The Effect of Chromium Contents on the Corrosion Performance of Fe-22Mn-0.6C TWIP Steels in Sulfate-Containing Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. TWIP Samples Preparation
2.2. Microstructural Characterization
2.3. Electrochemical Testing
2.4. Characterization of Corrosion Products
3. Results and Discussion
3.1. Microstructure and Phase Analysis
3.2. Electrochemical Response (OCP and EIS)
3.3. Surface and Corrosion Product Analysis
3.4. Schematic Representation of Corrosion Evolution in Cr-Alloyed TWIP Steels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Cooman, B.C.; Estrin, Y.; Kim, S.K. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018, 142, 283–362. [Google Scholar] [CrossRef]
- Chung, K.; Ahn, K.; Yoo, D.H.; Chung, K.H.; Seo, M.H.; Park, S.H. Formability of TWIP (twinning induced plasticity) automotive sheets. Int. J. Plast. 2011, 27, 52–81. [Google Scholar] [CrossRef]
- Kim, J.K. In-situ TEM investigation of deformation mechanisms of twinning-induced plasticity steel. Mater. Charact. 2023, 196, 112583. [Google Scholar] [CrossRef]
- Kim, J.K.; Chen, L.; Kim, H.S.; Kim, S.K.; Estrin, Y.; De Cooman, B.C. On the tensile behavior of high-manganese twinning-induced plasticity steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2009, 40, 3147–3158. [Google Scholar] [CrossRef]
- Lan, P.; Zhang, J. Twinning and dynamic strain aging behavior during tensile deformation of Fe-Mn-C TWIP steel. Mater. Sci. Eng. A 2017, 700, 250–258. [Google Scholar] [CrossRef]
- Chen, G.; Rahimi, R.; Xu, G.; Biermann, H.; Mola, J. Impact of Al addition on deformation behavior of Fe–Cr–Ni–Mn–C austenitic stainless steel. Mater. Sci. Eng. A 2020, 797, 140084. [Google Scholar] [CrossRef]
- Chin, K.G.; Kang, C.Y.; Shin, S.Y.; Hong, S.; Lee, S.; Kim, H.S.; Kim, K.H.; Kim, N.J. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater. Sci. Eng. A 2011, 528, 2922–2928. [Google Scholar] [CrossRef]
- Dumay, A.; Chateau, J.P.; Allain, S.; Migot, S.; Bouaziz, O. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Mater. Sci. Eng. A 2008, 483–484, 184–187. [Google Scholar] [CrossRef]
- Koyama, M.; Sawaguchi, T.; Lee, T.; Lee, C.S.; Tsuzaki, K. Work hardening associated with ɛ-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP steels. Mater. Sci. Eng. A 2011, 528, 7310–7316. [Google Scholar] [CrossRef]
- Koyama, M.; Sawaguchi, T.; Tsuzaki, K. Deformation twinning behavior of twinning-induced plasticity steels with different carbon concentrations—Part 2: Proposal of dynamic-strain-aging-assisted deformation twinning. ISIJ Int. 2015, 55, 1754–1761. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Zhu, X.M. Electrochemical polarization and passive film analysis of austenitic Fe–Mn–Al steels in aqueous solutions. Corros. Sci. 1999, 41, 1817–1833. [Google Scholar] [CrossRef]
- Kamimura, T.; Stratmann, M. The influence of chromium on the atmospheric corrosion of steel. Corros. Sci. 2001, 43, 429–447. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Tuan, Y.H.; Wang, C.S.; Tsai, C.Y.; Chao, C.G.; Liu, T.F. Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C alloys in 3.5% NaCl solution. Mater. Chem. Phys. 2009, 114, 595–598. [Google Scholar] [CrossRef]
- Fajardo, S.; Llorente, I.; Jiménez, J.A.; Calderón, N.; Herrán-Medina, D.; Bastidas, J.M.; Ress, J.; Bastidas, D.M. Influence of chromium on the passivity of thermo-mechanically processed high-Mn TWIP steels. Appl. Surf. Sci. 2020, 513, 145852. [Google Scholar] [CrossRef]
- Mujica, L.; Weber, S.; Theisen, W. Memorie Development of high-strength corrosion-resistant austenitic TWIP steel. Metall. Ital. 2011, 103, 31–35. [Google Scholar]
- Wang, C.S.; Tsai, C.Y.; Chao, C.G.; Liu, T.F. Effect of chromium content on corrosion behaviors of Fe-9Al-30Mn-(3,5,6.5,8)Cr-1C alloys. Mater. Trans. 2007, 48, 2973–2977. [Google Scholar] [CrossRef]
