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Abstract: The diffusion of carbon atoms from martensite to retained austenite (RA) is controlled by the
carbon partitioning kinetics when the quenching and partitioning (Q&P) process is conducted. The
RA is divided into film-like and blocky ones in morphology. This research aims to study the influence
of the morphology of RA on the kinetics of carbon partitioning mainly by developing a numerical
simulation. A one-step Q&P process was modeled at the partitioning temperature of 330–292 ◦C, with a
partitioning time ranging from 10−6 to 5 × 103 s. The finite element method was employed to solve
the carbon diffusion equation. A thermomechanical simulator Gleeble-3500 was used to conduct the
corresponding Q&P heat treatment, and the RA was examined by X-ray diffraction. The results show
that the film-like RA will be enriched in carbon within a short time at first, followed by a decrease in
carbon concentration due to the massive absorption of carbon by blocky RA, leading the stable film-like
RA to become unstable again. The end of the kinetics of carbon partitioning was the concentration
determined by the constrained carbon equilibrium (CCE) model, provided that the CCE condition
was employed in this study. It took quite a long time (thousands of seconds) to complete the carbon
partitioning globally, which was influenced by the partitioning temperature.

Keywords: partitioning; kinetics; retained austenite; film-like; blocky; morphology; Q&P; RA

1. Introduction

Quenching and partitioning (Q&P) is a promising technique to produce steels with
excellent mechanical performance [1,2]. The Q&P steel is first quenched to a temperature
below the martensite start (Ms) temperature to obtain a desired volume fraction of marten-
site. Subsequently, the steel is held at or above this temperature for carbon atoms diffusing
from the martensite to untransformed austenite [3]. The chemical potential gradient of
carbon provides the driving force for the carbon atoms to transport. The untransformed
carbon-enriched austenite will remain stable after the secondary quenching to room tem-
perature [4]. The retained austenite (RA) will transform to martensite when subject to
deformation [5], enhancing the ductility and toughness of the Q&P steel [6,7]. Obtaining
substantial stable RA at room temperature is essential to achieve high strength without
compromising the toughness [8–10].

Ideally, it is believed that there is an optimum quenching temperature at which a spe-
cific volume of martensite provides just sufficient carbon atoms to make the untransformed
austenite carbon-enriched and remain stable without fresh martensite formation during
final quenching to room temperature [1]. Under the constrained carbon equilibrium (CCE)
condition, a model proposed by Speer et al. [4] can be used to predict the optimum quench-
ing temperature and the corresponding carbon concentration in carbon-depleted martensite
and carbon-enriched RA. However, this model is thermodynamic without considering
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the influence of the carbon partitioning kinetics on the stability of the untransformed
austenite [11].

A few models [11–15] have been developed to simulate the carbon profiles along the
half-width martensitic lath and film-like RA as a function of partitioning time at a given par-
titioning temperature with a specific austenite fraction. These one-dimensional models were
usually developed for the assembly of lath martensite and film-like RA. When modeling,
the width of the martensitic lath was assumed to be constant [11], and the width of film-
like RA was determined according to the fraction of untransformed austenite [11,12,14,16].
However, according to the experimental research, there are film-like and block-like RA in
morphology with different stability [17–23]. The width of the martensitic lath is related
to the effective carbon concentration [24]. Moreover, the film-like RA is almost observed
between the laths with the width ranging from 50 to 200 nm [25,26]. Thus, it is not rigorous
to set the width of retained austenite according to the austenite fraction.

In this research, a model that incorporated the kinetics of carbon partitioning was
developed to study the influence of morphology (blocky and film-like) of RA on the final
stable RA fraction. A corresponding experiment was conducted to verify the rationality
and validity of the model.

2. Materials and Methods
2.1. Materials and Procedure

The material used in this study was a Q&P steel with the chemical composition of Fe-
0.193C-1.702Si-1.953Mn (wt %). The samples with dimensions of 90 × 25 × 1.8 mm were
machined from a hot-rolled steel strip produced by Wuhan Iron and Steel Co., Ltd. CSP
plant (Wuhan, China). The dominant microstructure of the given steel was bainite. A
thermomechanical simulator Gleeble-3500 (DSI, New York, USA) was used to control the
heating condition. Resistance heating and N2 gas were used to heat and cool the samples
to the desired temperature. A highly vacuumed test chamber suppressed the surface
oxidation of samples.

