Corrosion and Discharge Performance of a Mg-La-Zr Alloy as an Anode for Mg-Air Batteries
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructure
3.2. Chemical Stability and Activity in NaCl Aqueous Solution
3.3. Mg-Air Battery Anode Property Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frei, M.; Martin, J.; Kindler, S.; Cristiano, G.; Zengerle, R.; Kerzenmacher, S. Power supply for electronic contact lenses: Abiotic glucose fuel cells vs. Mg/air batteries. J. Power Sources 2018, 401, 403–414. [Google Scholar] [CrossRef]
- Goel, P.; Dobhal, D.; Sharma, R.C. Aluminum-air batteries: A viability review. J. Energy Storage 2020, 28, 101287. [Google Scholar] [CrossRef]
- Li, D.; Yuan, Y.; Liu, J.; Fichtner, M.; Pan, F. A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloy 2020, 8, 963–979. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Deng, M.; Wang, L.; Höche, D.; Lamaka, S.V.; Snihirova, D.; Vaghefinazari, B.; Zheludkevich, M.L. Clarifying the decisive factors for utilization efficiency of Mg anodes for primary aqueous batteries. J. Power Sources 2019, 441, 227201. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, C.; Huang, J.; Zhao, Y.; Huang, G.; Wu, L.; Wang, G.; Zhang, H. Effect of Zn concentration on microstructure and corrosion resistance of Mg-Zn alloys microalloyed with Ca and Ce. Anti-Corros. Methods Mater. 2021, 68, 130–136. [Google Scholar] [CrossRef]
- Deng, M.; Wang, L.; Höche, D.; Lamaka, S.V.; Jiang, P.; Snihirova, D.; Scharnagl, N.; Zheludkevich, M.L. Ca/In micro alloying as a novel strategy to simultaneously enhance power and energy density of primary Mg-air batteries from anode aspect. J. Power Sources 2020, 472, 228528. [Google Scholar] [CrossRef]
- Chen, X.; Jia, Y.; Shi, Z.; Le, Q.; Li, J.; Zhang, M.; Liu, M.; Atrens, A. Understanding the discharge behavior of an ultrahigh-purity Mg anode for Mg–air primary batteries. J. Mater. Chem. A 2021, 9, 21387. [Google Scholar] [CrossRef]
- Liu, H.; Yan, Y.; Wu, X.; Fang, H.; Chu, X.; Huang, J.; Zhang, J.; Song, J.; Yu, K. Effects of Al and Sn on microstructure, corrosion behavior and electrochemical performance of Mg-Al-based anodes for magnesium-air batteries. J. Alloys Compd. 2021, 859, 157755. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Wei, Q.; Wang, N.; Hou, B. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5 wt.% NaCl solution. Electrochim. Acta 2017, 238, 156–167. [Google Scholar] [CrossRef]
- Chen, X.; Liao, Q.; Le, Q.; Zou, Q.; Wang, H.; Atrens, A. The influence of samarium (Sm) on the discharge and electrochemical behaviors of the magnesium alloy AZ80 as an anode for the Mg-air battery. Electrochim. Acta 2020, 348, 136315. [Google Scholar] [CrossRef]
- Deng, M.; Höche, D.; Lamaka, S.V.; Wang, L.; Zheludkevich, M.L. Revealing the impact of second phase morphology on discharge properties of binary Mg-Ca anodes for primary Mg-air batteries. Corros. Sci. 2019, 153, 225–235. [Google Scholar] [CrossRef]
- Deng, M.; Wang, L.; Höche, D.; Lamaka, S.V.; Snihirova, D.; Jiang, P.; Zheludkevich, M.L. Corrosion and discharge properties of Ca/Ge micro-alloyed Mg anodes for primary aqueous Mg batteries. Corros. Sci. 2020, 177, 108958. [Google Scholar] [CrossRef]
- Huang, G.; Zhao, Y.; Wang, Y.; Zhang, H.; Pan, F. Performance of Mg-air battery based on AZ31 alloy sheet with twins. Mater. Lett. 2013, 113, 46–49. [Google Scholar] [CrossRef]
