Effect of Nb Content on the Oxidation Behavior and Microstructural Evolution of Ti2AlNb-Based Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Oxidation Resistance
3.3. Oxidation Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
EPMA | Electron probe microanalysis |
EDS | Energy-dispersive X-ray spectroscopy |
BSE | Backscattered electron |
RD | Rolling direction |
TD | Transverse direction |
ND | Normal direction |
ΔM | Weight gain per unit area |
kn | Oxidation rate constant |
n | kinetic exponent |
t | Oxidation time |
G | Gibbs free energies |
H | Standard formation enthalpy |
T | Temperature |
DFT | Density functional theory |
Eabs | The adsorption energy |
Esystem | The total energy of the surface |
Esurface | The energy of the clean surface |
EO2 | The energy of a free O2 molecule |
References
- Banerjee, D.; Gogia, A.; Nandi, T.; Joshi, V. A new ordered orthorhombic phase in a Ti3Al-Nb alloy. Acta Metall. 1988, 36, 871–882. [Google Scholar] [CrossRef]
- Feng, A.; Chen, Q.; Wang, J.; Wang, H.; Qu, S.; Chen, D. Thermal stability of microstructures in low-density Ti2AlNb-based alloy hot rolled plate. Acta Metall. Sin. 2022, 59, 777–786. [Google Scholar]
- Man, J.; Huang, L.; He, J.; Yang, H.; Lin, X. Effect of heat treatment on microstructure and properties of Ti2AlNb alloy formed by selective laser melting. J. Mater. Res. Technol. 2024, 33, 2549–2559. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Li, W.P.; Wang, D.W.; Zhang, L.; Ohara, K.; Shen, J.; Ebel, T.; Yan, M. Selective laser melting enabled additive manufacturing of Ti–22Al–25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated. Acta Mater. 2019, 173, 117–129. [Google Scholar] [CrossRef]
- Liu, Y.; Shan, Z.; Yang, X.; Liu, Q. Investigation on creep behavior and microstructural features of an additively manufactured Ti2AlNb alloy upon isothermal deformation at elevated temperature. Vacuum 2024, 223, 113112. [Google Scholar] [CrossRef]
- Yang, S.J.; Nam, S.W.; Hagiwara, M. Investigation of creep deformation mechanisms and environmental effects on creep resistance in a Ti2AlNb based intermetallic alloy. Intermetallics 2004, 12, 261–274. [Google Scholar] [CrossRef]
- Wei, W.; Weidong, Z.; Chen, X.; Xiaobo, L.; Jianwei, Z. Designed bimodal size lamellar O microstructures in Ti2AlNb based alloy: Microstructural evolution, tensile and creep properties. Mater. Sci. Eng. A 2014, 618, 288–294. [Google Scholar] [CrossRef]
- Esin, V.A.; Mallick, R.; Dadé, M.; Denand, B.; Delfosse, J.; Sallot, P. Combined synchrotron X-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy. Mater. Charact. 2020, 169, 110654. [Google Scholar] [CrossRef]
- Zhang, K.; Lei, Z.; Chen, Y.; Yang, K.; Bao, Y. Heat treatment of laser-additive welded Ti2AlNb joints: Microstructure and tensile properties. Mater. Sci. Eng. A 2019, 744, 436–444. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B.; Bai, Q.; Xie, G. Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment. Intermetallics 2021, 139, 107367. [Google Scholar] [CrossRef]
- Shen, J.; Feng, A. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys. Acta Metall. Sin. 2013, 49, 1286–1294. [Google Scholar] [CrossRef]