In order to obtain the martensite transformation kinetics as a function of quenching
temperature, the quenching experiment was first carried out. A sample was heated to
900 ◦C with a heating rate of 10 ◦C/s, holding for 5 min to achieve a fully austenitic
structure. Then, the sample was quenched to room temperature with a cooling rate of
50 ◦C/s. Thermal expansion curves were recorded. The lever rule was used to obtain the
volume fraction of transformed martensite when cooled to a given temperature.

Other samples were also heated to 900 ◦C with a heating rate of 10 ◦C/s, holding for
5 min for austenitization. Then, the samples were quenched to 330, 310, and 292 ◦C at a
cooling rate of 50 ◦C/s, holding for 1, 2, and 5 min for carbon partitioning. Subsequently,
the samples were quenched to room temperature at a cooling rate greater than 30 ◦C/s.

Samples subjected to quenching and partitioning heat treatment were carefully ground
to reduce the influence of surface decarburization. Electrolytic polishing rather than
mechanical polishing was performed to prevent the unexpected martensitic transfor-
mation from RA. The volume fraction of RA was measured using the X-ray diffraction
method [27,28] with Cu-Kα radiation at 40 kV and 50 mA. Patterns were recorded at the
rate of 5◦/min over the range (2θ) 40–100◦ with a step size of 0.02◦.

2.2. Kinetics of Carbon Partitioning
2.2.1. Governing Equation

Martensitic transformation occurs when fully austenitized steel is quenched to the
temperature below Ms. The microstructure predominantly consists of primary martensite
and untransformed austenite when the target quenching temperature is between Ms and
Mf. The chemical potential of carbon in the primary martensite is higher than that in
the untransformed austenite. This difference in chemical potential results in a carbon
diffusional flux from primary martensite to untransformed austenite. According to the
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multi-component diffusion theory, the flux of carbon is driven by the chemical potential
gradient, which can be described as [12,29]:

Ji
c = −Mi

cCi
c∇µi

c (1)

where Mc is the mobility coefficient of carbon, superscript i denotes the diffusional matrix,
i.e., martensite or austenite, C is the mole fraction of carbon, ∇µc is the chemical potential
gradient of carbon. The diffusion coefficient as a function of the atomic mobility obeys the
Nernst–Einstein equation, which can simply be expressed as:

Di
c =

(
1 +

d ln f i
c

d ln Ci
c

)
Mi

cRT ≈ Mi
cRT (2)

where R is the gas constant, T is the absolute temperature, and fc is the activity coeffi-
cient of carbon, which is approximately equal to 1, considering the dilute alloy condition.
Substituting Equation (2) into Equation (1) yields Equation (3):

Ji
c = −

Di
cCi

c
RT
∇µi

c. (3)

From the conservation of carbon atoms:

∂Ci
c

∂t
= −∇Ji

c. (4)

Substituting Equation (3) into Equation (4) gives the final diffusional governing equation:

∂Ci
c

∂t
=

∂

∂x

[
Di

cCi
c

RT
∂µi

c
∂x

]
(5)

where Ci
c, Di

c, and µi
c are the mole fraction, diffusion coefficient, and chemical potential of

carbon. It is assumed that a one-dimensional diffusion is involved and the X-axis direction
is set to be aligned with the carbon diffusion gradient direction.

2.2.2. Initial and Boundary Condition

An assumption is made that the carbon atoms are uniformly distributed in the steel
at the beginning of the partitioning. The carbon concentration in primary martensite and
untransformed austenite is the same: equal to the nominal composition. A half-length
of the prior austenite, 5000 nm, was selected as the spatial range. A Neumann boundary
condition was applied:

∇J(xs, t) = ∇J(xe, t) = 0 (6)

where xs and xe denote the start and endpoint of the diffusion range.

