Obtaining Heterogeneous Microstructure and Enhanced Mechanical Properties in ECAP-Processed AZ61 Alloys via Single-Pass Rolling with Increased Rolling Reduction
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Mechanical Properties
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Miao, J.; Balasubramani, N.; Cho, D.H.; Avey, T.; Chang, C.-Y.; Luo, A.A. Magnesium research and applications: Past, present and future. J. Magnes. Alloy. 2023, 11, 3867–3895. [Google Scholar] [CrossRef]
- Song, G.-L.; Atrens, A. Recently deepened insights regarding Mg corrosion and advanced engineering applications of Mg alloys. J. Magnes. Alloy. 2023, 11, 3948–3991. [Google Scholar] [CrossRef]
- Nakata, T.; Xu, C.; Ohashi, H.; Yoshida, Y.; Yoshida, K.; Kamado, S. New Mg–Al based alloy sheet with good room-temperature stretch formability and tensile properties. Scr. Mater. 2020, 180, 16–22. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, J.; Xue, Y.; Dong, B.; Zhao, X.; Wang, Q. Recent research and development on forming for large magnesium alloy components with high mechanical properties. J. Magnes. Alloy. 2023, 11, 4054–4081. [Google Scholar] [CrossRef]
- Prithivirajan, S.; Naik, G.M.; Narendranath, S.; Desai, V. Recent progress in equal channel angular pressing of magnesium alloys starting from Segal’s idea to advancements till date—A review. Int. J. Light. Mater. Manuf. 2023, 6, 82–107. [Google Scholar] [CrossRef]
- Baral, S.K.; Thawre, M.M.; Ratna Sunil, B.; Dumpala, R. A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods. J. Magnes. Alloy. 2023, 11, 776–800. [Google Scholar] [CrossRef]
- Hu, Z.; Xi, J.; Li, X.; Da, L. Effect of single-pass large-strain tube pack-rolling on forming AZ61 alloy strip. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 1637–1647. [Google Scholar] [CrossRef]
- Zhao, L.; Xin, Y.; Jin, Z.; Wang, J.; Feng, B.; Liu, Q. Thermal stability of different texture components in extruded Mg–3Al–1Zn alloy. J. Magnes. Alloy. 2019, 7, 577–583. [Google Scholar] [CrossRef]
- Tong, L.B.; Chu, J.H.; Sun, W.T.; Jiang, Z.H.; Zou, D.N.; Liu, S.F.; Kamado, S.; Zheng, M.Y. Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing. J. Magnes. Alloy. 2021, 9, 1007–1018. [Google Scholar] [CrossRef]
- Castro, M.M.; Pereira, P.H.R.; Isaac, A.; Figueiredo, R.B.; Langdon, T.G. Development of a magnesium-alumina composite through cold consolidation of machining chips by high-pressure torsion. J. Alloys Compd. 2019, 780, 422–427. [Google Scholar] [CrossRef]
- Li, Z.; Ding, H.; Huang, Y.; Langdon, T.G. An evaluation of the mechanical properties, microstructures, and strengthening mechanisms of pure Mg processed by high-pressure torsion at different temperatures. Adv. Eng. Mater. 2022, 24, 2200799. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, X.; Xie, C.; Su, J.; Guo, P.; Tang, C.; Liu, W. Unveiling the underlying mechanism of forming edge cracks upon high strain-rate rolling of magnesium alloy. J. Mater. Sci. Technol. 2020, 50, 59–65. [Google Scholar] [CrossRef]
- Pan, H.C.; Cheng, R.S.; Du, S.; Xie, H.B.; Wu, L.; Deng, Z.Y.; Yang, C.L.; Ma, L.F.; Qin, G.W. Achieving high strength in micro-alloyed Mg-Al-Ca-Zn-Mn-Ce alloy sheet processed by single-pass large-strain rolling. J. Mater. Eng. Perform. 2020, 29, 7115–7124. [Google Scholar] [CrossRef]
- Saufan, A.; Yu, I.S.; Wang, J.Y. Enhancement of mechanical properties for Mg-9Li-1Zn alloy by accumulative roll bonding. Mater. Res. Exp. 2020, 7, 046511. [Google Scholar] [CrossRef]