- Song, Y.; Yao, K.; Zou, Q.; Yang, Q.; Jiang, B.; Wang, L.; Yuan, M.; Wang, Q.; Huang, G.; Pan, F. Processing Micro-Alloyed Mg-La Binary Alloy into a High-Performance Mg-Air Battery Anode via Extrusion. J. Electrochem. Soc. 2022, 169, 020575. [Google Scholar] [CrossRef]
- Wang, N.G.; Li, W.P.; Huang, Y.X.; Wu, G.; Hu, M.C.; Li, G.Z.; Shi, Z.C. Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries. J. Power Sources 2019, 436, 226855. [Google Scholar] [CrossRef]
- Le, T.; Mao, P.; Hu, W.; Le, Q. The electrochemical corrosion behaviors and Mg-air battery anode performance of Mg–1Sn–1Ca-0.3Mn alloy with different grain size and Mg2Ca morphology. J. Power Sources 2024, 608, 234297. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Yuan, S.; Bai, J.; Wang, J.; Cao, Y.; Hong, Q. Performance of Mg-9Al-1In alloy as anodes for Mg-air batteries in 3.5 wt% NaCl solutions. J. Electrochem. Soc. 2017, 164, A3131–A3137. [Google Scholar] [CrossRef]
- Song, Y.; Yang, H.; Chai, Y.; Wang, Q.; Jiang, B.; Wu, L.; Zou, Q.; Huang, G.; Pan, F.; Atrens, A. Corrosion and discharge behavior of Mg-xLa alloys (x = 0.0−0.8) as anode materials. Trans. Nonferrous Met. Soc. China 2021, 31, 1979–1992. [Google Scholar] [CrossRef]
- Stjohn, D.H.; Qian, M.; Easton, M.A.; Cao, P.; Hildebrand, Z. Grain refinement of magnesium alloys. Metall. Mater. Trans. A 2005, 36, 1669–1679. [Google Scholar] [CrossRef]
- Peng, Z.K.; Zhang, X.M.; Chen, J.M.; Xiao, Y.; Jiang, H. Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium, Mater. Sci. Technol. 2013, 21, 722–726. [Google Scholar]
- Song, G.; Atrens, A.; St John, D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In Essential Readings in Magnesium Technology; Springer: Cham, Switzerland, 2011; pp. 255–262. [Google Scholar]
- Ma, J.; Zhang, Y.; Ma, M.; Qin, C.; Ren, F.; Wang, G. Corrosion and discharge performance of a magnesium aluminum eutectic alloy as anode for magnesium-air batteries. Corros. Sci. 2020, 170, 108695. [Google Scholar] [CrossRef]
- StJohn, D.H.; Cao, P.; Qian, M.; Easton, M.A. A new analytical approach to reveal the mechanisms of grain refinement. Adv. Eng. Mater. 2007, 9, 739–746. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.L.; Liu, M.; Shi, Z.; Cao, F.; Dargusch, M.S. Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- Luo, Y.; Deng, Y.; Guan, L.; Ye, L.; Guo, X.; Luo, A. Effect of grain size and crystal orientation on the corrosion behavior of as-extruded Mg-6Gd-2Y-0.2Zr alloy. Corros. Sci. 2020, 164, 108338. [Google Scholar] [CrossRef]
- Hamu, G.B.; Eliezer, D.; Shin, K.S.; Cohen, S. The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys. J. Alloys Compd. 2007, 431, 269–276. [Google Scholar] [CrossRef]
- Cao, F.; Shi, Z.; Song, G.; Liu, M.; Atrens, A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-X alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corros. Sci. 2013, 76, 60–97. [Google Scholar] [CrossRef]
- Deng, M.; Höche, D.; Lamaka, S.V.; Snihirova, D.; Zheludkevich, M.L. Mg-Ca binary alloys as anodes for primary Mg-air batteries. J. Power Sources 2018, 396, 109–118. [Google Scholar] [CrossRef]
- Gomes, M.P.; Costa, I.; Pébère, N.; Rossi, J.L.; Tribollet, B.; Vivier, V. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy. Electrochim. Acta 2019, 306, 61–70. [Google Scholar] [CrossRef]