- Zhu, X.M.; Zhang, Y.S. An XPS study of passive film formation on Fe 30Mn 9Al alloy in sodium sulphate solution. Appl. Surf. Sci. 1998, 125, 11–16. [Google Scholar] [CrossRef]
- Yuan, X.; Zhao, Y.; Li, X.; Chen, L. Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels. J. Mater. Sci. Technol. 2017, 33, 1555–1560. [Google Scholar] [CrossRef]
- Ai-Tayyib, A.J.; Somuah, S.K.; Boah, J.K.; Leblanc, P.; Al-Mana, A.I. Laboratory study on the effect of sulfate ions on rebar corrosion. Cem. Concr. Res. 1988, 18, 774–782. [Google Scholar] [CrossRef]
- Premlall, K.; Potgieter, J.H.; Sanja, S. Laser surface treatment to inhibit observed corrosion of reinforcing steel in sulphate: Alkaline media. Anti-Corros. Methods Mater. 2011, 58, 267–284. [Google Scholar] [CrossRef]
- Singh, G. A survey of corrosivity of underground mine waters from Indian coal mines. Int. J. Mine Water 1986, 5, 21–32. [Google Scholar] [CrossRef]
- Zhu, X.M.; Zhang, Y.S. Investigation of the Electrochemical Corrosion Behavior and Passive Film for Fe-Mn, Fe-Mn-Al, and Fe-Mn-Al-Cr Alloys in Aqueous Solutions. Corrosion 1998, 54, 3–12. [Google Scholar] [CrossRef]
- Alves, V.A.; Brett, C.M.A. Characterisation of passive films formed on mild steels in bicarbonate solution by EIS. Electrochim. Acta 2002, 47, 2081–2091. [Google Scholar] [CrossRef]
- Abreu, C.M.; Cristóbal, M.J.; Nóvoa, X.R.; Pena, G.; Pérez, M.C.; Serra, C. Influence of chromium and cerium implantation in the electrochemical development of passive layers on AISI 304L. Electrochim. Acta 2004, 49, 3057–3065. [Google Scholar] [CrossRef]
- ASTM G31_21; Standard Guide for Laboratory Immersion Corrosion Testing of Metals 1. ASTM: West Conshohocken, PA, USA, 2021. [CrossRef]
- ASTM E112-13; Test Methods for Determining Average Grain Size. ASTM: West Conshohocken, PA, USA, 2013. [CrossRef]
- Ma, L.; Pascalidou, E.M.; Wiame, F.; Zanna, S.; Maurice, V.; Marcus, P. Passivation mechanisms and pre-oxidation effects on model surfaces of FeCrNi austenitic stainless steel. Corros. Sci. 2020, 167, 108483. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels. Steel Res. Int. 2006, 77, 627–633. [Google Scholar] [CrossRef]
- Bouaziz, O.; Allain, S.; Scott, C.P.; Cugy, P.; Barbier, D. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid. State Mater. Sci. 2011, 15, 141–168. [Google Scholar] [CrossRef]
- De Barbieri, F.; Jorge-Badiola, D.; Allende, R.; Tello, K.; Artigas, A.; Perazzo, F.; Jami, H.; Ipiña, J.P. Effect of Cr content in temperature-dependent mechanical properties and strain hardening of a twinning-induced plasticity steel. Mater. Sci. Eng. A 2024, 889, 145865. [Google Scholar] [CrossRef]
- Li, D.G.; Feng, Y.R.; Bai, Z.Q.; Zhu, J.W.; Zheng, M.S. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution. Electrochim. Acta 2007, 52, 7877–7884. [Google Scholar] [CrossRef]
- Sun, H.; Giron-Palomares, B.; Qu, W.; Chen, G.; Wang, H. Effects of Cr addition and cold pre-deformation on the mechanical properties, damping capacity, and corrosion behavior of Fe–17%Mn alloys. J. Alloys Compd. 2019, 803, 250–259. [Google Scholar] [CrossRef]
- Mansfeld, F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochim. Acta 1990, 35, 1533–1544. [Google Scholar] [CrossRef]
- Zhang, J.; He, J.; Peng, B.; Li, H.; Li, B.; Yan, B.; Zhang, J.H. An experimental investigation for corrosion resistance of stainless clad steel plate. J. Constr. Steel Res. 2024, 217, 108655. [Google Scholar] [CrossRef]
- Sun, M.; Du, C.; Liu, Z.; Liu, C.; Li, X.; Wu, Y. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere. Corros. Sci. 2021, 186, 109427. [Google Scholar] [CrossRef]
- Alcántara, J.; de la Fuente, D.; Chico, B.; Simancas, J.; Díaz, I.; Morcillo, M. Marine atmospheric corrosion of carbon steel: A review. Materials 2017, 10, 406. [Google Scholar] [CrossRef]
