Crystal Chemistry at Interfaces Between Liquid Al and Polar SiC{0001} Substrates
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Interface | f (%) | M Oc.(%) | R(%) | q(e/M) | nLayers | SM(z) | Prenucleation |
---|---|---|---|---|---|---|---|
a: Al(l)/s-Al{111} [17] | +0.0 | 100 | 0.0 | 0.00 | 6 | 0.50 | Strong layering Strong in-plane ordering |
b: Mg(l)/SiC{0001}C [33] c: Mg(l)/SiC{0001}Si [33] | +5.9% | 95 85 | 2.5 7.5 | +0.50 +0.21 | 5 to 6 5 | 0.45 0.10 | Strong layering Strong in-plane ordering Strong layering Weak in-plane ordering |
d: Al(l)/SiC{0001}C [This work] e: Al(l)/SiC{0001}Si [This work] | −6.0% | 100 103 | 0.0 1.5 | +0.30 +0.04 | 3 to 4 3 | 0.31 0.22 | Weak layering Moderate in-plane ordering Weak layering Moderate in-plane ordering |
f: Al(l)/AlN{0001}N [50] g: Al(l)/AlN{0001}Al [50] | −7.0% | 102 110 | 1.0 5.0 | +0.52 −0.31 * | 6 4 * | 0.18 0.02 * | Strong layering Moderate in-plane ordering Strong layering Weak in-plane ordering |
5. Conclusions
- (i)
- The substrates and liquid Al at the Al(l)/SiC{0 0 0 1} interfaces are well separated.
- (ii)
- The Al layers adjacent to the SiC{0001} substrates are flat with the absence of or a moderate content of atomic vacancies.
- (iii)
- Overall prenucleation at the Al(l)/SiC{0001} interfaces is moderate.
- (iv)
- There is a moderate charge transfer from the Al atoms to the outmost C (0.3e/Al), while no significant charge transfer occurs from Al to Si.
- (v)
- The moderate interface interactions between the Al and SiC substrates indicate possible interface debonding during machining.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kimoto, T.; Cooper, J.A. Chapter 2: Physical Properties of Silicon Carbides. In Fundamentals of Silicon Carbides Technology: Growth, Characterization, Devices and Applications; John Wiley & Sons (Pte. Ltd.): Singapore, 2014; pp. 10–37. [Google Scholar]
- Dresch, A.B.; Venturini, J.; Arcaro, S.; Mentedo, O.P.K.; Bergmann, C.P. Ballistic ceramics and analysis of their mechanical properties for armour applications: A review. Ceram. Intern. 2021, 47, 8743–8761. [Google Scholar] [CrossRef]
- Haynes, W.M. (Ed.) CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 4–84. [Google Scholar]
- Park, Y.-S. SiC Materials and Devices; Academic Press: Cambridge, MA, USA, 1988; pp. 20–60. [Google Scholar]
- Arblaster, J.W. Selected Values of the Crystallographic Properties of Elements; ASM International: Materials Park, OH, USA, 2018. [Google Scholar]
- Bekheet, N.E.; Gadelrab, R.M.; Salah, M.F.; Abd El-Azim, A.N. The effects of aging on the hardness and fatigue behavior of 2024 Al alloy/SiC composites. Mater. Des. 2002, 23, 153–159. [Google Scholar] [CrossRef]
- Ahmed, A.; Neely, A.J.; Shankar, K.; Nolan, P.; Moricca, S.; Eddowes, T. Synthesis, tensile testing, and microstructural characterization of nanometric SiC particulate-reinforced Al 7075 matrix composites. Metall. Mater. Trans. A 2010, 41, 1582–1591. [Google Scholar] [CrossRef]
- Atrian, A.; Majzoobi, G.H.; Enayati, M.H.; Bakhtiari, H. Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction. Int. J. Miner. Metall. Mater. 2014, 21, 295–303. [Google Scholar] [CrossRef]
- Wang, Y.L.; Monetta, T. Systematic study of preparation technology, microstructure characteristics and mechanical behavhors for SiC particles-reinforced metal materials composites. J. Mater. Res. Technol. 2023, 25, 7470–7497. [Google Scholar] [CrossRef]
- Chen, Z.G.; Ding, F.; Zhang, Z.C.; Liao, Q.Y.; Qiao, Z.; Jin, Y.; Chen, M.J.; Wang, B. A review on machining SiCp/Al composite materials. Micromachines 2024, 15, 107. [Google Scholar] [CrossRef]
- Zhao, G.L.; Mao, P.C.; Li, L.; Iqbal, A.; He, N. Micro-milling of 65 vol% SiCp/Al composites with a novel laser-assisted hybrid process. Ceram. Intern. 2020, 46, 26121–26128. [Google Scholar] [CrossRef]
- Katkova, M.R.; Nosov, S.S.; Faddeev, M.A.; Chuprunov, E.V. On classification of silicon carbide polytypes. Crystallogr. Rep. 1999, 44, 795–798. [Google Scholar]