2.2.3. Modeling Conditions

The finite element method was employed to discretize the simulation domain. Along
the diffusion range, 5001 equally spaced nodes were introduced, which means dx = 1 nm.
The diffusion coefficient of carbon in martensite is much larger than in austenite, making it
difficult to converge when solving the diffusion equation. Therefore, an interface width was
set to equal to 10 nm, within which a smoothed step function was introduced to facilitate
that the diffusion equation can be solved successfully. During the simulation, the modeling
time varied from 10−6 to 5 × 103 s, and the time-step, dt, was taken as 10−6 s to ensure that
the results were accurate and reliable. The prerequisite for solving the diffusion equation is
to determine the evolving parameters. The chemical potential and diffusion coefficient as
functions of chemical composition are listed in Table 1.
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Table 1. Chemical potential and diffusivity of carbon in austenite and martensite phases.

Variable Equation Unit Reference

µ
γ
c 77108 + RTln(Cγ

c ) + (1− Cγ
c )

2(−53699) J/mol [12]

µα′
c 84273 + RT ln

(
Cα′

c

)
+
(

1− Cα′
c

)2
(−18673) J/mol [12]

Dγ
c 4.53× 10−7

(
1 + yc(1− yc)

8339.9
T

)
· exp

{
−
(

1
T − 2.221× 10−4

)
(17767− 26436yc)

}
m2/s [30]

Dα′
c 0.02× 10−4 · exp

(
−10115

T

)
· exp

{
0.5898

[
1 + 2

π arctan
(

1.4985− 15309
T

)]}
m2/s [31]

note: yc =
Cc

1−Cc
.

The steel quenched to the temperature between Ms and Mf has the microstructures
comprised of primary martensite and untransformed austenite. After partitioning, the un-
transformed austenite becomes carbon-enriched and remains stable when quenched to
room temperature. These RAs are roughly classified into film-like and blocky types, and the
former is predominantly located between the martensitic laths [20,32]. A number of marten-
sitic laths, film-like austenite, and a blocky austenite were reasonably distributed along the
simulation domain, as shown in Figure 1 schematically.

Figure 1. Schematic illustration of lath martensite, film-like, and blocky austenite distribution in
modeling process.

According to the previous research, the lath width is heavily dependent on the carbon
concentration of the prior austenite before quenching. It can be mathematically expressed
as [24]:

dlath
M = dCottrellC

γ
c
− 2

3 (7)

where dCottrell is the radius of a Cottrell atmosphere, which was taken as 7 nm [33] in
this work. Substituting the nominal carbon concentration in the prior austenite gave
dlath

M = 164 nm. Taking into account the fluctuation of the carbon content in practice, it is
reasonable to set the martensitic lath width between 150 and 200 nm in modeling process.

In this study, a parameter α was proposed to depict the probability of film-like RA
between martensitic laths. The quantitative relationship of the martensitic lath, film-like,
and blocky austenite can be expressed by the following equations:

mdlath
M + nd f ilm

A + dblock
A = d (8)

mdlath
M

d
= vM (9)

n
m

= α (10)
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where d is the total width, dlath
M is the width of martensitic lath, and d f ilm

A and dblock
A are the

width of film-like and blocky RA. d f ilm
A is approximately 100 to 120 nm, according to the

experimental observation reported in the existing literature. vM is the volume fraction of
the primary martensite after the first quenching, m and n are the number of martensitic
lath and film-like RA, respectively. The detailed information is shown in Table 2.

Table 2. Width and number of the austenite and martensitic lath and corresponding martensite
volume fraction at different quenching temperatures.

Temperature Austenite Martensite Fraction of Martensite
oC Film Width Number Blocky Width Lath Width Number

292 105 5 125 174 25 87%
310 117 4 672 193 20 77%
330 110 3 1970 180 15 54%

Constrained carbon equilibrium (CCE) conditions proposed by Speer et al. [1,4] were
employed in this study. Thus, it was assumed that no cementite formation occurred,
the interface between the austenite and martensite is stationary, and the carbon diffusion is
completed when the chemical potential of carbon in martensite is equal to that in austenite.