- Ayadh, W.; Denand, B.; Halkoum, A.; Boulet, P.; Sennour, M.; Delfosse, J.; Sallot, P.; Esin, V.A. Effect of prior α2 phase on precipitation kinetics of O-phase in advanced Ti2AlNb alloy. Acta Mater. 2023, 252, 118930. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Feng, A.H.; Qu, S.J.; Shen, J.; Chen, D.L. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy. J. Mater. Sci. Technol. 2020, 44, 140–147. [Google Scholar] [CrossRef]
- Shao, B.; Tang, W.; Guo, S.; Zong, Y.; Shan, D.; Guo, B. Investigation of the O phase in the Ti–22Al–25Nb alloy during deformation at elevated temperatures: Plastic deformation mechanism and effect on B2 grain boundary embrittlement. Acta Mater. 2023, 242, 118467. [Google Scholar] [CrossRef]
- Shao, B.; Shan, D.; Guo, B.; Zong, Y. Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti-22Al-25Nb alloy at room temperature. Int. J. Plast. 2019, 113, 18–34. [Google Scholar] [CrossRef]
- Koike, J.; Shimoyama, Y.; Ohnuma, I.; Okamura, T.; Kainuma, R.; Ishida, K.; Maruyama, K. Stress-induced phase transformation during superplastic deformation in two-phase Ti–Al–Fe alloy. Acta Mater. 2000, 48, 2059–2069. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, N.; Liang, H.; Liu, Y. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review. J. Mater. Sci. Technol. 2021, 80, 203–216. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Y.; Zhang, J.; Liu, Y. Synergistic effect of B2 phase and O phase in hot-rolled Ti2AlNb alloy and its influences on mechanical properties. J. Mater. Res. Technol. 2024, 30, 2004–2017. [Google Scholar] [CrossRef]
- Dadé, M.; Esin, V.A.; Nazé, L.; Sallot, P. Short- and long-term oxidation behaviour of an advanced Ti2AlNb alloy. Corros. Sci. 2019, 148, 379–387. [Google Scholar] [CrossRef]
- Leyens, C. Oxidation of orthorhombic titanium aluminide Tl-22AL-25NB in air between 650 and 1000 °C. J. Mater. Eng. Perform. 2001, 10, 225–230. [Google Scholar] [CrossRef]
- Koo, C.H.; Evans, J.W.; Song, K.Y.; Yu, T.H. High-temperature oxidation of Ti3Al−Nb alloys. Oxid. Met. 1994, 42, 529–544. [Google Scholar] [CrossRef]
- He, Y.-S.; Hu, R.; Luo, W.-Z.; He, T.; Liu, X.-H. Oxidation behavior of a novel multi-element alloyed Ti2AlNb-based alloy in temperature range of 650–850 °C. Rare Met. 2018, 37, 838–845. [Google Scholar] [CrossRef]
- Zhao, P.-x.; Li, X.-b.; Xing, W.-w.; Chen, B.; Ma, Y.-c.; Liu, K. Cyclic oxidation behavior of Nb/Mn/Si alloying beta-gamma TiAl alloys. Trans. Nonferrous Met. Soc. China 2023, 33, 128–140. [Google Scholar] [CrossRef]
- Malecka, J. Resistance to High-Temperature Oxidation of Ti-Al-Nb Alloys. Materials 2022, 15, 2137. [Google Scholar] [CrossRef]
- Xiang, L.L.; Zhao, L.L.; Wang, Y.L.; Zhang, L.Q.; Lin, J.P. Synergistic effect of Y and Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys. Intermetallics 2012, 27, 6–13. [Google Scholar] [CrossRef]
- Vojtěch, D.; Popela, T.; Kubásek, J.; Maixner, J.; Novák, P. Comparison of Nb- and Ta-effectiveness for improvement of the cyclic oxidation resistance of TiAl-based intermetallics. Intermetallics 2011, 19, 493–501. [Google Scholar] [CrossRef]