- Wu, H.; Wang, T.; Wu, R.; Hou, L.; Zhang, J.; Li, X.; Zhang, M. Effects of annealing process on the interface of alternate α/β Mg-Li composite sheets prepared by accumulative roll bonding. J. Mater. Process. Technol. 2018, 254, 265–276. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Z.; Xue, Y.; Xu, J.; Dong, B.; Li, X. Effect of rotating shear extrusion on the microstructure, texture evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. J. Alloys Compd. 2022, 906, 164406. [Google Scholar] [CrossRef]
- Rezaei, A.; Mahmudi, R.; Cayron, C.; Loge, R.E. Superplastic behavior of a severely deformed Mg-6Gd-3Y-0.5Ag alloy. Mater. Sci. Eng. A 2021, 802, 140616. [Google Scholar] [CrossRef]
- Shi, L.; Liu, L.; Hu, L.; Zhou, T.; Zhang, J. Effect of final rolling temperature on microstructures and mechanical properties of AZ31 alloy sheets prepared by equal channel angular rolling and continuous bending. Materials 2020, 13, 3346. [Google Scholar] [CrossRef]
- Minárik, P.; Zimina, M.; Čížek, J.; Stráska, J.; Krajňák, T.; Cieslar, M.; Vlasák, T.; Bohlen, J.; Kurz, G.; Letzig, D. Increased structural stability in twin-roll cast AZ31 magnesium alloy processed by equal channel angular pressing. Mater. Charact. 2019, 153, 199–207. [Google Scholar] [CrossRef]
- Avvari, M.; Narendranath, S. Influence of Route-R on wrought magnesium AZ61 alloy mechanical properties through equal channel angular pressing. J. Magnes. Alloy. 2014, 2, 6. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, X. Heterostructured materials. Prog. Mater. Sci. 2023, 131, 101019. [Google Scholar] [CrossRef]
- Wu, X.; Yang, M.; Yuan, F.; Wu, G.; Zhu, Y. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. USA 2015, 112, 14501–14505. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Zhou, F.; Ma, E. High tensile ductility in a nanostructured metal. Nature 2002, 419, 912–915. [Google Scholar] [CrossRef]
- Cai, J.H.; Li, L.; Xin, S.W.; Zou, L.; Yang, H.Y.; Chen, J. Effect of strain amounts on cold compression deformation mechanism of Ti-55531 alloy with bimodal microstructure. Mater. Sci. Forum 2021, 1035, 182–188. [Google Scholar] [CrossRef]
- Vajpai, S.K.; Ota, M.; Watanabe, T.; Maeda, R.; Sekiguchi, T.; Kusaka, T.; Ameyama, K. The Development of high-performance Ti-6Al-4V Alloy via a unique microstructural design with bimodal grain size distribution. Metall. Mater. Trans. A 2015, 46, 903–914. [Google Scholar] [CrossRef]
- Raju, K.S.; Sarma, V.S.; Kauffmann, A.; Hegedűs, Z.; Gubicza, J.; Peterlechner, M.; Freudenberger, J.; Wilde, G. High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Mater. 2013, 61, 228–238. [Google Scholar] [CrossRef]
- Qian, Z.; Ying, L.; Liu, Y.; Ren, Y.; Wu, Y.; Gao, Z.; Wu, X.; Han, P. Enhanced tensile ductility and strength of electrodeposited ultrafine-grained nickel with a desired bimodal microstructure. Mater. Sci. Eng. A 2017, 701, 196–202. [Google Scholar]
- Wang, T.S.; Zhang, E.; Zhang, M.; Lv, B. A novel process to obtain ultrafine-grained low carbon steel with bimodal grain size distribution for potentially improving ductility. Mater. Sci. Eng. A 2008, 485, 456–460. [Google Scholar] [CrossRef]
- Zhang, Z.; Orlov, D.; Vajpai, S.K.; Tong, B.; Ameyama, K. Importance of Bimodal Structure Topology in the Control of Mechanical Properties of a Stainless Steel. Adv. Eng. Mater. 2015, 17, 791–795. [Google Scholar] [CrossRef]
- Zha, M.; Zhang, X.H.; Zhang, H.; Yao, J.; Wang, C.; Wang, H.Y.; Feng, T.T.; Jiang, Q.C. Achieving bimodal microstructure and enhanced tensile properties of Mg–9Al–1Zn alloy by tailoring deformation temperature during hard plate rolling (HPR). J. Alloys Compd. 2018, 765, 1228–1236. [Google Scholar] [CrossRef]