- Tasker, P.W. The surface energies, surface tensions and surface structure of the alkali halide crystals. Philos. Mag. A 1979, 39, 119–136. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Prenucleation at the liquid-Al/α-Al2O3 and the liquid-Al/MgO interfaces. Comput. Mater. Sci. 2020, 171, 109258. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Atomic ordering at the interfaces between liquid Al and MgO: An ab initio molecular dynamics study. Philos. Mag. Lett. 2020, 100, 235–244. [Google Scholar] [CrossRef]
- Men, H.; Fan, Z. Prenucleation induced by crystalline substrates. Metall. Mater. Trans. A 2018, 49, 2766–2777. [Google Scholar] [CrossRef]
- Fang, C.M.; Men, H.; Fan, Z. Effect of substrate chemistry on prenucleation. Metall. Mater. Trans. A 2018, 49, 6231–6242. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, G.; Jiang, B.; Que, Z.P. Impeding nucleation for more significant grain refinement. Sci. Rep. 2020, 10, 9448. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Jiang, X.S.; Sun, H.L.; Wu, Z.X.; Yang, L.; Matamoros-Veloza, A. Recent research on the optimization of interfacial structure and interfacial interaction mechanisms of metal matrix composites: A review. Adv. Eng. Mater. 2024, 2401392. [Google Scholar] [CrossRef]
- Lee, J.-C.; Ahn, J.-P.; Shim, J.-H.; Shi, Z.L.; Lee, H.-I. Control of the interface in SiC/Al composites. Scr. Mater. 1999, 41, 895–900. [Google Scholar] [CrossRef]
- Liu, P.; Wang, A.-Q.; Xie, J.-P.; Hao, S.-M. Characterization and evaluation of interface in SiCp/2024 Al composite. Trans. Nonferrous Met. Soc. China 2015, 25, 1410–1418. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, A.Q.; Han, H.H.; Xie, J.P. HRTEM study of interfacial structure in SiCp/A390 composites. Mater. Res. Express 2020, 7, 046514. [Google Scholar] [CrossRef]
- Wang, J.S.; Horsfield, A.P.; Schwingenschlögl, U.; Lee, P.D. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study. Phys. Rev. B 2010, 82, 184203. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Ab initio molecular dynamics investigation of prenucleation at liquid- Metal/Oxide Interfaces: An overview. Metals 2022, 12, 1618. [Google Scholar] [CrossRef]
- Liu, B.B.; Yang, J.F. Mg on adhesion of Al(111)/3C-SiC(111) interfaces from first-principles study. J. Alloys Compd. 2019, 791, 530–539. [Google Scholar] [CrossRef]
- Xu, X.Y.; Wang, H.Y.; Zha, M.; Wang, C.; Yang, Z.Z.; Jiang, Q.C. Effects of Ti, Si, Mg and Cu additions on interfacial properties and electronic structure of Al(111)/4H-SiC(0001) interface: A first-principles study. Appl. Surf. Sci. 2018, 437, 103–109. [Google Scholar] [CrossRef]
- Li, S.; Arsenault, R.J.; Jena, P. Quantum chemical study of adhesion at the SiC/Al interface. J. Appl. Phys. 1988, 64, 6246–6253. [Google Scholar] [CrossRef]
- Wu, Q.J.; Xie, J.P.; Wang, A.Q.; Ma, D.Q.; Wang, C.Q. First-principles calculations on the structure of 6H-SiC/Al interface. Mater. Res. Express 2019, 6, 065015. [Google Scholar] [CrossRef]
- Wang, C.Q.; Chen, W.G.; Xie, J.P. Calculating study on properties of Al(111)/6H-SiC(0001) interfaces. Metals 2020, 10, 1197. [Google Scholar] [CrossRef]
- Fathalian, M.; Postek, E.; Sadowski, T. Mechanical and electronic properties of Al(111)/6H-SiC interfaces: A DFT study. Molecules 2023, 28, 4345. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Q.; Glazoff, M.V.; Ott, R.T. First-principles study of interfaces in Al/SiC metal-matrix composite system. Comput. Mater. Sci. 2023, 229, 112444. [Google Scholar] [CrossRef]
- Wang, D.; Chen, N.X. Atomistic study of misfit dislocation in metal/SiC(111) interfaces. J. Phys. Condens. Matter 2010, 22, 135009. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Prenucleation at L-Mg/SiC{0001} interfaces from ab initio molecular dynamics simulations. Metall. Mater. Trans. A 2023, 51, 788–797. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Talwar, D.N.; Sherbondy, J.C. Thermal expansion coefficient of 3C-SiC. Appl. Phys. Lett. 1995, 67, 3301–3303. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blőchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17978. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lodbland, H.E. Materials: Introduction and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Hashibon, A.; Adler, J.; Finnis, M.W.; Kaplan, W.D. Atomistic study of structural correlations at a liquid-solid interface. Comput. Mater. Sci. 2002, 24, 443–452. [Google Scholar] [CrossRef]
