Microstructural and Oxidation Effects of Nb Additions to U3Si2
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. Microstructural Analysis
2.3. Heat Treatment
2.4. Steam Oxidation Testing
3. Results
3.1. Microstructural and Phase Characterization
3.1.1. Characterization of as-Fabricated U-Si-Nb Ingots
3.1.2. Characterization of annealed U-Si-Nb Ingots
3.2. Thermogravimetric Analysis
Oxidation in Steam
4. Discussion
4.1. Comparison of As-Fabricated Analysis
4.2. Comparison of Oxidation Performance of Alloyed U3Si2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costa, D.R.; Hedberg, M.; Middleburgh, S.C.; Wallenius, J.; Olsson, P.; Lopes, D.A. UN microspheres embedded in UO2 matrix: An innovative accident tolerant fuel. J. Nucl. Mater. 2020, 540, 152355. [Google Scholar] [CrossRef]
- Cappia, F.; Harp, J.M. Postirradiation examinations of low burnup U3Si2 fuel for light water reactor applications. J. Nucl. Mater. 2019, 518, 62–79. [Google Scholar] [CrossRef]
- Wagner, A.R.; Harp, J.M.; Archibald, K.E.; Ashby, S.C.; Watkins, J.; Tolman, K.R. Fabrication of stoichiometric U3Si2 fuel pellets. MethodsX 2019, 6, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhou, W. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety—A comprehensive review. Ann. Nucl. Energy 2018, 119, 66–86. [Google Scholar] [CrossRef]
- Johnson, K.D.; Raftery, A.; Lopes, D.A.; Wallenius, J. Fabrication and Microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications. J. Nucl. Mater. 2016, 477, 18–23. [Google Scholar] [CrossRef]
- Ortega, L.; Blamer, B.; Evans, J.; McDeavitt, S. Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3Si2) with increased uranium loading. J. Nucl. Mater. 2016, 471, 116–121. [Google Scholar] [CrossRef]
- Bragg-Sitton, S.M.; Todosow, M.; Montgomery, R.; Stanek, C.R.; Montgomery, R.; Carmack, W.J. Metrics for the Technical Performance Evaluation of Light Water Reactor Accident-Tolerant Fuel. Nucl. Technol. 2016, 195, 111–123. [Google Scholar] [CrossRef]
- Yang, J.H.; Kim, D.J.; Kim, K.S.; Koo, Y.H. UO2–UN composites with enhanced uranium density and thermal conductivity. J. Nucl. Mater. 2015, 465, 509–515. [Google Scholar] [CrossRef]
- Harp, J.; Lessing, P.A.; Hoggan, R. Uranium Silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J. Nucl. Mater. 2015, 466, 728–738. [Google Scholar] [CrossRef]
- Youinou, G.J.; Sen, R.S. Impact of accident-tolerant fuels and claddings on the overall fuesl cycle: A preliminary systems analysis. Nucl. Technol. 2014, 188, 123–138. [Google Scholar] [CrossRef]
- Bragg-Sitton, S. Development of advanced accident-tolerant fuels for commercial LWRs. Nucl. News 2014, 57, 83. [Google Scholar]
- Zinkle, S.; Terrani, K.; Gehin, J.; Ott, L.; Snead, L. Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 2014, 448, 374–379. [Google Scholar] [CrossRef]
- Goldner, F. Development Strategy for Advanced LWR Fuels with Enhanced Accident Tolerance; Enhanced Accident Tolerant LWR Fuels National Metrics Workshop; U.S. Department of Energy: Washington, DC, USA, 12 June 2012.
- Gonzales, A.; Watkins, J.K.; Wagner, A.R.; Jaques, B.J.; Sooby, E.S. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: Uranium silicide. J. Nucl. Mater. 2021, 533, 153026. [Google Scholar] [CrossRef]
- White, J.T.; Nelson, A.T.; Dunwoody, J.; Byler, D.; Safarik, D.; McClellan, K.J. Thermophysical Properties of U3Si2 to 1773 K. J. Nucl. Mater. 2015, 464, 275–280. [Google Scholar] [CrossRef]
- Hastings, I. Burnup and temperature dependence of swelling in |ceU3Si. J. Nucl. Mater. 1971, 41, 195–202. [Google Scholar] [CrossRef]
- Hastings, I.; Stoute, R. Temperature-dependent swelling in irradiated |ceU3Si fuel elements. J. Nucl. Mater. 1970, 37, 295–302. [Google Scholar] [CrossRef]
- Bethune, B. Structural transformations in U3Si. J. Nucl. Mater. 1969, 31, 197–202. [Google Scholar] [CrossRef]
- Sooby Wood, E.; White, J.T.; Grote, C.; Nelson, A.T. U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen. J. Nucl. Mater. 2018, 501, 404–412. [Google Scholar] [CrossRef]
