Study on the Corrosion Behavior of Austenitic Steel HR3C in Supercritical Carbon Dioxide at 550 and 600 °C
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Weight Gain
3.2. Surface Morphology and Elemental Composition of the Corrosion Layer
3.3. Phase Composition of the Corrosion Layer
3.4. Corrosion Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahn, Y.; Bae, S.; Kim, M.; Cho, S.; Baik, S.; Lee, J.; Cha, J. Review of supercritical CO2 power cycle technology and current status of research and development(Review). Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef]
- Goutier, F.; Valette, S.; Vardelle, A.; Lefort, P. Oxidation of stainless steel 304L in carbon dioxide. Corros. Sci. 2010, 52, 2403–2412. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, D.; Cao, Q.; Xu, H.; Khan, H.I.; Zhang, N. Oxidation behavior of austenitic steel Sanicro25 and TP347HFG in supercritical water. Mater. Corros. 2019, 70, 1087–1098. [Google Scholar] [CrossRef]
- Cao, G.; Firouzdor, V.; Sridharan, K.; Anderson, M.; Allen, T.R. Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corros. Sci. 2012, 60, 246–255. [Google Scholar] [CrossRef]
- Furukawa, T.; Inagaki, Y.; Aritomi, M. Corrosion behavior of FBR structure minerals in high temperature supercritical carbon dioxide. J. Power Energy Syst. 2010, 4, 252–261. [Google Scholar] [CrossRef]
- Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide. Corros. Sci. 2011, 53, 3273–3280. [Google Scholar] [CrossRef]
- Olivares, R.I.; Young, D.J.; Marvig, P.; Stein, W. Alloys SS316 and hastelloy-C276 in supercritical CO2 at high temperature. Oxid. Met. 2015, 84, 585–606. [Google Scholar] [CrossRef]
- He, L.F.; Roman, P.; Leng, B.; Sridharan, K.; Anderson, M.; Allen, T.R. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide. Corros. Sci. 2014, 82, 67–76. [Google Scholar] [CrossRef]
- Atkinson, A.; Smart, D.W. Transport of nickel and oxygen during the oxidationof nickel and dilute nickel/chromium alloy. J. Electrochem. Soc. 1988, 135, 2886–2893. [Google Scholar] [CrossRef]
- Robertson, J.; Manning, M.I. Criteria for formation of single layer duplex layer, and breakaway scales on steels. Mater. Sci. Technol. 1988, 4, 1064–1071. [Google Scholar] [CrossRef]
- Young, D.; Huczkowski, P.; Olszewski, T.; Huttel, T.; Singheiser, L.; Quadakkers, W.J. Non-steady state carburisation of martensitic 9–12%Cr steels in CO2 rich gases at 550°C. Corros. Sci. 2014, 88, 161–169. [Google Scholar] [CrossRef]
- Bai, J.M.; Yuan, Y.; Zhang, P.; Yan, J.B. Effect of carbon on microstructure and mechanical properties of HR3C type heat resistant steels. Mater. Sci. Eng. A 2020, 784, 138943. [Google Scholar] [CrossRef]
- Rouillarda, F.; Furukawa, T. Corrosion of 9-12Cr ferritic–martensitic steels in high-temperature CO2. Corros. Sci. 2016, 105, 120–132. [Google Scholar] [CrossRef]
- Uhlenbrock, S.; Scharfschwerdt, C.; Neumann, M.; Illing, G.; Freund, H.J. The influence of defects on the Ni 2p and O 1s XPS of NiO. J. Phys. Condens. Matter 1992, 40, 7973. [Google Scholar] [CrossRef]