- Fan, Z. An epitaxial model for heterogeneous nucleation on potent substrate. Metall. Mater. Trans. A 2013, 44, 1409–1418. [Google Scholar] [CrossRef]
- Pauling, L. The nature of the chemical bond. Application of results from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 1931, 53, 1367–1400. [Google Scholar] [CrossRef]
- Bader, R.F.W.A. A quantum-theory of molecular-structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of Crystals, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Fan, Z. Heterogeneous Nucleation, Grain Initiation and Grain Refinement of Mg-Alloys. In Proceedings of the 11th International Conference on Magnesium Alloys and Their Applications, Sitges, Spain, 24–27 July 2018; Fan, Z., Mendis, C., Eds.; Beaumont Estate: Old Windsor, UK, 2018; p. 7. [Google Scholar]
- Men, H.; Fang, C.M.; Fan, Z. Prenucleation at the Liquid/Substrate Interface: An Overview. Metals 2022, 12, 1704. [Google Scholar] [CrossRef]
- Jiang, B.; Men, H.; Fan, Z. Atomic ordering in the liquid adjacent to an atomically rough solid substrate. Comput. Mater. Sci. 2018, 153, 73–81. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Atomic ordering at the Liquid-Al/MgAl2O4{111} Interfaces: Ab initio molecular dynamics simulations. Metall. Mater. Trans. A 2020, 51, 6318–6326. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. Atomic ordering at the interfaces between liquid aluminum and dipolar AlN{0001} substrates. Metall. Mater. Trans. A 2022, 53, 2040–2047. [Google Scholar] [CrossRef]
- Fang, C.M.; Fan, Z. A Comparative Study of Prenucleation on Zr and MgO Substrates by ab initio MD simulations. In Proceedings of the 11th International Conference on Magnesium Alloys and Their Applications, Sitges, Spain, 24–27 July 2018; Fan, Z., Mendis, C., Eds.; Beaumont Estate: Old Windsor, UK, 2018; pp. 41–50. [Google Scholar]
- Yu, L.; Zunger, A. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces. Nat. Commun. 2014, 5, 5118. [Google Scholar] [CrossRef] [PubMed]
- Macko, J.; Podrojková, N.; Oriňaková, R.; Oriňak, A. New insights into hydrophobicity at nanostructured surfaces: Experiments and computational models. Nanomater. Nanotechnol. 2022, 12, 18479804211062316. [Google Scholar] [CrossRef]
- Xi, L.; Kaban, I.; Nowak, R.; Korpała, B.; Bruzda, G.; Sobczak, N.; Mattern, N.; Eckert, J. High-temperature wetting and interfacial interaction between liquid Al and TiB2 ceramic. J. Mater. Sci. 2015, 50, 2682–2690. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Yu, Z.L.; Liang, J.C.; Ding, L.; Zhu, J.S.; Wang, Y.F.; Chen, S.G. Wetting behavior-induced interfacial transmission of energy and signal: Materials, mechanics, and applications. Adv. Mater. 2024, 36, 2407856. [Google Scholar] [CrossRef]
- Lai, L.; Niu, B.; Bi, Y.; Li, Y.; Yang, Z. Advancements in SiC-reinforced metal matrix composites for high-performance electronic packaging: A review of thermo-mechanical properties and future trends. Micromachines 2023, 14, 1491. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, A.K. Microstructure and Microhardness of Mg/SiC Metal Matrix Composites Developed by Microwave Sintering. J. Inst. Eng. India Ser. C 2022, 103, 63–68. [Google Scholar] [CrossRef]
- Singh, A.; Singh, J.; Sinha, M.K. Ferrous-metal matrix composites: A review on status, scope and challenges. Int. J. Interact. Des. Manuf. 2023, 17, 2807–2829. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Fan, Z. Crystal Chemistry at Interfaces Between Liquid Al and Polar SiC{0001} Substrates. Metals 2024, 14, 1258. https://doi.org/10.3390/met14111258
Fang C, Fan Z. Crystal Chemistry at Interfaces Between Liquid Al and Polar SiC{0001} Substrates. Metals. 2024; 14(11):1258. https://doi.org/10.3390/met14111258
Chicago/Turabian StyleFang, Changming, and Zhongyun Fan. 2024. "Crystal Chemistry at Interfaces Between Liquid Al and Polar SiC{0001} Substrates" Metals 14, no. 11: 1258. https://doi.org/10.3390/met14111258
APA StyleFang, C., & Fan, Z. (2024). Crystal Chemistry at Interfaces Between Liquid Al and Polar SiC{0001} Substrates. Metals, 14(11), 1258. https://doi.org/10.3390/met14111258