- Li, Y.; Dai, J.; Song, Y. Research Progress of First Principles Studies on Oxidation Behaviors of Ti-Al Alloys and Alloying Influence. Metals 2021, 11, 985. [Google Scholar] [CrossRef]
- Kim, J.; Emura, S.; Lee, Y. High Temperature Oxidation Behavior of Ti2AlNb Intermetallic Alloys. Int. J. Metall. Mater. Eng. 2015, 2015, 112. [Google Scholar] [CrossRef]
- Wang, S.; Xu, W.; Shao, B.; Yang, G.; Zong, Y.; Sun, W.; Yang, Z.; Shan, D. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy. J. Mater. Sci. Technol. 2022, 101, 1–17. [Google Scholar] [CrossRef]
- Jing, C.; Qu, S.; Feng, A.; Wang, H.; Chen, D. Influence of Microstructure and Texture on Tensile Properties of an As-Rolled Ti2AlNb-Based Alloy. Metals 2025, 15, 631. [Google Scholar] [CrossRef]
- Zhao, P.; Cao, G.; Feng, A.; Qu, S.; Wang, H.; Chen, D. Novel insights into anisotropy in a rolled Ti2AlNb-based alloy: The role of α2, O and B2 phases. Mater. Lett. 2025, 400, 139188. [Google Scholar] [CrossRef]
- Sadi, F.A.; Servant, C. On the B2→O phase transformation in Ti–Al–Nb alloys. Mater. Sci. Eng. A 2003, 346, 19–28. [Google Scholar] [CrossRef]
- Li, D.; Zeng, W.; Zhang, F.; Xu, J.; Ma, X.; Liang, X. Precipitation Behavior of O Phase during Continuous Cooling of Ti-22Al-25Nb Alloy. Metals 2022, 12, 291. [Google Scholar] [CrossRef]
- Dai, C.-r.; Yang, Z.-b.; Sun, J.; Lu, S.; Vitos, L. Composition and temperature dependence of α2 phase decomposition in high Nb-containing lamellar γ-TiAl alloys: Experiments and first-principles calculations. Acta Mater. 2021, 221, 117419. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Wang, D.W.; Song, L.J.; Mukhtar, A.; Huang, D.N.; Yang, C.; Yan, M. Effect of heat treatments on the microstructure and mechanical properties of Ti2AlNb intermetallic fabricated by selective laser melting. Mater. Sci. Eng. A 2021, 817, 141352. [Google Scholar] [CrossRef]
- Zheng, J.; Hou, X.; Wang, X.; Meng, Y.; Zheng, X.; Zheng, L. Isothermal oxidation mechanism of Nb–Ti–V–Al–Zr alloy at 700–1200 °C: Diffusion and interface reaction. Corros. Sci. 2015, 96, 186–195. [Google Scholar] [CrossRef]
- Estupinán-López, F.; Orquiz-Muela, C.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Bautista-Margulis, R.G.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Almeraya-Calderón, F.; Lopes, A.J. Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing. Materials 2023, 16, 1187. [Google Scholar] [CrossRef]
- Qu, S.J.; Tang, S.Q.; Feng, A.H.; Feng, C.; Shen, J.; Chen, D.L. Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy. Acta Mater. 2018, 148, 300–310. [Google Scholar] [CrossRef]
- Gao, Z.; Hu, R.; Zou, H.; Zhou, M.; Luo, X. Insight into the Ta alloying effects on the oxidation behavior and mechanism of cast TiAl alloy. Mater. Des. 2024, 241, 112941. [Google Scholar] [CrossRef]
- Shiwei, T.; Anrui, H.; Jianhua, L.; Yefei, Z.; Yonggang, Y.; Yun, Z.; Haitao, J. Oxidation resistance of TiAl alloy improved by hot-pack rolling and cyclic heat treatment. Mater. Charact. 2021, 178, 111196. [Google Scholar] [CrossRef]
- Ralison, A.; Dettenwanger, F.; Schütze, M. Oxidation of orthorhombic Ti2AlNb alloys in the temperature range 550–1000 °C in air. Mater. High Temp. 2003, 20, 607–629. [Google Scholar] [CrossRef]