3. Results and Discussion
3.1. Evolution of the Carbon Chemical Potential and Concentration

The difference in the chemical potential of carbon in the primary martensite and
untransformed austenite provides the driving force for the carbon atoms to diffuse from the
martensite to the austenite. Figure 2 shows the evolution of the chemical potential profiles
of carbon as a function of partitioning time at different quenching temperatures. It can be
seen that the chemical potential of carbon in martensite is much larger than that in austenite
at the initial stage. As the partitioning time increases, the chemical potential of carbon in
martensite is gradually decreasing, while that in austenite is increasing. When the chemical
potential of carbon in austenite and martensite was identical, the partitioning process was
finished. This time consumed was greatly affected by partitioning temperature. As for the
film-like austenite, the time to complete the partitioning locally at 330, 310, and 292 ◦C was
8, 15, and 25 s, respectively, as shown in Figure 2a,c,e. These results, in magnitude, were
consistent with values calculated in previous work with similar chemical composition and
Q&P treatment [12,14].

However, as for the blocky austenite, the partitioning was far from completion within
the same time. This is mainly attributed to the larger domain of blocky austenite, which
requires a longer partitioning time and more carbon atoms for equilibrium. Blocky austenite
with lower carbon concentration (compared with the film-like RA) was also observed
frequently in previous experimental research [20,26].

Figure 3 shows the corresponding carbon concentration profiles on both sides of the
martensite/austenite interface. As can be seen, the carbon concentration profile evolution
trends are consistent with those of the chemical potential in Figure 2. It should be noted that
there was a peak of carbon concentration on the austenite side at the martensite/austenite
interface. Within a short period of time after the partitioning started, this peak value would
reach a maximum. When the partitioning time increased, this peak value decreased. The
reason for the existence of a sharp peak was that the diffusion coefficient of carbon in
austenite is four orders of magnitude smaller than that in martensite. The carbon atoms
cannot diffuse from the vicinity of the interface into the inside of the austenite in time.
Therefore, it can be reasonably deduced that it was the diffusion of carbon in austenite
that controlled the partitioning process rather than carbon diffusion in martensite [14].
The diffusion coefficient of carbon in austenite is affected by the temperature. Hence,
when partitioning for the same time (0.1 s, for example), the peak value increased with the
partitioning temperature. Similar results [12,14] were found in previous literature.
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Figure 2. Carbon chemical potential profiles for the partitioning time ranging from 0.1 to 25 s at
(a,b) 330 ◦C, (c,d) 310 ◦C, and (e,f) 292 ◦C, between (a,c,e) film-like austenite and lath martensite,
(b,d,f) blocky austenite and lath martensite.

The rapid carbon enrichment of film-like RA was attributed to its large specific surface
area [20]. Within a short time of partitioning, the carbon concentration in film-like austenite
was increasing as high as 1.8 wt %, completing partitioning locally and temporarily.
Generally speaking, this value was in good agreement with the previous modeling and
experimental work [12,14,28,34,35], taking into account the differences in modeling and
Q&P heat treatment conditions. In previous modeling [12,14], the width of the RA was
set based on the fraction of untransformed austenite without considering the existence of
the blocky austenite, yielding a higher width ratio of austenite to martensite and a lower
carbon concentration in equilibrium locally. In this study, the CCE criteria were employed,
which indicated that reactions (such as carbide precipitation, bainite formation) competing
with carbon partitioning were ignored, resulting in a slightly higher carbon concentration
in austenite than that observed in the experiment. It should be noted that some film-
like RAs enriched in high carbon concentration were observed nevertheless [20,34]. By
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contrast, large blocky RA with high carbon concentration was observed scarcely, for carbon
enrichment is an essential prerequisite for the stability of RA.
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Figure 3. Carbon concentration profiles for the partitioning time ranging from 0.1 s to 25 s at
(a,b) 330 ◦C, (c,d) 310 ◦C, and (e,f) 292 ◦C, between (a,c,e) film-like austenite and lath martensite,
(b,d,f) blocky austenite and lath martensite.

