The Synergistic Refinement and Modification of Al-7Si Alloys Caused by Trace Er and B
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Characterisation of Refinement Effect
2.3. Microstructure Characterisation
3. Results and Discussion
3.1. Grain Refinement Effect of Er and B Addition on Al-7Si Alloys
3.2. Modification Effect of Er and B Addition on Al-7Si Alloys
3.3. Refining Effect of B on Al-Si Alloys
3.4. Modification Effect of Er on Al-Si Alloys
3.5. Modification and Refinement Effects of Er and B on Al-7Si Alloys
3.6. Microhardness of Er and B Addition on Al-7Si Alloys
4. Conclusions
- The B element mainly forms a small amount of the AlB2 phase within the alloy, which can be used as a nucleation site for grains during casting, so the addition of B can significantly reduce the grain size of the Al-7Si alloy. However, the number density of the AlB2 phase is too low, so its effect on improving the eutectic Si size and reducing the secondary dendrite arm spacing (SDAS) is not significant.
- The addition of 0.1 wt% Er can form a large amount of Al3Er phase within the alloy, which mainly serves as a nucleation site for eutectic Si during casting, so the addition of Er can significantly reduce the SDAS, eutectic Si size, and morphology of Al-7Si alloys. However, due to the existence of a certain degree of mismatch between the Al matrix and the Al3Er phase, the relative grain refinement effect of Al3Er is not significant.
- We observed the enrichment of Er at eutectic Si, which suggests that Er can interact with Si and thus inhibit the growth of eutectic Si. Therefore, Er can modulate eutectic Si through interfacial step mechanism and heterogeneous nucleation mechanism.
- The co-addition of Er and B to Al-7Si alloys has better refining and modification effects than the addition of Er or B alone, which is mainly due to the modification effect of the element Er and the refining effect of the AlB2 phase.
- Unlike the modification mechanism of the Er-containing alloy, the modification of the alloy with the co-addition of Er and B is mainly controlled by the interfacial step mechanism.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J. Heterogeneous Nucleation Mechanism of Aluminum on Substrates. Ph.D. Thesis, Shanghai University, Shanghai, China, 2018. [Google Scholar]
- Zhao, J.T. Effect of Refiner (Al-Ti-Mg-Ce) on the Microstructure and Mechanical Properties of Aluminum Alloy. Ph.D. Thesis, Harbin Engineering University, Harbin, China, 2019. [Google Scholar]
- Malekan, M.; Shabestari, S.G. Effect of Grain Refinement on the Dendrite Coherency Point during Solidification of the A319 Aluminum Alloy. Metall. Mater. Trans. A 2009, 40, 3196–3203. [Google Scholar] [CrossRef]
- Sigworth, G.K.; Kuhn, T.A. Grain Refinement of Aluminum Casting Alloys. In Casting; ASM International: Almere, The Netherlands, 2008. [Google Scholar]
- Murty, B.S.; Kori, S.A.; Chakraborty, M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 2002, 47, 3–29. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.R.; Thompson, G.E.; Pennycook, T.; Hashimoto, T. Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Cibula, A. The Grain Refinement of Aluminum Alloy Castings by Addition of Titanium and Boron. J. Inst. Met. 1951, 80, 1–16. [Google Scholar]
- Wang, T.M.; Chen, Z.N.; Fu, H.W.; Xu, J.; Fu, Y.; Li, T. Grain refining potency of Al–B master alloy on pure aluminum. Scr. Mater. 2011, 64, 1121–1124. [Google Scholar] [CrossRef]
- Jones, G.P.; Pearson, J. Factors affecting the grain-refinement of aluminum using titanium and boron additives. Metall. Trans. B 1976, 7, 223–234. [Google Scholar] [CrossRef]
- Arnberg, L.; Bäckerud, L.; Klang, H. Evidence of metastable phase in Al–Ti–(B) system. Met. Sci. J. 2013, 9, 14–17. [Google Scholar] [CrossRef]
- Abdel-Reihim, M.; Hess, N.; Reif, W.; Birch, M.E.J. Effect of solute content on the grain refinement of binary alloys. J. Mater. Sci. 1987, 22, 213–218. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D.; Wei, Z.; Huang, L.; Song, W.; Chen, Y. The Refinement Effect of Al-Ti-C-RE Master Alloy Prepared by Adding Ce2O3 on Pure Al. Adv. Mater. Res. 2011, 139–141, 227–234. [Google Scholar] [CrossRef]