- Xiang, J.M.; Mi, G.B.; Qu, S.J.; Huang, X.; Chen, Z.; Feng, A.H.; Shen, J.; Chen, D.L. Thermodynamic and microstructural study of Ti2AlNb oxides at 800 °C. Sci. Rep. 2018, 8, 12761. [Google Scholar] [CrossRef]
- Wu, G.D.; Cui, G.R.; Qu, S.J.; Feng, A.H.; Cao, G.J.; Ge, B.H.; Xiang, H.P.; Shen, J.; Chen, D.L. High-temperature oxidation mechanisms of nano-/submicro-scale lamellar structures in an intermetallic alloy. Scr. Mater. 2019, 171, 102–107. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Q.; Qu, S.J.; Xiang, H.P.; Wang, C.; Gao, J.B.; Feng, A.H.; Chen, D.L. Oxidation mechanisms of an intermetallic alloy at high temperatures. Scr. Mater. 2021, 199, 113852. [Google Scholar] [CrossRef]
- Tripathi, A.; Middleton, S.; Lavernia, E.J.; Sachdev, A.K.; Kulkarni, K.N. Ternary Interdiffusion in β (BCC) Phase of the Ti-Al-Nb System. J. Phase Equilib. Diffus. 2018, 39, 841–852. [Google Scholar] [CrossRef]
- Haanappel, V.A.C.; Clemens, H.; Stroosnijder, M.F. The High Temperature Oxidation Behaviour of High and Low Alloyed TiAl-Based Intermetallics. Intermetallics 2002, 10, 293–305. [Google Scholar] [CrossRef]
- Lu, W.; Chen, C.; Xi, Y.; Wang, F.; He, L. The oxidation behavior of Ti–46.5Al–5Nb at 900 °C. Intermetallics 2007, 15, 989–998. [Google Scholar] [CrossRef]
- Cheng, J.W.; Li, J.F.; Rao, Q.L. Time-resolved in-situ XRD study on oxidation evolution of Ti2AlNb-based alloys. Mater. Today Commun. 2023, 36, 106660. [Google Scholar] [CrossRef]
- Chen, X.; Xie, F.; Ma, T.; Li, W.; Wu, X. Oxidation Behavior of Three Different Zones of Linear Friction Welded Ti2AlNb Alloy. Adv. Eng. Mater. 2016, 18, 1944–1951. [Google Scholar] [CrossRef]
- Li, Y.; Dai, J.; Song, Y.; Yang, R. Adsorption properties of oxygen atom on the surface of Ti2AlNb by first principles calculations. Comput. Mater. Sci. 2017, 139, 412–418. [Google Scholar] [CrossRef]
- Zong, Y.; Wang, J.; Shao, B.; Tang, W.; Shan, D. Mechanism and morphology evolution of the O phase transformation in Ti-22Al-25Nb alloy. J. Mater. Sci. Technol. 2021, 89, 97–106. [Google Scholar] [CrossRef]
- Chicardi, E.; Córdoba, J.M.; Gotor, F.J. Kinetics of high-temperature oxidation of (Ti,Ta)(C,N)-based cermets. Corros. Sci. 2016, 102, 168–177. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, X.; Wang, C.; Yao, S.; Qi, Q.; Wang, L. Oxidation mechanism of in-situ TiC/Ni composites at 1073 K. Corros. Sci. 2022, 194, 109958. [Google Scholar] [CrossRef]
- Valenza, T.C.; Weber, P.K.; Marquis, E.A. Role of niobium in the high-temperature oxidation of titanium. Corros. Sci. 2023, 225, 111603. [Google Scholar] [CrossRef]
- Jiang, H.; Hirohasi, M.; Lu, Y.; Imanari, H. Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al. Scr. Mater. 2002, 46, 639–643. [Google Scholar] [CrossRef]
- Pflumm, R.; Friedle, S.; Schütze, M. Oxidation protection of γ-TiAl-based alloys–A review. Intermetallics 2015, 56, 1–14. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Wang, Y.; Ma, T.; Zhu, D.; Xing, Q.; Fang, H.; Chen, R. High-temperature oxidation behavior of ceramic particles-reinforced TiAl composites with multilayered structure. Ceram. Int. 2024, 50, 2233–2241. [Google Scholar] [CrossRef]
