Reduction of Liquid Steelmaking Slag Using Hydrogen Gas as a Reductant
Abstract
1. Introduction
2. Materials and Methods
2.1. Material for Reduction Experiments
2.2. Reduction Experiments
2.3. Sample Characterization
3. Methodology of Modeling
3.1. Calculation of Bubble Residence Time in Liquid Slag
3.2. Calculation of Reacted H2 with Slag
3.3. Modeling-Based Calculations
4. Results and Discussion
4.1. Reduction Experiments
4.2. Results of Modeling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Db | Bubble diameter, m |
dcapillary | Capillary diameter, m |
Surface tension of molten slag at 1600 °C, N·m−1 | |
g | Gravitational acceleration, m·s−2 |
Density of liquid slag at 1600 °C, kg·m−3 | |
Density of hydrogen gas at 1600 °C, kg·m−3 | |
Vb | Bubble volume, m3 |
Hydrogen gas flow rate at 25 °C, m3·s | |
Hydrogen gas flow rate at 1600 °C, m3·s | |
t | Time for formation of 1 gas bubble, s |
Bubble rise velocity, m·s−1 | |
Rb | Bubble radius, m |
Cd | Drag coefficient, (-) |
A | Reference area, m2 |
Retp | Reynolds number based on thermophysical properties, (-) |
Viscosity of liquid slag at 1600 °C, Pa·s | |
τ | Residence time of a gas bubble in liquid slag, s |
H | Height of liquid slag in a crucible, m |
Vslag | Volume of liquid slag, m3 |
S | Area of a crucible, m2 |
m | Mass of charged slag, kg |
Inner diameter of a crucible | |
Amount of reacted H2, mol | |
kl | Mass transfer coefficient, m·s−1 |
Co | Volume concentration of oxygen in slag, mol·m−3 |
Sh | Sherwood number, (-) |
Do | Diffusion coefficient of oxygen in liquid slag, m2·s−1 |
Sc | Schmidt number, (-) |
kb | Boltzman constant, J·K−1 |
Total amount of H2 gas in a bubble, mol | |
T | Absolute temperature, K |
P | Pressure, Pa |
R | Gas constant, J·K−1·mol−1 |
Fraction of reacted H2 gas, % | |
Σ | Foaming index, s |
η | Viscosity of liquid slag containing solid particles, Pa·s |
η0 | Viscosity of liquid slag without solid particles, Pa·s |
c | Fraction of solid phase, (-) |
n | Parameter related to the geometrical shape of the solid particles, (-) |
References
- International Energy Agency. Global Hydrogen Review 2021; OECD: Paris, France, 2021; ISBN 978-92-64-51931-2. [Google Scholar]
- Kovtun, O.; Levchenko, M.; Oldinski, E.; Gräbner, M.; Volkova, O. Swelling Behavior of Iron Ore Pellets during Reduction in H2 and N2/H2 Atmospheres at Different Temperatures. Steel Res. Int. 2023, 94, 2300140. [Google Scholar] [CrossRef]
- Injection of Hydrogen into Blast Furnace: Thyssenkrupp Steel Concludes First Test Phase Successfully. Available online: https://www.thyssenkrupp-steel.com/en/newsroom/press-releases/thyssenkrupp-steel-concludes-first-test-phase-successfully.html (accessed on 14 July 2025).
- Reallabor der Energiewende H2Stahl Bringt Wasserstoff in die Stahlindustrie. Available online: https://www.energieforschung.de/de/aktuelles/projekteinblicke/2021/reallabor-der-energiewende-h2-stahl-bringt-wasserstoff-in-die-stahl-industrie (accessed on 14 July 2025).
- MAXH2DR. Available online: https://www.estep.eu/clean-steel-partnership/maxh2dr (accessed on 25 August 2025).