- Okamoto, H. Si-U (Silicon-Uranium). J. Phase Equilibria Diffus. 2013, 34, 167–168. [Google Scholar] [CrossRef]
- Watkins, J.; Wagner, A.R.; Gonzales, A.; Jaques, B.J.; Sooby, E.S. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: Uranium diboride and uranium carbide. J. Nucl. Mater. 2022, 560, 153502. [Google Scholar] [CrossRef]
- Jaques, B.J.; Watkins, J.; Croteau, J.R.; Alanko, G.A.; Tyburska-Puschel, B.; Meyer, M.; Xu, P.; Lahoda, E.J.; Butt, D.P. Synthesis and sintering of UN-UO2 fuel composites. J. Nucl. Mater. 2015, 466, 745–754. [Google Scholar] [CrossRef]
- Kardoulaki, E.; Frazer, D.; White, J.T.; Carvajal, U.; Nelson, A.T.; Byler, D.D.; Saleh, T.; Gong, B.; Yao, T.; Lian, J.; et al. Fabrication and thermophysical properties of UO2-UB2 and UO2-UB4 composites sintered via spark plasma sintering. J. Nucl. Mater. 2021, 544, 152690. [Google Scholar] [CrossRef]
- Turner, J.; Abram, T. Steam performance of UB2/U3Si2 composite fuel pellets, compared to U3Si2 reference behaviour. J. Nucl. Mater. 2020, 529, 151919. [Google Scholar] [CrossRef]
- Turner, J. A high density composite fuel with integrated burnable absorber: U3Si2-UB2. J. Nucl. Mater. 2020, 529, 151891. [Google Scholar] [CrossRef]
- Gong, B.; Yao, T.; Lei, P.; Harp, J.M.; Nelson, A.T.; Lian, J. Spark plasma sintering (SPS) densified U3Si2 pellets: Microstructure control and enhanced mechanical and oxidation properties. J. Alloys Compd. 2020, 825, 154033. [Google Scholar] [CrossRef]
- Snead, L.; Hoelzer, D.; Rieth, M.; Nemith, A. Chapter 13-Refractory alloys: Vanadium, Niobium, Molybdenum, Tungsten. In Structural Alloys for Nuclear Energy Applications; Elsevier: Boston, MA, USA, 2019. [Google Scholar] [CrossRef]
- Arblaster, J. The thermodynamic properties of Niobium. J. Phase Equilibria Diffus. 2017, 38, 707–722. [Google Scholar] [CrossRef]
- Lebihan, T.; Rogl, P.; Noel, H. The niobium-silicon-uranium system. J. Phase Equilibria Diffus. 2000, 277, 82–90. [Google Scholar] [CrossRef]
- Wood, E.S.; Terrani, K.; Nelson, A. Sensitivity of measured steam oxidation kinetics to atmospheric control and impurities. J. Nucl. Mater. 2016, 477, 228–233. [Google Scholar] [CrossRef]
Nb. Conc. | %U3Si2 | %U2Nb3Si4 | %U-Si Eut. 1 | %U3Si | %U1.75Nb3.25Si4 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 | ||||||
As-Fab | Ann | As-Fab | Ann | As-Fab | Ann | As-Fab | Ann | As-Fab | Ann | |
0.5% | 93.70 | 92.31 | 0.30 | 2.69 | 6.00 | 0.00 | 0.00 | 6.00 | 0.00 | 0.00 |
1.0% | 92.77 | 94.29 | 2.49 | 5.71 | 5.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.6% | 94.48 | 87.50 | 4.59 | 5.82 | 1.00 | 7.44 | 0.00 | 0.00 | 0.00 | 0.00 |
3.0% | 92.00 | 76.76 | 6.26 | 15.47 | 1.74 | 4.39 | 0.00 | 2.42 | 0.00 | 0.00 |
6.6% | 79.81 | 64.50 | 10.17 | 11.87 | 10.02 | 12.34 | 0.00 | 8.70 | 0.00 | 0.00 |
11.88% | 48.63 | 17.76 | 28.49 | 37.76 | 16.42 | 40.84 | 0.00 | 0.00 | 6.45 | 4.95 |
Nb Concentration | % U3Si2 Phase 1 | % U2Nb3Si4 Phase 2 | % U-Si Eut. Phase 3 | % U3Si Phase 4 | % U2−xNb3+xSi4 Phase 5 |
---|---|---|---|---|---|
0.5% | 97.00 | 1.9 | 1.10 | 0.00 | 0.00 |
1.0% | 92.75 | 4.50 | 2.75 | 0.00 | 0.00 |
2.6% | 85.68 | 8.94 | 5.38 | 0.00 | 0.00 |
3.0% | 83.34 | 10.41 | 6.25 | 0.00 | 0.00 |
6.6% | 64.55 | 22.22 | 13.23 | 0.00 | 0.00 |
11.88% | 14.33 | 39.15 | 0.00 | 46.52 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robles, G.; White, J.T.; Widgeon Paisner, S.; Sooby, E.S. Microstructural and Oxidation Effects of Nb Additions to U3Si2. Metals 2024, 14, 1239. https://doi.org/10.3390/met14111239
Robles G, White JT, Widgeon Paisner S, Sooby ES. Microstructural and Oxidation Effects of Nb Additions to U3Si2. Metals. 2024; 14(11):1239. https://doi.org/10.3390/met14111239
Chicago/Turabian StyleRobles, Geronimo, Joshua T. White, Scarlett Widgeon Paisner, and Elizabeth S. Sooby. 2024. "Microstructural and Oxidation Effects of Nb Additions to U3Si2" Metals 14, no. 11: 1239. https://doi.org/10.3390/met14111239
APA StyleRobles, G., White, J. T., Widgeon Paisner, S., & Sooby, E. S. (2024). Microstructural and Oxidation Effects of Nb Additions to U3Si2. Metals, 14(11), 1239. https://doi.org/10.3390/met14111239