- Feng, L.; Li, B.; Li, Q.; Gao, Y.; Pei, Z.; Liang, C. Enhancement of mechanical properties and oxidation resistance of TiAl alloy with addition of Nb and Mo alloying elements. Mater. Chem. Phys. 2024, 316, 129148. [Google Scholar] [CrossRef]
- Sun, T.; Guo, Z.; Cao, J.; Liang, Y.; Lin, J. Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si. Corros. Sci. 2023, 213, 110980. [Google Scholar] [CrossRef]
- Liu, X.; Sun, H.; Jiang, X.; Liu, R.; Yan, W.; Chen, S.; Wang, L. Isothermal oxidation behaviour of TiAl alloys prepared by spark plasma sintering with the addition of Gd under water vapour at 900 °C. Intermetallics 2023, 153, 107796. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Wu, J.; Li, Q.; Wu, C.; Li, Y. Effects of Nb on the elements diffusion and mechanical properties of laminated Ti/Al2O3 composites. Mater. Sci. Eng. A 2015, 636, 263–268. [Google Scholar] [CrossRef]
- Lin, J.P.; Zhao, L.L.; Li, G.Y.; Zhang, L.Q.; Song, X.P.; Ye, F.; Chen, G.L. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics 2011, 19, 131–136. [Google Scholar] [CrossRef]
- Liang, Z.; Xiao, S.; Yue, H.; Li, X.; Li, Q.; Zheng, Y.; Xu, L.; Xue, X.; Tian, J.; Chen, Y. Tailoring microstructure and improving oxidation resistance of an additively manufactured high Nb containing TiAl alloy via heat treatment. Corros. Sci. 2023, 220, 111287. [Google Scholar] [CrossRef]
Sample | Ti | Al | Nb | Mo | Fe | V | Si |
---|---|---|---|---|---|---|---|
14Nb alloy | 64.66 | 22.03 | 9.30 | 2.00 | 1.00 | 1.00 | 0.01 |
23Nb alloy | 54.75 | 22.00 | 20.0 | 1.00 | - | 2.00 | 0.25 |
Sample | α2 Phase | B2 Phase | O Phase |
---|---|---|---|
14Nb alloy | 17.6 | 36.6 | 45.8 |
23Nb alloy | 20.2 | 35.3 | 44.5 |
Sample | Oxidation Conditions | n | Kn (mgn/cm2n·h) |
---|---|---|---|
14Nb alloy | 800 °C 100 h/air | 0.88 | 0.154 |
23Nb alloy | 800 °C 100 h/air | 0.85 | 0.091 |
Phase | EO2/eV | Esurface/eV | Esystem/eV | Eabs/eV |
---|---|---|---|---|
B2 | −873.6 | −46,012.0 | −46,891.3 | −5.6 |
O | −873.6 | −92,725.4 | −93,608.2 | −9.1 |
α2 | −873.6 | −45,736.0 | −46,617.0 | −7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Liang, J.; Qu, S.; Cao, G.; Wang, H.; Feng, A.; Chen, D. Effect of Nb Content on the Oxidation Behavior and Microstructural Evolution of Ti2AlNb-Based Alloys. Metals 2025, 15, 1120. https://doi.org/10.3390/met15101120
Gong Y, Liang J, Qu S, Cao G, Wang H, Feng A, Chen D. Effect of Nb Content on the Oxidation Behavior and Microstructural Evolution of Ti2AlNb-Based Alloys. Metals. 2025; 15(10):1120. https://doi.org/10.3390/met15101120
Chicago/Turabian StyleGong, Yicheng, Jiahong Liang, Shoujiang Qu, Guojian Cao, Hao Wang, Aihan Feng, and Daolun Chen. 2025. "Effect of Nb Content on the Oxidation Behavior and Microstructural Evolution of Ti2AlNb-Based Alloys" Metals 15, no. 10: 1120. https://doi.org/10.3390/met15101120
APA StyleGong, Y., Liang, J., Qu, S., Cao, G., Wang, H., Feng, A., & Chen, D. (2025). Effect of Nb Content on the Oxidation Behavior and Microstructural Evolution of Ti2AlNb-Based Alloys. Metals, 15(10), 1120. https://doi.org/10.3390/met15101120