- Meijer, K.; Guenther, C.; Dry, R.J. HIsarna Pilot Plant Project. In Proceedings of the 1st International Conference on Energy and CO2 Reduction in the Steel Industry, Düsseldorf, Germany, 27 June–1 July 2011. [Google Scholar]
- Khasraw, D.; Yan, Z.; Hage, J.L.T.; Meijer, K.; Li, Z. Reduction of FeO in Molten Slag by Solid Carbonaceous Materials for HIsarna Alternative Ironmaking Process. Metall. Mater. Trans. B 2022, 53, 3246–3261. [Google Scholar] [CrossRef]
- Fan, X.; Jiao, K.; Zhang, J.; Wang, K.; Chang, Z. Phase Transformation of Cohesive Zone in a Water-Quenched Blast Furnace. ISIJ Int. 2018, 58, 1775–1780. [Google Scholar] [CrossRef]
- Htet, T.T.; Yan, Z.; Khasraw, D.; Hage, J.; Meijer, K.; Li, Z. Kinetic Study on Reduction of FeO in a Molten HIsarna Slag by Various Solid Carbon Sources. Metall. Mater. Trans. B 2022, 54, 163–177. [Google Scholar] [CrossRef]
- Nurdiawati, A.; Zaini, I.N.; Wei, W.; Gyllenram, R.; Yang, W.; Samuelsson, P. Towards Fossil-Free Steel: Life Cycle Assessment of Biosyngas-Based Direct Reduced Iron (DRI) Production Process. J. Clean. Prod. 2023, 393, 136262. [Google Scholar] [CrossRef]
- Fan, Z.; Friedmann, S.J. Low-Carbon Production of Iron and Steel: Technology Options, Economic Assessment, and Policy. Joule 2021, 5, 829–862. [Google Scholar] [CrossRef]
- European Steel in Figures 2025. Available online: https://www.eurofer.eu/publications/brochures-booklets-and-factsheets/european-steel-in-figures-2025 (accessed on 1 July 2025).
- Hosseini, S.; Soltani, S.M.; Fennell, P.S.; Choong, T.S.Y.; Aroua, M.K. Production and Applications of Electric-Arc-Furnace Slag as Solid Waste in Environmental Technologies: A Review. Environ. Technol. Rev. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Loureiro, C.D.A.; Moura, C.F.N.; Rodrigues, M.; Martinho, F.C.G.; Silva, H.M.R.D.; Oliveira, J.R.M. Steel Slag and Recycled Concrete Aggregates: Replacing Quarries to Supply Sustainable Materials for the Asphalt Paving Industry. Sustainability 2022, 14, 5022. [Google Scholar] [CrossRef]
- Maharaj, C.; White, D.; Maharaj, R.; Morin, C. Re-Use of Steel Slag as an Aggregate to Asphaltic Road Pavement Surface. Cogent Eng. 2017, 4, 1416889. [Google Scholar] [CrossRef]
- Matino, I.; Branca, T.A.; Fornai, B.; Colla, V.; Romaniello, L. Scenario Analyses for By-Products Reuse in Integrated Steelmaking Plants by Combining Process Modeling, Simulation, and Optimization Techniques. Steel Res. Int. 2019, 90, 1900150. [Google Scholar] [CrossRef]
- Teo, P.T.; Zakaria, S.K.; Salleh, S.Z.; Taib, M.A.A.; Mohd Sharif, N.; Abu Seman, A.; Mohamed, J.J.; Yusoff, M.; Yusoff, A.H.; Mohamad, M.; et al. Assessment of Electric Arc Furnace (EAF) Steel Slag Waste’s Recycling Options into Value Added Green Products: A Review. Metals 2020, 10, 1347. [Google Scholar] [CrossRef]
- Yu, S.; Garrabrants, A.C.; DeLapp, R.C.; Hubner, T.; Thorneloe, S.A.; Kosson, D.S. From Leaching Data to Release Estimates: Screening and Scenario Assessments of Electric Arc Furnace (EAF) Slag under Unencapsulated Use. J. Hazard. Mater. 2024, 479, 135522. [Google Scholar] [CrossRef] [PubMed]
- Lateef, K.B.; Sheikh, A.R.; Nurulakmal, M.S.; Baharun, N. Evaluation of the Leaching Behavior of Hexavalent Chromium from Malaysian Electric Arc Furnace Steel Slag. Adv. Mater. Res. 2013, 652–654, 1628–1632. [Google Scholar] [CrossRef]
- EN 12457-2: 2002; Characterization of Waste–Leaching–Compliance Test for Leaching of Granular Waste Materials and Sludges–Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/Kg for Materials with Particle Size below 4 mm (Without or with Size Reduction). European Committee for Standardization (CEN): Brussels, Belgium, 2002.
