Microstructure, Micro-Indentation, and Scratch Behavior of Cr Films Prepared on Al alloys by Using Magnetron Sputtering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Phase Structures
3.2. Top Surface Morphologies
3.3. Cross-Sectional and Fracture Morphologies
3.4. Micro-Indentation Behavior
3.5. Scratch Behavior
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mello, C.B.; Mansur, R.A.F.; Santos, N.M. Experimental study of mechanical and tribological behavior of nitrogen ion-implanted chromium thin films. Surf. Coat. Technol. 2017, 312, 123–127. [Google Scholar] [CrossRef]
- Hu, M.; Shen, M.; Liu, Z.; Guo, C.; Li, Q.; Zhu, S. Self-ion bombarded Cr films: Crystallographic orientation and oxidation behaviour. Corros. Sci. 2018, 143, 212–220. [Google Scholar] [CrossRef]
- Bikulčius, G.; Češunienė, A.; Selskienė, A.; Pakštas, V.; Matijošius, T. Dry sliding tribological behavior of Cr coatings electrodeposited in trivalent chromium sulphate baths. Surf. Coat. Technol. 2017, 315, 130–138. [Google Scholar] [CrossRef]
- Liang, A.; Ni, L.; Liu, Q.; Zhang, J. Structure characterization and tribological properties of thick chromium coating electrodeposited from a Cr (III) electrolyte. Surf. Coat. Technol. 2013, 218, 23–29. [Google Scholar] [CrossRef]
- Daure, J.L.; Carrington, M.J.; Shipway, P.H.; McCartney, D.G.; Stewart, D.A. A comparison of the galling wear behaviour of PVD Cr and electroplated hard Cr thin films. Surf. Coat. Technol. 2018, 350, 40–47. [Google Scholar] [CrossRef]
- Wang, S.F.; Lin, H.C.; Bor, H.Y.; Tsai, Y.L.; Wei, C.N. Characterization of chromium thin films by sputter deposition. J. Alloy. Compd. 2011, 509, 10110–10114. [Google Scholar] [CrossRef]
- Sidelev, D.V.; Bestetti, M.; Bleykher, G.A.; Krivobokov, V.P.; Grudinin, V.A.; Franz, S.; Vicenzo, A.; Shanenkova, Y.L. Deposition of Cr films by hot target magnetron sputtering on biased substrates. Surf. Coat. Technol. 2018, 350, 560–568. [Google Scholar] [CrossRef]
- Li, H.T.; Jiang, B.L.; Yang, B. Study on crystalline to amorphous structure transition of Cr coatings by magnetron sputtering. Appl. Surf. Sci. 2011, 258, 935–939. [Google Scholar] [CrossRef]
- Paturaud, C.; Farges, G.; Sainte Catherine, M.C.; Machet, J. Correlation between hardness and embedded argon content of magnetron sputtered chromium films. Thin Solid Films 1999, 347, 46–55. [Google Scholar] [CrossRef]
- Chiang, K.T.K.; Wei, R. Growth morphology and corrosion resistance of magnetron sputtered Cr films. Surf. Coat. Technol. 2011, 206, 1660–1665. [Google Scholar] [CrossRef]
- Ferreira, F.; Serra, R.; Oliveira, J.C.; Cavaleiro, A. Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering (DOMS) mode. Surf. Coat. Technol. 2014, 258, 249–256. [Google Scholar] [CrossRef]
- Ferreira, F.; Serra, R.; Cavaleiro, A.; Oliveira, J.C. Additional control of bombardment by deep oscillation magnetron sputtering: Effect on the microstructure and topography of Cr thin films. Thin. Solid. Films. 2016, 619, 250–260. [Google Scholar] [CrossRef]