3.2. Volume Fraction of Retained Austenite
3.2.1. Bulk Carbon Concentration Distribution

According to the experimental results of martensitic transformation kinetics, the Ms
and Mf temperatures of the Q&P steel were 262 and 236 ◦C respectively. When it was
quenched to 330, 310, and 292 ◦C, 54, 77, and 87% martensite was formed, respectively.
Based on this, the corresponding fraction of austenite exhibiting as film-like and blocky
was modeled. Figure 4 gives the bulk carbon concentration distribution profiles in the
martensite and austenite when partitioning up to 4 × 103 s at different partitioning tem-
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peratures. According to the results of simulated carbon concentration distribution in the
vicinity of the film-like austenite/martensite interface, it is known that the partitioning of
the carbon was completed in 8–25 s, locally. As the partitioning time prolonged, the carbon
concentration in film-like austenite declined gradually. Meanwhile, the carbon concentra-
tion in blocky austenite increased. The red arrows in Figure 4 highlight the trends of the
carbon concentrations profiles.
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Figure 4. Carbon concentration profiles evolution in film-like and blocky austenite after local equi-
librium for partitioning time of 10 to 4 × 104 s, at (a) 330 ◦C, (b) 310 ◦C, and (c) 292 ◦C. The right
domain represents the blocky austenite. The blue dash line denotes the critical carbon concentration
above which the untransformed austenite will remain stable when quenched to room temperature.

The chemical potential gradient of carbon provides the driving force for carbon atoms
diffusion. The chemical potential of carbon in the austenite or martensite is carbon con-
centration dependent. The lower carbon concentration in blocky austenite, owing to the
large volume fraction that needed a large number of carbon atoms to achieve chemical
potential balance, resulted in a sub-domain with lower chemical potential. Consequently,
a long-range diffusion of carbon atoms from martensite and film-like austenite to blocky
austenite occurred. As a result, the carbon concentration in the film-like austenite may
continue to decrease to or below a critical value above which the austenite could remain
stable after being quenched to room temperature. The martensite start (Ms) temperature
can be expressed by the following expression [36]:

Ms = 764.2− 302.6wC − 30.6wMn − 16.6wNi − 8.9wCr + 2.4wMo − 11.3wCu + 8.58wCo

+ 7.4wW − 14.5wSi
(11)

where w is the chemical composition in weight percent, and Ms is in Kelvin. As the carbon
concentration increases, the Ms temperature decreases. In order to make the retained
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austenite remain stable at room temperature, the Ms temperature of the retained austenite
has to be below the room temperature (Tr). Substituting Ms in Equation (11) with Tr:

Tr = 764.2− 302.6wC − 30.6wMn − 16.6wNi − 8.9wCr + 2.4wMo − 11.3wCu + 8.58wCo

+ 7.4wW − 14.5wSi.
(12)

Then, the critical carbon concentration that makes the retained austenite remain stable
at room temperature can be derived:

wC =
1

302.6
(764.2− 30.6wMn − 16.6wNi − 8.9wCr + 2.4wMo − 11.3wCu + 8.58wCo

+ 7.4wW − 14.5wSi − Tr).
(13)

3.2.2. Retained Austenite

The stability of austenite at room temperature after the second quenching depends on
whether the carbon concentration in austenite is higher than the critical value. The film-like
austenite is carbon-enriched within a few seconds, as shown in Figure 3. However, due
to the influence of blocky austenite, the carbon-enriched film-like austenite may become
diminished in carbon, making it unstable at room temperature.