- Atrens, A.D.; Gentle, I.; Atrens, A. Possible dissolution pathways participating in the Mg corrosion reaction. Corros. Sci. 2015, 92, 173–181. [Google Scholar] [CrossRef]
- Zhao, M.; Schmutz, P.; Brunner, S.; Liu, M.; Song, G.; Atrens, A. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corros. Sci. 2009, 51, 1277–1292. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, M.; Atrens, A. Measurement of the corrosion rate of magnesium alloys using tafel extrapolation. Corros. Sci. 2010, 52, 579–588. [Google Scholar] [CrossRef]
- Fan, L.; Lu, H. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes. J. Power Sources 2015, 284, 409–415. [Google Scholar] [CrossRef]
- Pino, M.; Chacón, J.; Fatás, E.; Ocón, P. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries. J. Power Sources 2015, 299, 195–201. [Google Scholar] [CrossRef]
- Cheng, S.; Cheng, W.; Gu, X.; Yu, H.; Wang, Z.; Wang, H.; Wang, L. Discharge properties of low-alloyed Mg-Bi-Ca alloys as anode materials for Mg-air batteries: Influence of Ca alloying. J. Alloys Compd. 2020, 823, 153779. [Google Scholar] [CrossRef]
- Wang, N.G.; Wang, R.C.; Peng, C.Q.; Peng, B.; Feng, Y.; Hu, C.W. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery, Electrochim. Acta 2014, 149, 193–205. [Google Scholar]
- Wang, N.G.; Wang, R.C.; Feng, Y.; Xiong, W.H.; Zhang, J.C.; Deng, M. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery. Corros. Sci. 2016, 112, 13–24. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A. Corrosion Mechanisms of Magnesium Alloys. Adv. Eng. Mater. 1999, 1, 11–33. [Google Scholar] [CrossRef]
- Frankel, G.S.; Samaniego, A.; Birbilis, N. Evolution of hydrogen at dissolving magnesium surfaces. Corros. Sci. 2013, 70, 104–111. [Google Scholar] [CrossRef]
- Song, G.L.; Unocic, K.A. The anodic surface film and hydrogen evolution on Mg. Corros. Sci. 2015, 98, 758–765. [Google Scholar] [CrossRef]
Alloys | La | Zr | Mg |
---|---|---|---|
Mg-La | 0.3987 | – | Bal. |
Mg-La-Zr | 0.3693 | 0.1039 | Bal. |
Anode | Ecorr (V vs. SCE) | Icorr (uA cm−2) |
---|---|---|
Mg-La | −1.786 | 274 |
Mg-La-Zr | −1.803 | 224 |
Mg Anode | Average Discharge Potential (vs. SCE)/V | Anodic Efficiency/η (%) | ||
---|---|---|---|---|
2.5 mA cm−2 for 20 h | 10 mA cm−2 for 10 h | 2.5 mA cm−2 for 20 h | 10 mA cm−2 for 10 h | |
Mg-La | −1.67 | −1.56 | 65.5 | 61.3 |
Mg-La-Zr | −1.68 | −1.59 | 74.9 | 68.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Fang, G.; Zhang, J.; Chu, G.; Wang, P.; Zhang, A.; Gao, Y.; Jiang, B. Corrosion and Discharge Performance of a Mg-La-Zr Alloy as an Anode for Mg-Air Batteries. Metals 2025, 15, 847. https://doi.org/10.3390/met15080847
Song Y, Fang G, Zhang J, Chu G, Wang P, Zhang A, Gao Y, Jiang B. Corrosion and Discharge Performance of a Mg-La-Zr Alloy as an Anode for Mg-Air Batteries. Metals. 2025; 15(8):847. https://doi.org/10.3390/met15080847
Chicago/Turabian StyleSong, Yan, Gang Fang, Junping Zhang, Guanrun Chu, Peng Wang, Ang Zhang, Yuyang Gao, and Bin Jiang. 2025. "Corrosion and Discharge Performance of a Mg-La-Zr Alloy as an Anode for Mg-Air Batteries" Metals 15, no. 8: 847. https://doi.org/10.3390/met15080847
APA StyleSong, Y., Fang, G., Zhang, J., Chu, G., Wang, P., Zhang, A., Gao, Y., & Jiang, B. (2025). Corrosion and Discharge Performance of a Mg-La-Zr Alloy as an Anode for Mg-Air Batteries. Metals, 15(8), 847. https://doi.org/10.3390/met15080847