- Liu, C.; Huang, S.; Wollants, P.; Blanpain, B.; Guo, M. Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization. Metall. Mater. Trans. B 2017, 48, 1602–1612. [Google Scholar] [CrossRef]
- Shen, H.; Forssberg, E. An Overview of Recovery of Metals from Slags. Waste Manag. 2003, 23, 933–949. [Google Scholar] [CrossRef]
- Dankwah, J.R.; Koshy, P.; Saha-Chaudhury, N.M.; O’Kane, P.; Skidmore, C.; Knights, D.; Sahajwalla, V. Reduction of FeO in EAF Steelmaking Slag by Metallurgical Coke and Waste Plastics Blends. ISIJ Int. 2011, 51, 498–507. [Google Scholar] [CrossRef]
- Min, D.J.; Han, J.W.; Chung, W.S. A Study of the Reduction Rate of FeO in Slag by Solid Carbon. Metall. Mater. Trans. B 1999, 30, 215–221. [Google Scholar] [CrossRef]
- Ye, G.; Burstrom, E.; Kuhn, M.; Piret, J. Reduction of Steel-Making Slags for Recovery of Valuable Metals and Oxide Materials. Scand. J. Metall. 2003, 32, 7–14. [Google Scholar] [CrossRef]
- Htet, T.T.; Yan, Z.; Sampath Kumar, B.; Hage, J.; Meijer, K.; Li, Z. Study on Hydrogen Smelting Reduction Behaviour in Synthetic Molten HIsarna Slag. Ironmak. Steelmak. 2023, 50, 1590–1600. [Google Scholar] [CrossRef]
- Bartzsch, G.; Christian, R.; Mohanty, S.R.; Shukla, A.K.; Volkova, O. Effect of Al2O3 and TiO2 on Viscosity, Surface Tension, and Density of Blast Furnace Slag with CaO/SiO2 = 1.13. Steel Res. Int. 2023, 94, 2200798. [Google Scholar] [CrossRef]
- Kovtun, O.; Korobeinikov, I.; C, S.; Shukla, A.K.; Volkova, O. Viscosity of BOF Slag. Metals 2020, 10, 982. [Google Scholar] [CrossRef]
- Xiong, D.; Lu, L.; Holmes, R.J. Developments in the Physical Separation of Iron Ore. In Iron Ore; Elsevier: Amsterdam, The Netherlands, 2015; pp. 283–307. ISBN 978-1-78242-156-6. [Google Scholar]
- Yildirim, I.Z.; Prezzi, M. Chemical, Mineralogical, and Morphological Properties of Steel Slag. Adv. Civ. Eng. 2011, 2011, 463638. [Google Scholar] [CrossRef]
- Qu, G.; Wei, Y.; Li, B.; Wang, H.; Yang, Y.; McLean, A. Distribution of Copper and Iron Components with Hydrogen Reduction of Copper Slag. J. Alloys Compd. 2020, 824, 153910. [Google Scholar] [CrossRef]
- Attah-Kyei, D.; Klemettinen, L.; Michallik, R.; Salminen, J.; Taskinen, P.; Lindberg, D. Hydrogen as Carbon-Free Reducing Agent in Non-Ferrous Slag Fuming. Metall. Mater. Trans. B 2022, 53, 3775–3792. [Google Scholar] [CrossRef]
- Lee, T.-H.; Joo, S.-H.; Nersisyan, H.H.; Kong, M.-S.; Lee, J.-W.; Park, K.-W.; Lee, J.-H. Reduction Kinetics of Zinc Powder from Brass Converter Slag by Pyrometallurgical Method Using Hydrogen Gas. KONA Powder Part. J. 2016, 33, 278–286. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, T.; Zheng, C. Reduction Kinetics of Copper Slag by H2. Minerals 2022, 12, 548. [Google Scholar] [CrossRef]