- Sun, M.; Wu, X.; Zhang, Z.; Han, E.H. Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water. J. Supercrit. Fluids 2008, 47, 309–317. [Google Scholar] [CrossRef]
- Zhong, X.; Han, E.H.; Wu, X. Corrosion behavior of Alloy 690 in aerated supercritical water. Corros. Sci. 2013, 66, 369–379. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Tang, H.; Li, W. Oxidation behaviors of porous Haynes 214 alloy at high temperatures. Mater. Charact. 2015, 107, 283. [Google Scholar] [CrossRef]
- Cox, M.G.E.; McEnaney, B.; Scott, V.D. Diffusion and Partitioning of Elements in Oxide Scales on Alloys. Nat. Phys. Sci. 1972, 237, 140–142. [Google Scholar] [CrossRef]
- Gleave, C.; Lees, D.G. A study of the mechanism of corrosion of some ferritic steels in high-pressure carbon dioxide with the aid of oxygen-18 as a tracer. Proc. R. Soc. Lond. Ser. A 1982, 379, 429–438. [Google Scholar]
- Lim, J.Y.; Mckrell, T.J.; Eastwick, G.; Ballinger, R.H. Corrosion of materials in supercritical dioxide environment. In Proceeding of the NACE-2008, New Orleans, LA, USA, 16–20 March 2008; pp. 17–21. [Google Scholar]
- Rouillard, F.; Moine, G.; Tabarant, M.; Ruiz, J.C. Corrosion of 9Cr steel in CO2 at intermediate temperature II: Mechanism of carburization. Oxid. Met. 2012, 77, 57–70. [Google Scholar] [CrossRef]
- Firouzdor, V.; Sridharan, K.; Cao, G.; Anderson, M.; Allen, T.R. Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment. Corros. Sci. 2013, 69, 281–291. [Google Scholar] [CrossRef]
C | N | P | Cr | S | Nb | Mn | Ni | Si | Fe |
---|---|---|---|---|---|---|---|---|---|
0.06 | 0.24 | 0.012 | 24.63 | 0.001 | 0.49 | 1.24 | 20.29 | 0.39 | Bal. |
Element | 550 °C-200 h | 550 °C-1000 h | 600 °C-200 h | 600 °C-1000 h |
---|---|---|---|---|
C | 10.85 | 6.50 | 10.24 | 9.03 |
O | 30.22 | 37.39 | 28.70 | 38.17 |
Cr | 17.47 | 19.70 | 16.85 | 21.36 |
Fe | 30.64 | 27.24 | 32.29 | 22.44 |
Ni | 10.81 | 9.14 | 11.93 | 7.42 |
Main Peak | 550 °C-200 h | 550 °C-1000 h | 600 °C-200 h | 600 °C-1000 h |
---|---|---|---|---|
O 1 s | 530.76 | 530.73 | 530.43 | 530.36 |
Fe 2 p | --- | 710.3 | 710.6 | 710.8 |
Cr 2 p | 576.37 | 576.69 | 576.26 | 576.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yan, K.; Fu, X.; Zhu, Z. Study on the Corrosion Behavior of Austenitic Steel HR3C in Supercritical Carbon Dioxide at 550 and 600 °C. Metals 2025, 15, 983. https://doi.org/10.3390/met15090983
Zhang S, Yan K, Fu X, Zhu Z. Study on the Corrosion Behavior of Austenitic Steel HR3C in Supercritical Carbon Dioxide at 550 and 600 °C. Metals. 2025; 15(9):983. https://doi.org/10.3390/met15090983
Chicago/Turabian StyleZhang, Shuli, Kai Yan, Xiaowei Fu, and Zhongliang Zhu. 2025. "Study on the Corrosion Behavior of Austenitic Steel HR3C in Supercritical Carbon Dioxide at 550 and 600 °C" Metals 15, no. 9: 983. https://doi.org/10.3390/met15090983
APA StyleZhang, S., Yan, K., Fu, X., & Zhu, Z. (2025). Study on the Corrosion Behavior of Austenitic Steel HR3C in Supercritical Carbon Dioxide at 550 and 600 °C. Metals, 15(9), 983. https://doi.org/10.3390/met15090983