Microstructure Formation and Dry Reciprocating Sliding Wear Response of High-Entropy Hypereutectic White Cast Irons
Abstract
1. Introduction
2. Materials and Methods
2.1. Alloy Design, Melting, and Thermal Analysis
2.2. Microstructure Characterization
2.3. Wear Tests and Hardness
3. Results and Discussion
3.1. X-Ray Diffractograms and SEM Micrographs
3.2. Computer-Aided Cooling Curve Analysis (CA-CCA)
3.3. Wear and Hardness Results
3.4. Discussion
Wear Behavior and Hardness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laird, G.; Gundlach, R.; Rohrig, K. Abrasion-Resistant Cast Iron Handbook; American Foundry Society: Schaumburg, IL, USA, 2000. [Google Scholar]
- Elorz, J.A.P.-S.; González, D.F.; Verdeja, L.F. Physical Metallurgy of Cast Irons; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Chakrabarty, I. Alloy Cast Irons and Their Engineering Applications. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Jokari-Sheshdeh, M.; Ali, Y.; Gallo, S.C.; Lin, W.; Gates, J. Comparing the abrasion performance of NiHard-4 and high-Cr-Mo white cast irons: The effects of chemical composition and microstructure. Wear 2022, 492–493, 204208. [Google Scholar] [CrossRef]
- Kusumoto, K.; Shimizu, K.; Yaer, X.; Zhang, Y.; Ota, Y.; Ito, J. Abrasive wear characteristics of Fe-2C-5Cr-5Mo-5W-5Nb multi-component white cast iron. Wear 2017, 376–377, 22–29. [Google Scholar] [CrossRef]
- Kusumoto, K.; Shimizu, K.; Efremenko, V.; Hara, H.; Shirai, M.; Ito, J.; Hatate, M.; Gaqi, Y.; Purba, R.H. Three body type abrasive wear characteristics of multi-component white cast irons. Wear 2019, 426–427, 122–127. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Parent, L.; Tian, H. Improving the wear resistance of white cast iron using a new concept—High-entropy microstructure. Wear 2011, 271, 1623–1628. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Parent, L.; Tian, H. Performances of hybrid high-entropy high-Cr cast irons during sliding wear and air-jet solid-particle erosion. Wear 2013, 301, 390–397. [Google Scholar] [CrossRef]
- Matsubara, Y.; Sasaguri, N.; Shimizu, K.; Yu, S.A.K. Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements. Wear 2001, 250, 502–510. [Google Scholar] [CrossRef]
- Purba, R.H.; Shimizu, K.; Kusumoto, K.; Gaqi, Y. Comparison of Three-Body Abrasion Behaviors of High-Cr-Mo- and High-Cr-Based Multicomponent White Cast Irons. J. Mater. Eng. Perform. 2022, 32, 3703–3715. [Google Scholar] [CrossRef]
- Pasini, W.M.; Bellé, M.R.; Pereira, L.; Amaral, R.D.; de Barcellos, V.K. Analysis of Carbides in Multi-component Cast Iron Design Based on High Entropy Alloys. Mater. Res. 2021, 24, e20200398. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Gorsse, S.; Couzinié, J.-P.; Miracle, D.B. From high-entropy alloys to complex concentrated alloys. Comptes Rendus Phys. 2018, 19, 721–736. [Google Scholar] [CrossRef]
- Pasini, W.M.; Pereira, L.; Bitka, A.; Chrzan, K.; Oleksy, W.; Jaśkowiec, K.; Polczyk, T.; Polkowski, W.; Dudziak, T.; dos Santos, C.A.; et al. Improving the Wear Resistance of High Chromium Cast Iron through High Entropy Alloys Concepts and Microstructure Refinement. Mater. Res. 2023, 26, e20230278. [Google Scholar] [CrossRef]
- Davis, J.R. Alloying: Understand the Basic; ASM International: Almere, The Netherlands, 2001. [Google Scholar]