- Zhang, H.M.; Cheng, X.M.; Zha, M.; Li, Y.K.; Wang, C.; Yang, Z.Z.; Wang, J.G.; Wang, H.Y. A superplastic bimodal grain-structured Mg–9Al–1Zn alloy processed by short-process hard-plate rolling. Materialia 2019, 8, 100443. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yu, Z.P.; Zhang, L.; Liu, C.G.; Zha, M.; Wang, C.; Jiang, Q.C. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process. Sci. Rep. 2015, 5, 17100. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, A.; Gou, X.; Jiang, J.; Lu, F.; Song, D.; Zhu, Y. Superior mechanical properties of ZK60 mg alloy processed by equal channel angular pressing and rolling. Mater. Sci. Eng. A 2015, 630, 45–50. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, A.; Li, Y.; Saleh, B.; Yuan, Y.; Jiang, J.; Ni, C. Enhancement of mechanical properties and rolling formability in AZ91 alloy by RD-ECAP processing. Materials 2019, 12, 3503. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Saleh, B.; Xie, Q.; Xu, Q.; Liu, H.; Ma, A. Controlling corrosion resistance of a biodegradable Mg–Y–Zn alloy with LPSO phases via multi-pass ECAP process. Acta Metall. Sin. Engl. Lett. 2020, 33, 1180–1190. [Google Scholar] [CrossRef]
- Xie, Q.; Ma, A.; Jiang, J.; Li, Y.; Wang, J.; Wang, L.; Klu, E.E. Effects of microstructure evolution on discharge properties of AZ31 alloy as anode for seawater battery. Mater. Corros. 2020, 71, 1462–1472. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, D.; He, X.; Wang, W.; Zhang, H.; Dong, P.; Li, C.; Li, Y.; Zhou, J.; Liu, Z.; et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect. Mater. Sci. Eng. A 2018, 723, 212–220. [Google Scholar] [CrossRef]
- Yu, Z.P.; Yan, Y.H.; Yao, J.; Wang, C.; Zha, M.; Xu, X.Y.; Liu, Y.; Wang, H.Y.; Jiang, Q.C. Effect of tensile direction on mechanical properties and microstructural evolutions of rolled Mg-Al-Zn-Sn magnesium alloy sheets at room and elevated temperatures. J. Alloys Compd. 2018, 744, 211–219. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 2019, 7, 393–398. [Google Scholar] [CrossRef]
Element | Al | Zn | Mn | Si | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|---|
wt.% | 6.18 | 0.82 | 0.16 | 0.0054 | 0.003 | 0.0007 | <0.001 | Remaining |
Sample | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
ECAPed | 75 ± 7.4 | 279 ± 6.5 | 26.4 ± 0.66 |
SPR-20% | 295 ± 7.1 | 337 ± 5.3 | 6.1 ± 0.78 |
SPR-40% | 300 ± 3.4 | 342 ± 7.6 | 8.3 ± 0.68 |
SPR-60% | 325 ± 3.6 | 367 ± 5.5 | 11.1 ± 0.59 |
SPR-70% | 305 ± 6.3 | 358 ± 4.2 | 17.1 ± 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Li, Y.; Ma, A.; Jiang, J.; Yang, D. Obtaining Heterogeneous Microstructure and Enhanced Mechanical Properties in ECAP-Processed AZ61 Alloys via Single-Pass Rolling with Increased Rolling Reduction. Metals 2024, 14, 765. https://doi.org/10.3390/met14070765
Xu Q, Li Y, Ma A, Jiang J, Yang D. Obtaining Heterogeneous Microstructure and Enhanced Mechanical Properties in ECAP-Processed AZ61 Alloys via Single-Pass Rolling with Increased Rolling Reduction. Metals. 2024; 14(7):765. https://doi.org/10.3390/met14070765
Chicago/Turabian StyleXu, Qiong, Yuhua Li, Aibin Ma, Jinghua Jiang, and Donghui Yang. 2024. "Obtaining Heterogeneous Microstructure and Enhanced Mechanical Properties in ECAP-Processed AZ61 Alloys via Single-Pass Rolling with Increased Rolling Reduction" Metals 14, no. 7: 765. https://doi.org/10.3390/met14070765
APA StyleXu, Q., Li, Y., Ma, A., Jiang, J., & Yang, D. (2024). Obtaining Heterogeneous Microstructure and Enhanced Mechanical Properties in ECAP-Processed AZ61 Alloys via Single-Pass Rolling with Increased Rolling Reduction. Metals, 14(7), 765. https://doi.org/10.3390/met14070765