- Zhao, H.; Song, Y.; Li, M.; Guan, S. Grain refining efficiency and microstructure of Al-Ti-C-RE master alloy. J. Alloys Compd. 2010, 508, 206–211. [Google Scholar] [CrossRef]
- Cong, X.U.; Xiao, W.; Zhao, W.; Wang, W.; Shuji, H.; Hiroshi, Y.; Chaoli, M.A. Microstructure and formation mechanism of grain-refining particles in Al-Ti-C-RE grain refiners. J. Rare Earth 2015, 33, 553–560. [Google Scholar]
- Birol, Y. Performance of AlTi5B1, AlTi3B3 and AlB3 master alloys in refining grain structure of aluminium foundry alloys. Mater. Sci. Technol. 2012, 28, 481–486. [Google Scholar] [CrossRef]
- Birol, Y. Effect of silicon content in grain refining hypoeutectic Al-Si foundry alloys with boron and titanium additions. Mater. Sci. Technol. 2012, 28, 385–389. [Google Scholar] [CrossRef]
- Qiu, D.; Taylor, J.A.; Zhang, M.X.; Kelly, P.M. A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys. Acta Mater. 2007, 55, 1447–1456. [Google Scholar] [CrossRef]
- Venkateswarlu, K.; Murty, B.S.; Chakraborty, M. Effect of hot rolling and heat treatment of Al–5Ti 1B master alloy on the grain refining efficiency of aluminium. Mater. Sci. Eng. A 2001, 301, 180–186. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Hosoda, S.; Kim, I.S.; Watanabe, Y. Grain refining performance for Al and Al–Si alloy casts by addition of equal-channel angular pressed Al–5mass% Ti alloy. Mater. Sci. Eng. A 2006, 425, 55–63. [Google Scholar] [CrossRef]
- Rathi, S.K.; Sharma, A.; Sabatino, M.D. Effect of heat treatment for enhancing performance of Al 5Ti–1B master alloy on mechanical and hot tearing properties of Al–7Si–3Cu alloy. Mater. Res. Express 2019, 6, 86550. [Google Scholar] [CrossRef]
- Marcantonio, J.; Mondolfo, L. Nucleation of aluminium by several intermetallic compounds. J. Inst. Met. 1970, 98, 23–27. [Google Scholar]
- Wang, F.; Qiu, D.; Liu, Z.L.; Taylor, J.A.; Easton, M.A.; Zhang, M.X. The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 2013, 61, 5636–5645. [Google Scholar] [CrossRef]
- Norman, A.F.; Prangnell, P.B.; Mcewen, R.S. The solidification behaviour of dilute aluminium scandium alloys. Acta Mater. 1998, 46, 5715–5732. [Google Scholar] [CrossRef]
- Yang, J.J.; Nie, Z.R.; Jin, T.N.; Xu, G.; Mou, S.; Yin, Z. Existence form and refinement mechanism of rare earth Er in Al-Zn-Mg alloys. Chin. J. Nonferrous Met. 2004, 4, 620–626. [Google Scholar]
- Wen, S.P.; Xing, Z.B.; Huang, H.; Li, B.L.; Wang, W.; Nie, Z.R. The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy. Mater. Sci. Eng. A 2009, 516, 42–49. [Google Scholar] [CrossRef]
- Yang, J.J.; Nie, Z.R.; Jin, T.N.; Xu, G.F.; Fu, J.B.; Ruan, H.Q.; Zuo, T.Y. Effect of trace rare earth element Er on high pure Al. Trans. Nonferrous Met. Soc. China 2003, 13, 1035–1039. [Google Scholar]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for developing castable, creep-resistant aluminum-based alloys—A review. Ztschrift Met. 2006, 97, 246–265. [Google Scholar] [CrossRef]
- Wen, S.P.; Gao, K.Y.; Li, Y.; Huang, H.; Nie, Z.R. Synergetic effect of Er and Zr on the precipitation hardening of Al Er–Zr alloy. Scr. Mater. 2011, 65, 592–595. [Google Scholar] [CrossRef]
- Nie, Z.R.; Jin, T.N.; Fu, J.B.; Zou, J.X.; Yang, J.J.; Zuo, T.Y. Development on research of advanced rare-earth aluminum alloy. Trans. Nonferrous Met. Soc. China 2003, 13, 509–514. [Google Scholar]
- Bai, S.; Liu, Z.Y.; Gu, Y.X.; Li, Y.; Hou, Y.; Chen, X. Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with addition of rare earth Er. Mater. Sci. Eng. A 2010, 527, 1806–1814. [Google Scholar] [CrossRef]
- Lei, Z.G.; Wen, S.P.; Yang, G.; Ma, J.R.; Huang, H.; Nie, Z.R. Study on refining grain and microalloying effect of Al-5Er master alloy. Phys. Met. Metallogr. 2024, 125, 1672–1679. [Google Scholar] [CrossRef]
- Lei, Z.G.; Wen, S.P.; Yang, G.; Wei, W.; Huang, H.; Nie, Z. Study on microstructure and refining effect of deformed Al-4.5Er-1Zr-1.5Ti master alloy. J. Alloys Metall. Syst. 2024, 7, 100084. [Google Scholar]
