Microstructure and Mechanical Properties of High-Entropy Alloy FeCoNiCr(X) Produced by Laser Directed Energy Deposition Process: Effect of Compositional Changes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Macrostructures of HEA
3.2. Microstructure and Chemical Composition of HEA
3.3. EBSD
3.4. Microhardness
3.5. XRD Analysis
4. Conclusions
- All samples have cracks vertically along the height;
- Fine-grained and dendrite structures were observed;
- Predominant directions of dendrite growth are (111) and (200);
- Cracks were observed at the places with large misorientation angle;
- There is a division into areas with a high content of elements Fe + Co + Cr and Cu, Ni evenly distributed. Cu-element is mainly found in cracks;
- The average microhardness of HEA FeCoNiCrCu is 240 HV.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Easo, G.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Geanta, V.; Voiculescu, I.; Milosan, I.; Istrate, B.; Mates, I.M. Chemical Composition Influence on Microhardness, Microstructure and Phase Morphology of AlxCrFeCoNi High Entropy Alloys. Rev. Chim. 2018, 69, 798–801. [Google Scholar] [CrossRef]
- Hui, Z.; Pan, Y.; He, Y.-Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2011, 32, 1910–1915. [Google Scholar] [CrossRef]
- Sonar, T.; Ivanov, M.A.; Trofimov, E.; Tin’gaev, A.K.; Suleymanova, I. An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications. Mater. Sci. Energy Technol. 2023, 7, 35–60. [Google Scholar] [CrossRef]
- Costas Bosque, D. Characterization of high-entropy alloys: Study of the addition of aluminum to the high entropy system HfMoTaTi+Al. Univ. Politècnica Catalunya 2018, 493, 148–153. [Google Scholar]
- Zhang, K.; Fu, Z. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics 2012, 22, 24–32. [Google Scholar] [CrossRef]
- Ren, B.; Liu, Z.X.; Li, D.M.; Shi, L.Q.; Cai, B.; Wang, M.X. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J. Alloys Compd. 2010, 493, 148–153. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, X.; Qi, W.; Li, Y.; Wang, W.; Chen, Y.; Li, J.; Li, L. Effect of Co on phase stability and mechanical behavior of CoxCrFeNiMnAl0.3 high entropy alloys with micro/nano hierarchical structure. Mater. Des. 2022, 215, 110442. [Google Scholar] [CrossRef]
- Shun, T.T.; Hung, W.J. Effects of Cr Content on Microstructure and Mechanical Properties of AlCoCrxFeNi High-Entropy Alloy. Adv. Mater. Sci. Eng. 2018, 2018, 5826467. [Google Scholar] [CrossRef]
- Osintsev, K.; Gromov, V.E.; Konovalov, S.; Ivanov, Y.F.; Panchenko, I. High-entropy alloys: Structure, mechanical properties, deformation mechanisms and application. Izv. Ferr. Metall. 2021, 64, 249–258. [Google Scholar] [CrossRef]
- John, M.S.; Nagalakshmi, R.; Epshiba, R. High entropy alloys properties and its applications—An overview. Eur. Chem. Bull. 2015, 4, 279–284. [Google Scholar] [CrossRef]
- Li, M.X.; He, Y.Z.; Sun, G.X. Laser cladding Co-based alloy/SiCp composite coatings on IF steel. Mater. Des. 2004, 25, 355–358. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.Z.; Yuan, X.M.; Pan, Y. Microstructure and age characterization of Cu–15Ni–8Sn alloy coatings by laser cladding. Appl. Surf. Sci. 2010, 256, 5837–5842. [Google Scholar] [CrossRef]
- Li, M.X.; He, Y.Z.; Yuan, X.M.; Zhang, S.H. Microstructure of Al2O3 nanocrystalline/cobalt-based alloy composite coatings by laser deposition. Mater. Des. 2006, 27, 1114–1119. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Luo, Z.; Gao, F.; Li, L. Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology. Mater. Des. 2017, 133, 91–108. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.-Z.; Pan, Y.; Guo, S. Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. J. Alloys Compd. 2014, 600, 210–214. [Google Scholar] [CrossRef]
- Lin, C.M.; Tsai, H.-L.; Bor, H.-Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics 2010, 18, 1244–1250. [Google Scholar] [CrossRef]
- Thangaraju, S.; Bouzy, E.; Hazotte, A. Phase stability of a mechanically alloyed CoCrCuFeNi high entropy alloy. Adv. Eng. Mater. 2017, 19, 1700095. [Google Scholar] [CrossRef]
- Nagase, T.; Rack, P.D.; Noh, J.H.; Egami, T. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 2015, 59, 32–42. [Google Scholar] [CrossRef]