- Straumanis, M.E.; Weng, C.C. The precise lattice constant and the expansion coefficient of chromium between 10 and 60 °C. Acta Crystallogr. 1955, 8, 367–371. [Google Scholar] [CrossRef]
- Feng, Y.C.; Laughlin, D.E.; Lambeth, D.N. Formation of crystallographic texture in rf sputter-deposited Cr thin films. J. Appl. Phys. 1994, 76, 7311–7316. [Google Scholar] [CrossRef]
- Karabacak, T. Thin-film growth dynamics with shadowing and re-emission effects. J. Nanophotonics 2011, 5, 052501–052518. [Google Scholar] [CrossRef]
- Bland, R.; Kominiak, G.; Mattox, D. Effect of ion bombardment during deposition on thick metal and ceramic deposits. J. Vac. Sci. Technol. 1974, 11, 671–674. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Yalisove, S.M.; Rek, Z.U. Evolution of anisotropic microstructure and residual stress in sputtered Cr films. J. Appl. Phys. 2002, 92, 7183–7192. [Google Scholar] [CrossRef]
- Polakova, H.; Kubasek, M.; Cerstvy, R.; Musil, J. Control of structure in magnetron sputtered thin films. Surf. Coat. Technol. 2001, 142–144, 201–205. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Lee, J.W.; Lew, W.; Li, B. Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering. Surf. Coat. Technol. 2012, 206, 5103–5107. [Google Scholar] [CrossRef]
- Rebholz, C.; Leyland, A.; Schneider, J.M.; Voevodin, A.A.; Matthews, A. Structure hardness and mechanical properties of magnetron-sputtered titanium-aluminium boride films. Surf. Coat. Technol. 1999, 120, 412–417. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Cheng, C.M. Relationships between hardness, elastic modulus and the work of indentation. Appl. Phys. Lett. 1998, 73, 614–616. [Google Scholar] [CrossRef]
- Pellicer, E.; Pané, S.; Sivaraman, K.M.; Ergeneman, O.; Suriñach, S.; Baró, M.D.; Nelson, B.J.; Sort, J. Effects of the anion in glycine-containing electrolytes on the mechanical properties of electrodeposited Co–Ni films. Mater. Chem. Phys. 2001, 130, 1380–1386. [Google Scholar] [CrossRef]
- Macías, H.A.; Yate, L.; Coy, L.E.; Olaya, J.J.; Aperador, W. Effect of nitrogen flow ratio on microstructure, mechanical and tribological properties of TiWSiNx thin film deposited by magnetron co-sputtering. Appl. Surf. Sci. 2018, 456, 445–456. [Google Scholar] [CrossRef]
- Kabir, M.S.; Munroe, P.; Zhou, Z.F.; Xie, Z.H. Study of the structure, properties, scratch resistance and deformation behavior of graded Cr-CrN-Cr(1-x)AlxN coatings. Ceram. Int. 2018, 40, 11364–11373. [Google Scholar] [CrossRef]
- Sha, C.; Zhou, Z.; Xie, Z.; Munroe, P.J. Scratch response and tribological behaviour of CrAlNiN coatings deposited by closed field unbalanced magnetron sputtering system. Surf. Coat. Technol. 2019, 367, 30–40. [Google Scholar] [CrossRef]
- Sveen, S.; Andersson, J.M.; Saoubi, R.M.; Olsson, M. Scratch adhesion characteristics of PVD TiAlN deposited on high speed steel, cemented carbide and PCBN substrates. Wear 2013, 308, 133–141. [Google Scholar] [CrossRef]