- Levchenko, M.; Kovtun, O.; Angelini, A.; Markus, H.P.; Sosin, D.; Endo, R.; Volkova, O. Effect of SiO2 and Al2O3 on the Thermophysical Properties and the Foaming Index of Electric Arc Furnace Slag from the Production of Construction Steel. Steel Res. Int. 2025, 96, 2400476. [Google Scholar] [CrossRef]
- Otto, M. Analytische Chemie; 5. Auflage; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; ISBN 978-3-527-34465-9. [Google Scholar]
- Hernandez-Aguilar, J.R.; Cunningham, R.; Finch, J.A. A Test of the Tate Equation to Predict Bubble Size at an Orifice in the Presence of Frother. Int. J. Miner. Process. 2006, 79, 89–97. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 9th ed.; McGraw-Hill Series in Mechanical Engineering; McGraw-Hill: New York, NY, USA, 2002; ISBN 0-07-240655-0. [Google Scholar]
- Schiller, L. A Drag Coefficient Correlation. Zeit Ver Dtsch. Ing 1933, 77, 318–320. [Google Scholar]
- Islam, M.T.; Nguyen, A.V. Bubble-Assisted Matte Transportation into Slag Phase: A Numerical Investigation. Miner. Eng. 2023, 202, 108286. [Google Scholar] [CrossRef]
- Roussel, M.R. Reaction-Diffusion Equations. In Nonlinear Dynamics; IOP Publishing: Bristol, UK, 2005; pp. 2053–2571. [Google Scholar]
- Hasegawa, M. Chapter 3.3—Ellingham Diagram. In Treatise on Process Metallurgy; Seetharaman, S., Ed.; Elsevier: Boston, MA, USA, 2014; pp. 507–516. ISBN 978-0-08-096986-2. [Google Scholar]
- Levich, V.G.; Tobias, C.W. Physicochemical Hydrodynamics. J. Electrochem. Soc. 1963, 110, 251C. [Google Scholar] [CrossRef]
- Sommerfeld, A. Ein Beitrag zur Hydrodynamischen Erklaerung der Turbulenten Fluessigkeitsbewegungen; Accademia dei Lince: Rome, Italy, 1909. [Google Scholar]
- Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, International ed.; Wiley: New York, NY, USA, 1990; ISBN 978-0-471-51729-0. [Google Scholar]
- Köddermann, T.; Ludwig, R.; Paschek, D. On the Validity of Stokes–Einstein and Stokes–Einstein–Debye Relations in Ionic Liquids and Ionic-Liquid Mixtures. ChemPhysChem 2008, 9, 1851–1858. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; et al. FactSage Thermochemical Software and Databases, 2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Roscoe, R. The Viscosity of Suspensions of Rigid Spheres. Br. J. Appl. Phys. 1952, 3, 267–269. [Google Scholar] [CrossRef]
- Reddy, R.G.; Weizenbach, R.N.; Landolt, C.A.; Queneau, P.E. Metallurgical Society of CIM Extractive Metallurgy of Copper, Nickel and Cobalt. In Proceedings of Paul E. Queneau International Symposium; Minerals, Metals & Materials Society: Warrendale, PA, USA, 1993; ISBN 0-87339-218-3. [Google Scholar]
- Persson, M.; Matsushita, T.; Zhang, J.; Seetharaman, S. Estimation of Molar Volumes of Some Binary Slags from Enthalpies of Mixing. Steel Res. Int. 2007, 78, 102–108. [Google Scholar] [CrossRef]
- Mills, K.C. Estimation of Physicochemical Properties of Coal Slags and Ashes. In Mineral Matter and Ash in Coal; ACS Publications: Washington, DC, USA, 1986; ISBN 1947-5918. [Google Scholar]
