Effect of H2–CO Ratio on Reduction Disintegration Behavior and Kinetics of Vanadium–Titanium Magnetite Pellets
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Reduction Disintegration
2.2.2. Reduction Degree and Reduction Rate
3. Results and Discussion
3.1. Correlation Between Reduction Disintegration and Reduction Degree
3.1.1. Single-Component H2 or CO Atmosphere
3.1.2. Mixed H2–CO Atmosphere
3.2. Low-Temperature Reduction Kinetics of Vanadium–Titanium Magnetite Pellets
3.2.1. Reduction Kinetics Model
- (1)
- Diffusion of H2 and CO across the external gas boundary layer to the pellet surface.
- (2)
- Penetration of these gases through pores and cracks to the internal reaction front.
- (3)
- Interfacial chemical reactions—adsorption of H2 and CO, desorption of H2O and CO2, electron transfer, and lattice decomposition—leading to new solid nuclei.
- (4)
- Outward diffusion of H2O and CO2 through the product layer to the pellet surface.
- (5)
- Final transport of H2O and CO2 from the pellet’s boundary layer into the bulk gas.
- (1)
- Control of the reduction gas internal diffusion
- (2)
- Control of interfacial chemistry
- (3)
- Integrated control of internal diffusion and interfacial chemical reactions
3.2.2. Reduction Kinetics
- (1)
- Reduction kinetics at 600 °C
- (2)
- Reduction kinetics at 550 °C
- (3)
- Reduction kinetics study at 500 °C
- (4)
- Reduction kinetics study at 450 °C
3.2.3. Reduction Rates
4. Conclusions
- (1)
- In the single-component H2 or CO atmosphere, vanadium–titanium magnetite pellets demonstrated favorable reduction disintegration behavior. However, as φ(H2) increased from 0 to 0.17, the reduction disintegration behavior declined markedly, with the RDI+6.3 mm fraction dropping sharply from 96.99% to 0%. Further increases in H2 concentration led to an improvement in disintegration behavior.
- (2)
- When the reduction temperature was below 550 °C, CO demonstrated a stronger reduction capability than H2, leading to a faster reduction rate and a higher reduction degree in the pellets. In contrast, at temperatures above 550 °C, H2 exhibited a stronger reduction effect on vanadium–titanium magnetite.
- (3)
- The effective diffusion coefficient Deff of the reducing gas and the rate constant k+ for the forward reduction reaction increased as the reduction temperature increased within the range of 450–600 °C. The reduction capacity of H2 on the iron oxides in the pellets was more significantly affected by the reduction temperature.
- (4)
- During the first 10 min of reduction, the mixed H2–CO atmospheres exhibited a faster reduction rate compared to single-component H2 or CO atmosphere. The differing reduction capacities of H2 and CO generated inconsistent reduction and swelling rates across pellet regions, which were observed to increase internal stress within the pellets and exacerbate the disintegration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, F.; Olayiwola, A.U.; Liu, B.; Wang, S.; Du, H.; Li, J.; Wang, X.; Chen, D.; Zhang, Y. Review of vanadium production part I: Primary resources. Miner. Process. Extr. Metall. Rev. 2022, 43, 466–488. [Google Scholar] [CrossRef]
- Qiu, G.; Guo, Y. Current situation and development trend of titanium metal industry in China. Int. J. Miner. Metall. Mater. 2022, 29, 599–610. [Google Scholar] [CrossRef]