- Kim, H.K.; La, J.H.; Kim, K.S.; Lee, S.Y. The effects of the H/E ratio of various Cr-N interlayers on the adhesion strength of CrZrN coatings on tungsten carbide substrates. Surf. Coat. Technol. 2015, 284, 230–234. [Google Scholar] [CrossRef]
- Heinke, W.; Leyland, A.; Matthews, A.; Berg, G.; Friedrich, C.; Broszeit, E. Evaluation of PVD nitride coatings using impact scratch and Rockwell-C adhesion tests. Thin Solid Films 1995, 270, 431–438. [Google Scholar] [CrossRef]
- Karimi, A.; Wang, Y.; Cselle, T.; Morstein, M. Fracture mechanisms in nanoscale layered hard thin films. Thin Solid Films 2002, 420, 275–280. [Google Scholar] [CrossRef]
- Bull, S.J. Failure modes in scratch adhesion testing. Surf. Coat. Technol. 1991, 50, 25–32. [Google Scholar] [CrossRef]
- Kabir, M.S.; Munroe, P.; Zhou, Z.; Xie, Z. Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering. Wear 2017, 380, 163–175. [Google Scholar] [CrossRef]
Sample | Cr Power (kW) | Bias (V) | Sputtering Time (h) | Sputtering Pressure (Pa) | Argon Flux (sccm) |
---|---|---|---|---|---|
DC1 | 2.0 | 10 | 2 | 0.2–0.3 | 16 |
DC2 | 2.0 | 30 | 2 | 0.2–0.3 | 16 |
DC3 | 2.0 | 70 | 2 | 0.2–0.3 | 16 |
DC4 | 2.0 | 110 | 2 | 0.2–0.3 | 16 |
DC5 | 0.2 | 70 | 2 | 0.2–0.3 | 16 |
DC6 | 0.8 | 70 | 2 | 0.2–0.3 | 16 |
DC7 | 1.4 | 70 | 2 | 0.2–0.3 | 16 |
Sample | H (GPa) | E (GPa) | Wt (nJ) | Wp (nJ) | ηp | H/E | H3/E2 |
---|---|---|---|---|---|---|---|
2024 Al | 1.44 | 90 | 0.682 | 0.643 | 0.94 | 0.016 | 0.0003 |
DC1 | 3.81 | 130 | 0.371 | 0.322 | 0.86 | 0.0293 | 0.0032 |
DC2 | 3.60 | 129 | 0.389 | 0.346 | 0.89 | 0.0279 | 0.0028 |
DC3 | 4.56 | 167 | 0.314 | 0.247 | 0.78 | 0.0273 | 0.0034 |
DC4 | 4.87 | 169 | 0.317 | 0.292 | 0.92 | 0.0288 | 0.0040 |
DC5 | 3.31 | 81.5 | 0.518 | 0.431 | 0.83 | 0.0406 | 0.0054 |
DC6 | 4.19 | 127 | 0.363 | 0.297 | 0.81 | 0.0328 | 0.0045 |
DC7 | 4.33 | 164 | 0.347 | 0.286 | 0.82 | 0.0264 | 0.0030 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Zhang, F.; Yan, S.; Li, H.; He, J.; Yin, F. Microstructure, Micro-Indentation, and Scratch Behavior of Cr Films Prepared on Al alloys by Using Magnetron Sputtering. Metals 2019, 9, 1330. https://doi.org/10.3390/met9121330
Ding Y, Zhang F, Yan S, Li H, He J, Yin F. Microstructure, Micro-Indentation, and Scratch Behavior of Cr Films Prepared on Al alloys by Using Magnetron Sputtering. Metals. 2019; 9(12):1330. https://doi.org/10.3390/met9121330
Chicago/Turabian StyleDing, Yi, Fanyong Zhang, Shu Yan, Hongtao Li, Jining He, and Fuxing Yin. 2019. "Microstructure, Micro-Indentation, and Scratch Behavior of Cr Films Prepared on Al alloys by Using Magnetron Sputtering" Metals 9, no. 12: 1330. https://doi.org/10.3390/met9121330
APA StyleDing, Y., Zhang, F., Yan, S., Li, H., He, J., & Yin, F. (2019). Microstructure, Micro-Indentation, and Scratch Behavior of Cr Films Prepared on Al alloys by Using Magnetron Sputtering. Metals, 9(12), 1330. https://doi.org/10.3390/met9121330