- Kim, H.S.; Min, D.J.; Park, J.H. Foaming Behavior of CaO-SiO2-FeO-MgOsatd-X (X = Al2O3, MnO, P2O5, and CaF2) Slags at High Temperatures. ISIJ Int. 2001, 41, 317–324. [Google Scholar] [CrossRef]
- Wagner, W.; Pruß, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387–535. [Google Scholar] [CrossRef]
- Ito, K.; Fruehan, R.J. Study on the Foaming of CaO-SiO2-FeO Slags: Part I. Foaming Parameters and Experimental Results. Metall. Trans. B 1989, 20, 509–514. [Google Scholar] [CrossRef]
- Ito, K.; Fruehan, R.J. Study on the Foaming of CaO-SiO2-FeO Slags: Part II. Dimensional Analysis and Foaming in Iron and Steelmaking Processes. Metall. Trans. B 1989, 20, 515–521. [Google Scholar] [CrossRef]
CaO | SiO2 | FeOx | MgO | Al2O3 | MnO | Cr2O3 | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|
17.32 | 11.96 | 43.98 | 7.35 | 10.25 | 5.62 | 2.75 | 0.33 | 0.44 |
CaO | SiO2 | FeOx | MgO | Al2O3 | MnO | Cr2O3 | P2O5 | TiO2 | |
---|---|---|---|---|---|---|---|---|---|
Initial | 17.32 | 11.96 | 43.98 | 7.35 | 10.25 | 5.62 | 2.75 | 0.33 | 0.44 |
5 min | 17.67 | 12.19 | 41.5 | 8.86 | 10.29 | 5.78 | 2.91 | 0.34 | 0.46 |
10 min | 18.16 | 13.59 | 37.57 | 9.34 | 10.52 | 6.64 | 3.22 | 0.37 | 0.59 |
15 min | 19.85 | 14.30 | 32.53 | 10.06 | 11.10 | 7.64 | 3.55 | 0.37 | 0.60 |
30 min | 20.06 | 16.15 | 26.2 | 12.28 | 11.75 | 7.93 | 4.52 | 0.48 | 0.63 |
Al | Cr | Mn | P | Si | Ti | |
---|---|---|---|---|---|---|
15 min | 0.01 ± 0 | 0.0115 ± 0.0005 | 0.022 ± 0.006 | ≤0.01 | ≤0.01 | ≤0.01 |
30 min | 0.033 ± 0 | 0.011 ± 0 | 0.17 ± 0.03 | ≤0.01 | 0.11 ± 0.01 | ≤0.01 |
Parameter | Value |
---|---|
Db | 4.85 × 10−3 |
Vb | 5.97 × 10−8 |
5.23 × 10−5 | |
t | 1.14 × 10−3 |
υ | 0.275 |
Retp | 182.6 |
Cd | 0.84 |
Vslag | 1.45 × 10−5 |
S | 0.85 × 10−3 |
H | 16.91 × 10−3 |
τ | 0.05 |
A | 7.39 × 10−5 |
Co | 21,123 |
Re | 230.5 |
Sc | 1607.2 × 103 |
Do | 3.6 × 10−12 |
Sh | 1102.5 |
kl | 8.2 × 10−7 |
6.5 × 10−8 | |
3.9 × 10−7 | |
16.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levchenko, M.; Markus, H.P.; Schreiner, M.; Gräbner, M.; Volkova, O. Reduction of Liquid Steelmaking Slag Using Hydrogen Gas as a Reductant. Metals 2025, 15, 984. https://doi.org/10.3390/met15090984
Levchenko M, Markus HP, Schreiner M, Gräbner M, Volkova O. Reduction of Liquid Steelmaking Slag Using Hydrogen Gas as a Reductant. Metals. 2025; 15(9):984. https://doi.org/10.3390/met15090984
Chicago/Turabian StyleLevchenko, Mykyta, Hans Peter Markus, Marcus Schreiner, Martin Gräbner, and Olena Volkova. 2025. "Reduction of Liquid Steelmaking Slag Using Hydrogen Gas as a Reductant" Metals 15, no. 9: 984. https://doi.org/10.3390/met15090984
APA StyleLevchenko, M., Markus, H. P., Schreiner, M., Gräbner, M., & Volkova, O. (2025). Reduction of Liquid Steelmaking Slag Using Hydrogen Gas as a Reductant. Metals, 15(9), 984. https://doi.org/10.3390/met15090984