The evolution of the fraction of RA with partitioning time can be obtained by measur-
ing the domain where the carbon concentration exceeds the critical value. The simulated
results are shown in Figure 5. As can be seen, the fraction of RA increases with partitioning
time to a peak value, which is followed by some fluctuations. The former continuous
increase in the fraction of RA was due to the rapid carbon enrichment of film-like austenite.
The fluctuations were attributed to the carbon diffusion from carbon-enriched film-like
austenite and martensite to the blocky austenite with relatively low carbon concentration.
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Figure 5. Simulated volume fraction of the stable retained austenite as a function of partitioning time
at (a) 330 ◦C, (b) 310 ◦C, and (c) 292 ◦C, and the corresponding experimental result of RA. The dashed
blue line denotes the carbon concentration in RA calculated under CCE conditions.
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In the previous experimental research, it was often observed that the volume fraction
of RA first increased and then decreased with partitioning time, especially when the
quenching temperature was relatively higher [11,37,38], i.e., above the optimum quenching
temperature. It should be noted that some results exhibited a monotonous decrease without
increasing part of the fraction of RA with partitioning time [38,39]. It is speculated that
the trend may be due to the long partitioning time, time steps, or equipment precision.
It is widely accepted that the decreasing volume fraction of RA with partitioning time is
attributed to the carbide formation [37,40–42]. According to the result of this study, it can
be reasonably believed that the massive absorption of carbon by blocky austenite was one
of the contributing factors in decreasing the volume fraction of RA with partitioning time.
When the quenching temperature was relatively lower, i.e., below the optimum quenching
temperature, the fraction of RA was found to increase monotonously [38], which was
consistent with the result of this study (Figure 5c). Within a sufficient partitioning time,
the fraction of RA was consistent with results computed by using the CCE model [4], since
the same assumptions were applied. The consistency of the results proved the reliability of
the model.

Figure 6 gives the results of X-ray diffraction at different partitioning temperatures and
time. According to the intensity of the diffraction of the austenite, the volume fraction of the
RA at room temperature can be determined. The experimental result is also presented in
Figure 5. As the partitioning time increased, the fraction of RA increased when partitioning
at 330 and 292 ◦C, as shown in Figure 5a,c, which is similar to the trend of the primary
stage of the simulated results. However, when partitioning at 310 ◦C, the fraction of RA did
not increase monotonically, similar to the changing trends of the second-stage simulation
results. As can be seen, the experimental value is smaller than the simulated results. The
discrepancy is mainly due to the assumption that competing reactions, such as carbide
formation, are suppressed by alloying elements [3,43,44]. This assumption overestimates
the available carbon for partitioning to RA. The evolution of the amount of RA as a function
of the partitioning temperature and time can serve as the indirect proof of the kinetics of
carbon partitioning. More experimental work, especially the directly observation of carbon
partitioning, is needed for deeper validation of the model in the future.
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Figure 6. X-ray diffraction pattern at different quenching(the same as partitioning) temperature and
partitioning time.

Last but not least, the parameter α proposed in this study is theoretically reasonable,
but the statistical evidence is a bit insufficient. It affects the fluctuation of simulation
results within a short partitioning time, not the overall trends. Although the parame-
ter α works well in this study, additional investigations are needed for its physical and
statistical significance.
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4. Conclusions

The partitioning of carbon from martensite to untransformed austenite during the
partitioning process was simulated by employing the finite element method with the
governing equation based on the chemical potential of carbon in austenite and martensite.
The simulation used the same assumptions as the classical CCE model. The influence of
austenite morphology on the kinetic of carbon partitioning was investigated quantitatively.
From the results presented in this study, the following conclusions can be drawn:

• In the primary stage of the partitioning, the film-like austenite will be enriched in
carbon within a short time, leading to an increasing fraction of retained austenite
with partitioning time. However, in the second stage, due to the influence of low
carbon blocky austenite, the carbon concentration in film-like austenite that had been
enriched in carbon and stable will be reduced, resulting in a fluctuation in the fraction
of stable retained austenite.

• The carbon diffusion is driven by the chemical potential gradient. The carbon atoms
diffuse not only from martensite to untransformed austenite but also from carbon-
enriched film-like austenite through martensite to low-carbon blocky austenite by
long-range diffusion.

• The kinetics of carbon partitioning is controlled by the diffusion of carbon in austenite
and is significantly affected by the partitioning temperature.

• The end of the kinetics of carbon partitioning was the concentration determined by
the CCE model, provided that the CCE condition was employed in this study. It took
quite a long time to complete the carbon partitioning globally, which was influenced
by the partitioning temperature.
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