- ASTM G 133-05; Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D7755-11; Standard Practice for Determining the Wear Volume on Standard Test Pieces Used by High-Frequency, Linear-Oscillation (SRV) Test Machine. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM E18-22; Standard Test Methods for Rockwell Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- Stefanescu, D.M. Thermal Analysis—Theory and Applications in Metalcasting. Int. J. Met. 2015, 9, 7–22. [Google Scholar] [CrossRef]
- Thorpe, W.R.; Chicco, B. The Fe-rich corner of the metastable C-Cr-Fe liquidus surface. Metall. Trans. A 1985, 16, 1541–1549. [Google Scholar] [CrossRef]
- Ikeda, M.; Umeda, T.; Tong, C.P.; Suzuki, T.; Niwa, N.; Kato, O. Effect of Molybdenum Addition on Solidification Structure, Mechanical Properties and Wear Resistivity of High Chromium Cast Irons. ISIJ Int. 1991, 32, 1157–1162. [Google Scholar] [CrossRef]
- Penagos, J.; Pereira, J.; Machado, P.; Albertin, E.; Sinatora, A. Synergetic effect of niobium and molybdenum on abrasion resistance of high chromium cast irons. Wear 2017, 376–377, 982–992. [Google Scholar] [CrossRef]
- Shepperson, S.; Allen, C. The abrasive wear behaviour of austempered spheroidal cast irons. Wear 1988, 121, 271–287. [Google Scholar] [CrossRef]
- Penagos, J.; Ono, F.; Albertin, E.; Sinatora, A. Structure refinement effect on two and three-body abrasion resistance of high chromium cast irons. Wear 2015, 340–341, 19–24. [Google Scholar] [CrossRef]
- Pintaude, G.; Bernardes, F.; Santos, M.; Sinatora, A.; Albertin, E. Mild and severe wear of steels and cast irons in sliding abrasion. Wear 2009, 267, 19–25. [Google Scholar] [CrossRef]
Alloys | C | Mn | Si | Cr | Mo | V | Ni | ΔSmix |
---|---|---|---|---|---|---|---|---|
HCCI | 2.5 | 1.7 | 1.4 | 18.9 | 0.02 | 0.1 | 0.1 | 0.96R |
MCCI | 3.7 | 1.9 | 1.8 | 25.9 | 0.02 | 0.1 | 6.2 | 1.30R |
HEWCI-A | 4.0 | 2.1 | 2.1 | 28.4 | 5.4 | 1.8 | 6.1 | 1.52R |
HEWCI-B | 3.8 | 1.9 | 2.0 | 27.1 | 2.1 | 4.7 | 6.1 | 1.51R |
HEWCI-C | 3.8 | 2.0 | 2.8 | 27.1 | 5.9 | 3.8 | 5.7 | 1.56R |
Alloys | CoF | V (mm3) | κ (mm3/Nm) | Hardness (HRC) |
---|---|---|---|---|
HCCI | 0.302 | 0.0026 | 1.87 × 10−8 | 46 ± 0.3 |
MCCI | 0.309 | 0.0013 | 0.89 × 10−8 | 50 ± 1.2 |
HEWCI-A | 0.309 | 0.0011 | 0.79 × 10−8 | 53 ± 1.2 |
HEWCI-B | 0.208 | 0.0009 | 0.57 × 10−8 | 51 ± 0.6 |
HEWCI-C | 0.225 | 0.0012 | 0.81 × 10−8 | 53 ± 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasini, W.M.; Polkowski, W.; Dudziak, T.; dos Santos, C.A.; de Barcellos, V.K. Microstructure Formation and Dry Reciprocating Sliding Wear Response of High-Entropy Hypereutectic White Cast Irons. Metals 2025, 15, 4. https://doi.org/10.3390/met15010004
Pasini WM, Polkowski W, Dudziak T, dos Santos CA, de Barcellos VK. Microstructure Formation and Dry Reciprocating Sliding Wear Response of High-Entropy Hypereutectic White Cast Irons. Metals. 2025; 15(1):4. https://doi.org/10.3390/met15010004
Chicago/Turabian StylePasini, Willian Martins, Wojciech Polkowski, Tomasz Dudziak, Carlos Alexandre dos Santos, and Vinicius Karlinski de Barcellos. 2025. "Microstructure Formation and Dry Reciprocating Sliding Wear Response of High-Entropy Hypereutectic White Cast Irons" Metals 15, no. 1: 4. https://doi.org/10.3390/met15010004
APA StylePasini, W. M., Polkowski, W., Dudziak, T., dos Santos, C. A., & de Barcellos, V. K. (2025). Microstructure Formation and Dry Reciprocating Sliding Wear Response of High-Entropy Hypereutectic White Cast Irons. Metals, 15(1), 4. https://doi.org/10.3390/met15010004