- Lei, Z.G. Study on the Grain Refinement Effect of Al-Er-Zr Master Alloys and Its Application. Ph.D. Thesis, Beijing University of Technology, Beijing, China, 2024. [Google Scholar]
- Nogita, K.; McDonald, S.D.; Dahle, A.K. Eutectic modification of Al-Si alloys with rare earth metals. Mater. Trans. 2004, 45, 323–326. [Google Scholar] [CrossRef]
- Kowata, T.; Horie, H.; Hiratsuka, S.; Chida, A. Influence of Rare-earth Elements on Refinement of Primary Silicon Crystals in a Hypereutectic Al-Si Alloy. J. Jpn. Foundry Eng. Soc. 1994, 66, 803–808. [Google Scholar]
- Weiss, J.C., Jr.; Loper, C.R. Primary Silicon in Hypereutectic Aluminum-silicon Casting Alloys. Trans. Am. Fish. Soc. 1987, 32, 51–62. [Google Scholar]
- Li, Q.; Xia, T.; Lan, Y.; Li, P.; Fan, L. Effects of rare earth Er addition on microstructure and mechanical properties of hypereutectic Al–20% Si alloy. J. Alloys Compd. 2013, 588, 97–102. [Google Scholar] [CrossRef]
- Colombo, M.; Gariboldi, E.; Morri, A. Er addition to Al-Si-Mg-based casting alloy: Effects on microstructure, room and high temperature mechanical properties. J. Alloys Compd. Interdiscip. J. Mater. Sci. Solid State Chem. Phys. 2017, 708, 1234–1244. [Google Scholar] [CrossRef]
- He, Y.; Xi, H.; Ming, W.; Shao, Q.; Shen, R.; Lai, Y.; Wu, C.; Chen, J. Thermal stability and precipitate microstructures of AlSiMgEr alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Jing, L.; Pan, Y.; Lu, T.; Chai, W. Refinement effect of two rare earth borides in an Al-7Si-4Cu alloy: A comparative study. Mater. Charact. 2018, 145, 664–670. [Google Scholar] [CrossRef]
- Jing, L.; Pan, Y.; Lu, T.; Li, C.; Pi, J.; Sheng, N. Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy. J. Mater. Eng. Perform. 2018, 27, 2838–2843. [Google Scholar] [CrossRef]
- Jing, L.; Pan, Y.; Lu, T.; Pi, J.; Gu, T. Nucleation potency prediction of LaB6 with E2EM model and its influence on microstructure and tensile properties of Al-7Si-0.3Mg alloy. Trans. Nonferrous Met. Soc. China 2018, 28, 1687–1694. [Google Scholar] [CrossRef]
- Song, D.; Zhao, Y.; Jia, Y.; Huang, G.; Zhang, Z.; Zhou, N.; Li, X.; Zheng, K.; Fu, Y.; Zhang, W. Effect of B addition on the formation of Fe-rich phases in Al-Si-Fe alloys. J. Alloys Compd. 2023, 930, 167426. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Wang, Y.; Liu, Y. Microstructure and Combustion Characteristics of Aluminum-boron Alloy Powders. J. Mater. Sci. Eng. 2021, 192, 568–574. [Google Scholar]
Alloys | Verified Composition (wt%) | |||
---|---|---|---|---|
Er | B | Si | Al | |
Al-5Er | 5.10 | - | - | Bal. |
Al-B | - | 0.97 | - | Bal. |
Al-5Er-B | 4.80 | 0.94 | - | Bal. |
Al-7Si | - | - | 6.80 | Bal. |
Al-7Si-0.1Er | 0.09 | - | 7.10 | Bal. |
Al-7Si-0.02B | - | 0.03 | 7.20 | Bal. |
Al-7Si-0.1Er-0.02B | 0.11 | 0.01 | 6.90 | Bal. |
Arrow | Composition (wt%) | ||
---|---|---|---|
Er | Si | Al | |
1 | 21.64 | 15.19 | 63.18 |
2 | 1.15 | 58.7 | 40.15 |
3 | 0.1 | 3.46 | 96.54 |
Intermediate Alloys | Effect | |
---|---|---|
Refinement | Modification | |
Al-B | better | bad |
Al-5Er | bad | better |
Al-5Er-B | better | better |
Al-Sr | bad | best |
Al-Ti-B | best | bad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wen, S.; Wei, W.; Wu, X.; Gao, K.; Huang, H.; Nie, Z. The Synergistic Refinement and Modification of Al-7Si Alloys Caused by Trace Er and B. Metals 2025, 15, 413. https://doi.org/10.3390/met15040413
Lu Y, Wen S, Wei W, Wu X, Gao K, Huang H, Nie Z. The Synergistic Refinement and Modification of Al-7Si Alloys Caused by Trace Er and B. Metals. 2025; 15(4):413. https://doi.org/10.3390/met15040413
Chicago/Turabian StyleLu, Yi, Shengping Wen, Wu Wei, Xiaolan Wu, Kunyuan Gao, Hui Huang, and Zuoren Nie. 2025. "The Synergistic Refinement and Modification of Al-7Si Alloys Caused by Trace Er and B" Metals 15, no. 4: 413. https://doi.org/10.3390/met15040413
APA StyleLu, Y., Wen, S., Wei, W., Wu, X., Gao, K., Huang, H., & Nie, Z. (2025). The Synergistic Refinement and Modification of Al-7Si Alloys Caused by Trace Er and B. Metals, 15(4), 413. https://doi.org/10.3390/met15040413