- Indira, K.; Nishimura, T. In Situ Study of Effect of Chromium Content and Epoxy Coating on Localized Corrosion Behavior of Low-Alloy Steel Using Localized Electrochemical Impedance Spectroscopy. J. Bio Tribocorros. 2017, 3, 28. [Google Scholar] [CrossRef]
- Lobb, R.C.; Evans, H.E. An evaluation of the effect of surface chromium concentration on the oxidation of a stainless steel. Corros. Sci. 1983, 23, 55–73. [Google Scholar] [CrossRef]
- Park, S.A.; Lee, S.H.; Kim, J.G. Effect of chromium on the corrosion behavior of low alloy steel in sulfuric acid. Met. Mater. Int. 2012, 18, 975–987. [Google Scholar] [CrossRef]
- Melendres, C.A.; Pankuch, M.; Li, Y.S.; Knight, R.L. Surface enhanced Raman spectroelectrochemical studies of the corrosion films on iron and chromium in aqueous solution environments. Electrochim. Acta 1992, 37, 2747–2754. [Google Scholar] [CrossRef]
- Thibeau, R.J.; Brown, C.W.; Heidersbach, R.H. Raman Spectra of Possible Corrosion Products of Iron. Appl. Spectrosc. 1953, 32, 532–535. [Google Scholar] [CrossRef]
- Grassel, O.; Kruèger, L.; Frommeyer, G.; Meyer, L.W. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int. J. Plast. 2000, 16, 1391–1409. [Google Scholar] [CrossRef]
- Fajardo, S.; Llorente, I.; Jiménez, J.A.; Bastidas, J.M.; Bastidas, D.M. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution. Corros. Sci. 2019, 154, 246–253. [Google Scholar] [CrossRef]
Steel | Elements (wt.%) | ||||||
---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | P | S | Fe | |
TWIP 0%Cr | 0.57 | 21.20 | 0.12 | 0.14 | 0.030 | 0.005 | Balance |
TWIP 5%Cr | 0.63 | 22.90 | 0.10 | 5.35 | 0.022 | 0.002 | Balance |
TWIP 10%Cr | 0.60 | 21.23 | 0.06 | 10.20 | 0.067 | 0.006 | Balance |
Exposure Time (Days) | TWIP Steel | Re (Ωcm−2) | αHF | αLF | QLF × 10−5 (Fcm−2s−(1−a)) | Cdl × 10−6 (μF cm−2) |
---|---|---|---|---|---|---|
1 | 0% Cr | 17.2 | 0.59 | 0.81 | 594.4 | 1244.1 |
7 | 19.3 | 0.57 | 0.52 | 564.3 | 1095.4 | |
14 | 18.1 | 0.43 | 1.07 | 916.9 | 893.2 | |
21 | 13.7 | 0.46 | 1.06 | 1114.5 | 1264.9 | |
28 | 12.9 | 0.50 | 1.09 | 999.1 | 1281.9 | |
1 | 5% Cr | 19.2 | 0.74 | 0.98 | 53.8 | 112.5 |
7 | 26.1 | 0.70 | 0.95 | 110.7 | 244.2 | |
14 | 21.9 | 0.69 | 0.53 | 125.5 | 253.1 | |
21 | 18.9 | 0.75 | 0.51 | 108.8 | 306.76 | |
28 | 21.3 | 0.71 | 0.42 | 153.8 | 382.9 | |
1 | 10% Cr | 19.7 | 0.74 | 0.52 | 29.2 | 47.6 |
7 | 20.5 | 0.70 | 0.64 | 37.8 | 47.3 | |
14 | 22.5 | 0.82 | 0.45 | 17.3 | 49.3 | |
21 | 21.4 | 0.33 | 0.56 | 8.3 | 1.7 × 10−4 | |
28 | 19.8 | 0.77 | 1.00 | 17.1 | 32.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garín, C.; Pineda, F.; Sancy, M.; Garrido, M.; Lloncón, J.; da Cunha Ponciano Gomes, J.A.; De Barbieri, F. The Effect of Chromium Contents on the Corrosion Performance of Fe-22Mn-0.6C TWIP Steels in Sulfate-Containing Environments. Metals 2025, 15, 1020. https://doi.org/10.3390/met15091020
Garín C, Pineda F, Sancy M, Garrido M, Lloncón J, da Cunha Ponciano Gomes JA, De Barbieri F. The Effect of Chromium Contents on the Corrosion Performance of Fe-22Mn-0.6C TWIP Steels in Sulfate-Containing Environments. Metals. 2025; 15(9):1020. https://doi.org/10.3390/met15091020
Chicago/Turabian StyleGarín, Carolina, Fabiola Pineda, Mamie Sancy, Matias Garrido, Juan Lloncón, José Antonio da Cunha Ponciano Gomes, and Flavio De Barbieri. 2025. "The Effect of Chromium Contents on the Corrosion Performance of Fe-22Mn-0.6C TWIP Steels in Sulfate-Containing Environments" Metals 15, no. 9: 1020. https://doi.org/10.3390/met15091020
APA StyleGarín, C., Pineda, F., Sancy, M., Garrido, M., Lloncón, J., da Cunha Ponciano Gomes, J. A., & De Barbieri, F. (2025). The Effect of Chromium Contents on the Corrosion Performance of Fe-22Mn-0.6C TWIP Steels in Sulfate-Containing Environments. Metals, 15(9), 1020. https://doi.org/10.3390/met15091020