fluid dynamics (CFD). A case study is conducted to validate the proposed optimization framework and the results are discussed. It can be shown from the results that the best location of the air purifier can increase efficiency by up to 33% compared with other locations. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Graphical abstract

17 pages, 3279 KiB  
Article
The Role of Portable Air Purifiers and Effective Ventilation in Improving Indoor Air Quality in University Classrooms
by Mohammad Aldekheel, Abdulmalik Altuwayjiri, Ramin Tohidi, Vahid Jalali Farahani and Constantinos Sioutas
Int. J. Environ. Res. Public Health 2022, 19(21), 14558; https://doi.org/10.3390/ijerph192114558 - 6 Nov 2022
Cited by 26 | Viewed by 9822
Abstract
In this study we investigated the effectiveness of air purifiers and in-line filters in ventilation systems working simultaneously inside various classrooms at the University of Southern California (USC) main campus. We conducted real-time measurements of particle mass (PM), particle number (PN), and carbon [...] Read more.
In this study we investigated the effectiveness of air purifiers and in-line filters in ventilation systems working simultaneously inside various classrooms at the University of Southern California (USC) main campus. We conducted real-time measurements of particle mass (PM), particle number (PN), and carbon dioxide (CO2) concentrations in nine classrooms from September 2021 to January 2022. The measurement campaign was carried out with different configurations of the purifier (i.e., different flow rates) while the ventilation system was continuously working. Our results showed that the ventilation systems in the classrooms were adequate in providing sufficient outdoor air to dilute indoor CO2 concentrations due to the high air exchange rates (2.63–8.63 h−1). The particle penetration coefficients (P) of the investigated classrooms were very low for PM (<0.2) and PN (<0.1), with the exception of one classroom, corroborating the effectiveness of in-line filters in the ventilation systems. Additionally, the results showed that the efficiency of the air purifier exceeded 95% in capturing ultrafine and coarse particles and ranged between 82–88% for particles in the accumulation range (0.3–2 µm). The findings of this study underline the effectiveness of air purifiers and ventilation systems equipped with efficient in-line filters in substantially reducing indoor air pollution. Full article
(This article belongs to the Special Issue 2nd Edition of Integrated Human Exposure to Air Pollution)
Show Figures

Graphical abstract

15 pages, 4823 KiB  
Article
S- and N-Co-Doped TiO2-Coated Al2O3 Hollow Fiber Membrane for Photocatalytic Degradation of Gaseous Ammonia
by Jae Yeon Hwang, Edoardo Magnone, Jeong In Lee, Xuelong Zhuang, Min Chang Shin and Jung Hoon Park
Membranes 2022, 12(11), 1101; https://doi.org/10.3390/membranes12111101 - 4 Nov 2022
Cited by 4 | Viewed by 2891
Abstract
This study successfully prepared and tested sulfur- and nitrogen-co-doped TiO2-coated α-Al2O3 (S,N-doped TiO2/Al2O3) hollow fiber (HF) membranes for efficient photocatalytic degradation of gaseous ammonia (NH3). Thiourea was used as a [...] Read more.
This study successfully prepared and tested sulfur- and nitrogen-co-doped TiO2-coated α-Al2O3 (S,N-doped TiO2/Al2O3) hollow fiber (HF) membranes for efficient photocatalytic degradation of gaseous ammonia (NH3). Thiourea was used as a sulfur- and nitrogen-doping source to produce a S,N-doped TiO2 photocatalyst powder. For comparative purposes, undoped TiO2 powder was also synthesized. Through the application of a phase-inversion technique combined with high-temperature sintering, hollow fibers composed of α-Al2O3 were developed. Undoped TiO2 and S,N-doped TiO2 photocatalyst powders were coated on the α-Al2O3 HF surface to obtain undoped TiO2/Al2O3 and S,N-doped TiO2/Al2O3 HF membranes, respectively. All prepared samples were characterized using XRD, TEM, XPS, UV-Vis, SEM, BET, FT-IR, and EDS. S and N dopants were confirmed using XPS and UV-Vis spectra. The crystal phase of the undoped TiO2 and S,N-doped TiO2 photocatalysts was a pure anatase phase. A portable air purifier photocatalytic filter device was developed and tested for the first time to decrease the amount of indoor NH3 pollution under the limits of the lachrymatory threshold. The device, which was made up of 36 S,N-doped TiO2/Al2O3 HF membranes, took only 15–20 min to reduce the level of NH3 in a test chamber from 50 ppm to around 5 ppm, confirming the remarkable performance regarding the photocatalytic degradation of gaseous NH3. Full article
Show Figures