- Huang, S.; Vida, Á.; Molnár, D.; Kádas, K.; Varga, L.K.; Holmström, E.; Vitos, L. Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy. Appl. Phys. Lett. 2015, 107, 251906. [Google Scholar] [CrossRef]
- Na, S.M.; Yoo, J.H.; Lambert, P.K.; Jones, N.J. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys. AIP Adv. 2018, 8, 056412. [Google Scholar] [CrossRef]
- Zuo, T.; Gao, M.C.; Ouyang, L.; Yang, X.; Cheng, Y.; Feng, R.; Chen, S.; Liaw, P.K.; Hawk, J.A.; Zhang, Y. Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 2017, 130, 10–18. [Google Scholar] [CrossRef]
- Huang, E.W.; Chou, H.S.; Tu, K.N.; Hung, W.S.; Lam, T.N.; Tsai, C.W.; Chiang, C.-Y.; Lin, B.-H.; Yeh, A.-C.; Chang, S.-H.; et al. Element effects on high-entropy alloy vacancy and heterogeneous lattice distortion subjected to quasi-equilibrium heating. Sci. Rep. 2019, 9, 14788. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ivanov, Y.F.; Gromov, V.E.; Efimov, M.O.; Konovalov, S.V.; Shlyarov, V.V.; Panchenko, I.A. High-Entropy FeCoCrNiMn and FeCoNiCrAl Alloys Coatings: Structure and Properties. Proc. Altai State Univ. (Izv. Altayskogo Gos. Univ.) 2023, 4, 11–19. [Google Scholar] [CrossRef]
- Kovalenko, E.; Krasanov, I.; Valdaytseva, E.; Klimova-Korsmik, O.; Gushchina, M. Influence of Laser Direct Energy Deposition Process Parameters on the Structure and Phase Composition of a High-Entropy Alloy FeCoNiCrMn. Metals 2023, 13, 534. [Google Scholar] [CrossRef]
- Vildanov, A.M.; Babkin, K.D.; Alekseeva, E.V. Macro defects in direct laser deposition process. Mater. Today Proc. 2020, 30, 523–527. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Williams, S.; Zhu, L.; Ding, J.; Diao, C.; Jiang, Z. Additive manufacturing of a functionally graded high entropy alloy using a hybrid powder-bed wire-based direct energy deposition approach. Addit. Manuf. 2023, 63, 103424. [Google Scholar] [CrossRef]
- Vander Voort, G.F.; Lampman, S.R.; Sanders, B.R.; Anton, G.J.; Polakowski, C.; Kinson, J.; Scott, W.W., Jr. ASM Handbook Volume 9: Metallography and Microstructures; ASM International: Materials Park, OH, USA, 2004. [Google Scholar]
Cr | Fe | Co | Ni | Cu |
---|---|---|---|---|
17.5 | 21.85 | 20.35 | 20.5 | 19.8 |
Sample Number | Laser Power, kW | Spot Size, mm | Bead Width, mm | Sample Size, mm | Scanning Speed, mm/s | Layer Height, mm |
---|---|---|---|---|---|---|
1 | 1.8 | 2.7 | 2.5 | Height: 9 Width: 8 | 25 | 0.8 |
2 | 2.0 | |||||
3 | 2.2 | |||||
4 | 2.4 | |||||
5 | 2.6 |
Area | Cr | Fe | Co | Ni | Cu |
---|---|---|---|---|---|
A (Cu layer) | 4.97 | 6.14 | 5.38 | 9.20 | 74.30 |
B (grains) | 19.18 | 25.11 | 23.11 | 20.85 | 11.75 |
B (mesh) | 15.24 | 19.53 | 17.04 | 19.64 | 28.56 |
C (dendrites) | 11.43 | 15.76 | 11.33 | 15.56 | 45.92 |
C (interdendritic space) | 6.32 | 7.73 | 6.50 | 11.41 | 68.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalenko, E.; Krasanov, I.; Valdaytseva, E.; Stankevich, S.; Klimova-Korsmik, O.; Gushchina, M. Microstructure and Mechanical Properties of High-Entropy Alloy FeCoNiCr(X) Produced by Laser Directed Energy Deposition Process: Effect of Compositional Changes. Metals 2025, 15, 26. https://doi.org/10.3390/met15010026
Kovalenko E, Krasanov I, Valdaytseva E, Stankevich S, Klimova-Korsmik O, Gushchina M. Microstructure and Mechanical Properties of High-Entropy Alloy FeCoNiCr(X) Produced by Laser Directed Energy Deposition Process: Effect of Compositional Changes. Metals. 2025; 15(1):26. https://doi.org/10.3390/met15010026
Chicago/Turabian StyleKovalenko, Ekaterina, Igor Krasanov, Ekaterina Valdaytseva, Stanislav Stankevich, Olga Klimova-Korsmik, and Marina Gushchina. 2025. "Microstructure and Mechanical Properties of High-Entropy Alloy FeCoNiCr(X) Produced by Laser Directed Energy Deposition Process: Effect of Compositional Changes" Metals 15, no. 1: 26. https://doi.org/10.3390/met15010026
APA StyleKovalenko, E., Krasanov, I., Valdaytseva, E., Stankevich, S., Klimova-Korsmik, O., & Gushchina, M. (2025). Microstructure and Mechanical Properties of High-Entropy Alloy FeCoNiCr(X) Produced by Laser Directed Energy Deposition Process: Effect of Compositional Changes. Metals, 15(1), 26. https://doi.org/10.3390/met15010026