- Taylor, P.R.; Shuey, S.A.; Vidal, E.E.; Gomez, J.C. Extractive metallurgy of vanadium-containing titaniferous magnetite ores: A review. Min. Metall. Explor. 2006, 23, 80–86. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Wang, Z.; Zhong, Y.; Guo, P.; Jiang, D.; Zhang, S. Advancements in oxygen blast furnace technology and its application in the smelting of vanadium-titanium magnetite: A comprehensive review. Miner. Eng. 2024, 212, 108732. [Google Scholar] [CrossRef]
- Chen, S.; Fu, X.; Chu, M.; Liu, Z.; Tang, J. Life cycle assessment of the comprehensive utilization of vanadium titano-magnetite. Miner. Eng. 2015, 101, 122–128. [Google Scholar] [CrossRef]
- Pang, Z.; Jiang, Y.; Ling, J.; Lu, X.; Yan, Z. Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag. Int. J. Miner. Metall. Mater. 2022, 29, 1170–1178. [Google Scholar] [CrossRef]
- Cai, Y.; Song, N.; Yang, Y.; Sun, L.; Hu, P.; Wang, J. Recent progress of efficient utilization of titanium-bearing blast furnace slag. Int. J. Miner. Metall. Mater. 2022, 29, 22–31. [Google Scholar] [CrossRef]
- Yi, L.; Huang, Z.; Jiang, T.; Zhong, R.; Liang, Z. Iron or, e pellet disintegration mechanism in simulated shaft furnace conditions. Powder Technol. 2017, 317, 89–94. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Gao, Y.; Yan, G.; Lan, C.; Lv, Q. Non-isothermal kinetics and thermodynamics analysis of vanadium-titanium magnetite. Metall. Res. Technol. 2024, 121, 415. [Google Scholar] [CrossRef]
- Hu, Q.; Ma, D.; Zhou, K.; Liu, Y.; You, Y.; You, Z.; Lv, X. Phase transformation and slag evolution of vanadium–titanium magnetite pellets during softening–melting process. Powder Technol. 2022, 396, 710–717. [Google Scholar] [CrossRef]
- Sarkar, S.; Bhattacharya, R.; Roy, G.G.; Sen, P.K. Modeling MIDREX based process configurations for energy and emission analysis. Steel Res. Int. 2018, 89, 1700248. [Google Scholar] [CrossRef]
- Hu, Q.; Xin, R.; Gao, X.; Wang, Y.; You, Y.; You, Z.; Lv, X. Reduction disintegration behavior of vanadium titanomagnetite pellets in H2-CO-CO2-N2 mixtures. Powder Technol. 2023, 413, 118073. [Google Scholar] [CrossRef]
- Chen, D.; Song, B.; Wang, L.; Qi, T.; Wang, Y.; Wang, W. Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal. Miner. Eng. 2011, 24, 864–869. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, X.; Cao, M.; Jiao, K.; Wang, C.; Ren, S. Reduction kinetics of vanadium titano-magnetite carbon composite pellets adding catalysts under high temperature. J. Iron Steel Res. Int. 2013, 20, 1–7. [Google Scholar] [CrossRef]
- Lu, C.; Zou, X.; Lu, X.; Xie, L.; Zheng, K.; Xiao, W.; Cheng, H.; Li, G. Reductive kinetics of Panzhihua ilmenite with hydrogen. Trans. Nonferrous Met. Soc. China 2016, 26, 3266–3273. [Google Scholar] [CrossRef]
- Zare Ghadi, A.; Radfar, N.; Valipour, M.S.; Sohn, H.Y. A Review on the Modeling of Direct Reduction of Iron Oxides in Gas-Based Shaft Furnaces. Steel Res. Int. 2023, 94, 2200742. [Google Scholar] [CrossRef]
- Sharma, T.; Prakash, B. Effect of reduction rate on the swelling behavior of iron ore pellets. ISIJ Int. 1992, 32, 812–818. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Mi, L.; Jiao, Y.; Wang, X. Kinetic studies on gas-based reduction of vanadium titano-magnetite pellet. Metals 2019, 9, 95. [Google Scholar] [CrossRef]
- Towhidi, N.; Szekely, J. The influence of carbon deposition on the reduction kinetics of commercial grade hematite pellets with CO, H2, and N2. Met. Trans B 1983, 14, 359. [Google Scholar] [CrossRef]
- Guo, D.; Hu, M.; Pu, C.; Xiao, B.; Hu, Z.; Liu, S. Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas. Int. J. Hydrogen Energy 2015, 40, 4733–4740. [Google Scholar] [CrossRef]