Graphical abstract

14 pages, 1197 KiB  
Article
Effect of Air Purifier Use in the Classrooms on Indoor Air Quality—Case Study
by Małgorzata Basińska, Michał Michałkiewicz and Katarzyna Ratajczak
Atmosphere 2021, 12(12), 1606; https://doi.org/10.3390/atmos12121606 - 30 Nov 2021
Cited by 14 | Viewed by 11816
Abstract
Dissatisfaction with indoor air quality is common even in relatively new or renovated Polish school buildings. To improve air quality in educational buildings, portable devices have seen increased use, for which manufacturers guarantee a high level of indoor air purification. However, their optimized [...] Read more.
Dissatisfaction with indoor air quality is common even in relatively new or renovated Polish school buildings. To improve air quality in educational buildings, portable devices have seen increased use, for which manufacturers guarantee a high level of indoor air purification. However, their optimized operation largely depends on their correct use. The aim of this article was to determine the effectiveness of air purification in a primary school using an air purification device with an analysis of the classroom indoor air quality (IAQ). Two criteria were used, microbiological and particulate matter concentration. Measurements were made before device installation and during its continuous operation, and before and after lessons on chosen days. Measurements related to IAQ did not detect clear differences in the analyzed measurement periods. For microbiological contamination, in the morning before lessons, the total count for all bacteria and microscopic fungi was definitely lower than after lessons. Comparing the periods before and after device installation, no clear tendency for reducing the bacteria count or microscopic fungi occurred during air purifier operation, nor was there any noticeable trend in the reduction of particulate matter. There was no improvement in air quality in the classrooms during the operation of the purification devices. Full article
(This article belongs to the Special Issue Air Quality in Poland)
Show Figures

Figure 1

16 pages, 4273 KiB  
Article
Room HVAC Influences on the Removal of Airborne Particulate Matter: Implications for School Reopening during the COVID-19 Pandemic
by Ali Mohammadi Nafchi, Vincent Blouin, Nigel Kaye, Andrew Metcalf, Katie Van Valkinburgh and Ehsan Mousavi
Energies 2021, 14(22), 7463; https://doi.org/10.3390/en14227463 - 9 Nov 2021
Cited by 10 | Viewed by 3161
Abstract
(1) Background: Many schools and higher education settings have confronted the issue of reopening their facilities after the COVID-19 pandemic. In response, several airflow strategies spanning from adding portable air purifiers to major mechanical overhauls have been suggested to equip classrooms with what [...] Read more.
(1) Background: Many schools and higher education settings have confronted the issue of reopening their facilities after the COVID-19 pandemic. In response, several airflow strategies spanning from adding portable air purifiers to major mechanical overhauls have been suggested to equip classrooms with what is necessary to provide a safe and reliable environment. Yet, there are many unknowns about specific contributions of the building system and its design and performance on indoor air quality (IAQ) improvements. (2) Methods: this study examined the combined effect of ventilation type, airflow rates, and filtration on IAQ in five different classrooms. Experiments were conducted by releasing inert surrogate particles into the classrooms and measuring the concentrations in various locations of the room. (3) Results: we showed that while the distribution of particles in the space is a complex function of space geometry and air distribution configurations, the average decay rate of contaminants is proportional to the number of air changes per hour in the room. (4) Conclusions: rooms with a central HVAC system responded quicker to an internal source of contamination than rooms with only fan coil units. Furthermore, increasing the ventilation rate without improved filtration is an inefficient use of energy. Full article
Show Figures

Figure 1

12 pages, 11963 KiB  
Article
Indoor Air Quality Evaluation Using Mechanical Ventilation and Portable Air Purifiers in an Academic Dentistry Clinic during the COVID-19 Pandemic in Greece
by Ioannis Tzoutzas, Helena C. Maltezou, Nikolaos Barmparesos, Panagiotis Tasios, Chrysanthi Efthymiou, Margarita Niki Assimakopoulos, Maria Tseroni, Rengina Vorou, Fotios Tzermpos, Maria Antoniadou, Vassilios Panis and Phoebus Madianos
Int. J. Environ. Res. Public Health 2021, 18(16), 8886; https://doi.org/10.3390/ijerph18168886 - 23 Aug 2021
Cited by 32 | Viewed by 5034
Abstract
The coronavirus disease 2019 (COVID-19), which is mainly transmitted through droplets without overlooking other sources of transmission, rendered attention on the air quality in indoor areas and more specifically in healthcare settings. The improvement of indoor air quality (IAQ) is ensured by frequent [...] Read more.
The coronavirus disease 2019 (COVID-19), which is mainly transmitted through droplets without overlooking other sources of transmission, rendered attention on the air quality in indoor areas and more specifically in healthcare settings. The improvement of indoor air quality (IAQ) is ensured by frequent changes of the air that must be carried out in healthcare areas and with assistance from special devices that undertake the filtration of the air and its purification through special filters and lamps. In this research, the performance of air purifiers is assessed in terms of the limitation of PM2.5, PM10, VOCs and CO2 in a postgraduate clinic of the Dentistry School of the National and Kapodistrian University of Athens in parallel with mechanical ventilation. Our findings indicate that the use of mechanical ventilation plays a key role on the results, retaining good IAQ levels within the clinic and that air purifiers show a positive impact on IAQ by mainly reducing the levels of PM2.5 and secondly of TVOC. Full article
Show Figures

Figure 1

Back to TopTop