- Wang, Z.; Chu, M.; Liu, Z.; Chen, S.; Xue, X. Effects of Temperature and Atmosphere on Pellets Reduction Swelling Index. J. Iron Steel Res. Int. 2012, 19, 7–19. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Liang, Z.; Peng, X.; Deng, X.; Li, J. Direct reduction of iron ore pellets by H2-CO mixture: An in-situ investigation of the evolution and dynamics of swelling. Mater. Today Commun. 2023; 36, 106940. [Google Scholar] [CrossRef]
- Wang, H.; Sohn, H.Y. Effects of Reducing Gas on Swelling and Iron Whisker Formation during the Reduction of Iron Oxide Compact. Steel Res. Int. 2012, 83, 903–909. [Google Scholar] [CrossRef]
- Cheng, G.J.; Liu, J.X.; Liu, Z.G.; Chu, M.S.; Xue, X.X. Non-isothermal reduction mechanism and kinetics of high chromium vanadium–titanium magnetite pellets. Ironmak. Steelmak. 2015, 42, 17–26. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, X.; Gao, Z. Isothermal reduction behavior and kinetics of Russian high-chromium vanadium-titanium magnetite pellets under gas atmospheres of CO–CO2–N2 and CO–N2 at 873 K–1173 K. Energy Sources Part A-Recovery Util. Environ. Eff. 2022, 44, 5490–5507. [Google Scholar] [CrossRef]
- Chen, F.; Li, H.; Guo, Y.; Liu, K.; Wang, S.; Yang, L.; Wen, Y.; Zhang, M. Reduction disintegration behavior and crystallographic transformation of vanadium–titanium magnetite pellets during hydrogen-based reduction. J. Mater. Res. Technol.-JMRT 2024, 34, 152–163. [Google Scholar] [CrossRef]
- ISO 11257—2022; Iron Ores for Shaft Direct-Reduction Feedstocks—Determination of the Low-Temperature Reduction Disintegration Index and Degree of Metallization. International Organization for Standardization: Geneva, Switzerland, 2022.
- GB/T 13241—2017; Iron Ores—Determination of Reducibility. China Standard Press: Beijing, China, 2017.
Compounds | TFe | FeO | TiO2 | Fe2O3 |
---|---|---|---|---|
Content (%) | 54.06 | 1.19 | 10.26 | 75.98 |
PCO/(PCO + ) | 0 | 0.25 | 0.5 | 0.75 | 1 |
---|---|---|---|---|---|
Deff/(m2/s) | 8.20 × 10−7 | 6.58 × 10−7 | 5.52 × 10−7 | 6.68 × 10−7 | 4.55 × 10−7 |
PCO/(PCO + ) | 0 | 0.25 | 0.5 | 0.75 | 1 |
---|---|---|---|---|---|
Deff/(m2/s) | 3.48 × 10−7 | 2.35 × 10−7 | 2.72 × 10−7 | 2.62 × 10−7 | 2.98 × 10−7 |
PCO/(PCO + ) | 0.25 | 0.5 | 0.75 | 1 |
---|---|---|---|---|
Deff/(m2/s) | 4.36 × 10−8 | 6.83 × 10−8 | 7.51 × 10−8 | 8.31 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Li, H.; Wang, S.; Chen, M.; Tang, W.; Guo, Y.; Wen, Y.; Yang, L. Effect of H2–CO Ratio on Reduction Disintegration Behavior and Kinetics of Vanadium–Titanium Magnetite Pellets. Metals 2025, 15, 823. https://doi.org/10.3390/met15080823
Chen F, Li H, Wang S, Chen M, Tang W, Guo Y, Wen Y, Yang L. Effect of H2–CO Ratio on Reduction Disintegration Behavior and Kinetics of Vanadium–Titanium Magnetite Pellets. Metals. 2025; 15(8):823. https://doi.org/10.3390/met15080823
Chicago/Turabian StyleChen, Feng, Hao Li, Shuai Wang, Mao Chen, Wenbo Tang, Yufeng Guo, Yuekai Wen, and Lingzhi Yang. 2025. "Effect of H2–CO Ratio on Reduction Disintegration Behavior and Kinetics of Vanadium–Titanium Magnetite Pellets" Metals 15, no. 8: 823. https://doi.org/10.3390/met15080823
APA StyleChen, F., Li, H., Wang, S., Chen, M., Tang, W., Guo, Y., Wen, Y., & Yang, L. (2025). Effect of H2–CO Ratio on Reduction Disintegration Behavior and Kinetics of Vanadium–Titanium Magnetite Pellets. Metals, 15(8), 823. https://doi.org/10.3390/met15080823